sandboxed-api/oss-internship-2020/libtiff/example/main_sandboxed.cc

325 lines
11 KiB
C++
Raw Normal View History

2020-09-24 04:21:33 +08:00
// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
2020-09-26 05:21:07 +08:00
#include <array>
#include <cstdint>
2020-09-26 19:27:13 +08:00
#include <cstdlib>
#include <cstring>
2020-09-24 04:21:33 +08:00
#include "../sandboxed.h" // NOLINT(build/include)
2020-10-23 00:19:27 +08:00
#include "absl/algorithm/container.h"
#include "absl/strings/str_join.h"
2020-09-24 04:21:33 +08:00
#include "sandboxed_api/sandbox2/util/fileops.h"
#include "sandboxed_api/sandbox2/util/path.h"
2020-09-26 05:21:07 +08:00
#include "sandboxed_api/vars.h"
#include "tiffio.h" // NOLINT(build/include)
namespace {
struct ChannelLimits {
uint8_t min_red;
uint8_t max_red;
uint8_t min_green;
uint8_t max_green;
uint8_t min_blue;
uint8_t max_blue;
uint8_t min_alpha;
uint8_t max_alpha;
};
2020-10-11 18:01:59 +08:00
constexpr uint32_t kRawTileNumber = 9;
constexpr uint32_t kClusterSize = 6;
constexpr uint32_t kChannelsInPixel = 3;
constexpr uint32_t kTestCount = 3;
constexpr uint32_t kImageSize = 128 * 128;
constexpr uint32_t kClusterImageSize = 64 * 64;
using ClusterData = std::array<uint8_t, kClusterSize>;
2020-10-11 18:01:59 +08:00
constexpr std::array<std::pair<uint32_t, ClusterData>, kTestCount> kClusters = {
{{0, {0, 0, 2, 0, 138, 139}},
{64, {0, 0, 9, 6, 134, 119}},
{128, {44, 40, 63, 59, 230, 95}}}};
2020-10-11 18:01:59 +08:00
constexpr std::array<std::pair<uint32_t, ChannelLimits>, kTestCount> kLimits = {
{{0, {15, 18, 0, 0, 18, 41, 255, 255}},
{64, {0, 0, 0, 0, 0, 2, 255, 255}},
{512, {5, 6, 34, 36, 182, 196, 255, 255}}}};
2020-10-11 18:53:08 +08:00
constexpr absl::string_view kClusterErrorFormatStr =
"Cluster %d did not match expected results.\n"
2020-10-23 00:19:27 +08:00
"Expect:\t%s\n"
"Got:\t%s";
2020-10-11 18:53:08 +08:00
constexpr absl::string_view kRgbPixelErrorFormatStr =
"Pixel %d did not match expected results.\n"
"Got R=%d (expected %d..%d), G=%d (expected %d..%d), "
2020-10-23 00:19:27 +08:00
"B=%d (expected %d..%d)";
2020-10-11 18:53:08 +08:00
constexpr absl::string_view kRgbaPixelErrorFormatStr =
"Pixel %d did not match expected results.\n"
"Got R=%d (expected %d..%d), G=%d (expected %d..%d), "
2020-10-23 00:19:27 +08:00
"B=%d (expected %d..%d), A=%d (expected %d..%d)";
2020-10-11 18:53:08 +08:00
2020-10-11 18:01:59 +08:00
absl::Status CheckCluster(uint32_t cluster,
const sapi::v::Array<uint8_t>& buffer,
const ClusterData& expected_cluster) {
2020-10-23 00:19:27 +08:00
if (buffer.GetSize() < (cluster + 1) * kClusterSize) {
return absl::InternalError("Buffer overrun");
2020-10-02 00:49:59 +08:00
}
2020-09-24 04:21:33 +08:00
2020-10-23 00:19:27 +08:00
std::vector<uint8_t> target(buffer.GetData() + cluster * kClusterSize,
buffer.GetData() + (cluster + 1) * kClusterSize);
if (absl::c_equal(absl::MakeSpan(target), expected_cluster)) {
2020-09-26 05:21:07 +08:00
return absl::OkStatus();
2020-09-24 04:21:33 +08:00
}
2020-10-02 00:49:59 +08:00
// the image is split on 6-bit clusters because it has YCbCr color format
2020-10-11 18:53:08 +08:00
return absl::InternalError(absl::StrFormat(
2020-10-23 00:19:27 +08:00
kClusterErrorFormatStr, cluster, absl::StrJoin(expected_cluster, "\t"),
absl::StrJoin(target, "\t")));
2020-09-24 04:21:33 +08:00
}
2020-10-11 18:01:59 +08:00
absl::Status CheckRgbPixel(uint32_t pixel, const ChannelLimits& limits,
2020-09-26 05:21:07 +08:00
const sapi::v::Array<uint8_t>& buffer) {
2020-10-23 00:19:27 +08:00
if (buffer.GetSize() < (pixel + 1) * kChannelsInPixel) {
return absl::InternalError("Buffer overrun");
2020-10-02 00:49:59 +08:00
}
2020-10-23 00:19:27 +08:00
uint8_t* rgb = buffer.GetData() + pixel * kChannelsInPixel;
2020-09-24 04:21:33 +08:00
if (rgb[0] >= limits.min_red && rgb[0] <= limits.max_red &&
rgb[1] >= limits.min_green && rgb[1] <= limits.max_green &&
rgb[2] >= limits.min_blue && rgb[2] <= limits.max_blue) {
2020-09-26 05:21:07 +08:00
return absl::OkStatus();
2020-09-24 04:21:33 +08:00
}
2020-10-11 18:53:08 +08:00
return absl::InternalError(absl::StrFormat(
kRgbPixelErrorFormatStr, pixel, rgb[0], limits.min_red, limits.max_red,
rgb[1], limits.min_green, limits.max_green, rgb[2], limits.min_blue,
limits.max_blue));
2020-09-24 04:21:33 +08:00
}
2020-10-11 18:01:59 +08:00
absl::Status CheckRgbaPixel(uint32_t pixel, const ChannelLimits& limits,
const sapi::v::Array<uint32_t>& buffer) {
2020-09-24 04:21:33 +08:00
// RGBA images are upside down - adjust for normal ordering
2020-10-11 18:01:59 +08:00
uint32_t adjusted_pixel = pixel % 128 + (127 - (pixel / 128)) * 128;
2020-10-02 00:49:59 +08:00
if (buffer.GetSize() <= adjusted_pixel) {
2020-10-23 00:19:27 +08:00
return absl::InternalError("Buffer overrun");
2020-10-02 00:49:59 +08:00
}
2020-10-23 00:19:27 +08:00
uint32_t rgba = buffer[adjusted_pixel];
if (TIFFGetR(rgba) >= static_cast<unsigned>(limits.min_red) &&
TIFFGetR(rgba) <= static_cast<unsigned>(limits.max_red) &&
TIFFGetG(rgba) >= static_cast<unsigned>(limits.min_green) &&
TIFFGetG(rgba) <= static_cast<unsigned>(limits.max_green) &&
TIFFGetB(rgba) >= static_cast<unsigned>(limits.min_blue) &&
TIFFGetB(rgba) <= static_cast<unsigned>(limits.max_blue) &&
TIFFGetA(rgba) >= static_cast<unsigned>(limits.min_alpha) &&
TIFFGetA(rgba) <= static_cast<unsigned>(limits.max_alpha)) {
2020-09-26 05:21:07 +08:00
return absl::OkStatus();
2020-09-24 04:21:33 +08:00
}
2020-10-11 18:53:08 +08:00
return absl::InternalError(absl::StrFormat(
kRgbaPixelErrorFormatStr, pixel, TIFFGetR(rgba), limits.min_red,
limits.max_red, TIFFGetG(rgba), limits.min_green, limits.max_green,
TIFFGetB(rgba), limits.min_blue, limits.max_blue, TIFFGetA(rgba),
limits.min_alpha, limits.max_alpha));
2020-09-24 04:21:33 +08:00
}
2020-09-26 19:27:13 +08:00
} // namespace
2020-09-26 05:21:07 +08:00
2020-10-23 00:19:27 +08:00
std::string GetFilePath(const absl::string_view dir,
const absl::string_view filename) {
2020-09-26 05:21:07 +08:00
return sandbox2::file::JoinPath(dir, "test", "images", filename);
2020-09-24 04:21:33 +08:00
}
2020-10-23 00:19:27 +08:00
std::string GetFilePath(const absl::string_view filename) {
2020-09-26 05:21:07 +08:00
std::string cwd = sandbox2::file_util::fileops::GetCWD();
2020-09-24 04:21:33 +08:00
auto find = cwd.rfind("build");
std::string project_path;
if (find == std::string::npos) {
2020-10-02 00:56:45 +08:00
LOG(ERROR)
<< "Something went wrong: CWD don't contain build dir. "
<< "Please run tests from build dir or send project dir as a "
<< "parameter: ./sandboxed /absolute/path/to/project/dir .\n"
<< "Falling back to using current working directory as root dir.\n";
2020-09-24 04:21:33 +08:00
project_path = cwd;
} else {
project_path = cwd.substr(0, find);
}
return sandbox2::file::JoinPath(project_path, "test", "images", filename);
}
absl::Status LibTIFFMain(const std::string& srcfile) {
// to use dir and file inside sapi-libtiff, use
// sandbox(file) file only -- or
// sandbox(file, dir) -- file and dir -- or
// sandbox(nullopt, dir) -- dir only.
// file and directory must exist.
// all paths must be absolute.
2020-10-01 03:17:23 +08:00
TiffSapiSandbox sandbox(srcfile);
2020-09-24 04:21:33 +08:00
// initialize sapi vars after constructing TiffSapiSandbox
2020-09-26 05:21:07 +08:00
SAPI_RETURN_IF_ERROR(sandbox.Init());
2020-09-24 04:21:33 +08:00
TiffApi api(&sandbox);
sapi::v::ConstCStr srcfile_var(srcfile.c_str());
2020-09-24 04:21:33 +08:00
sapi::v::ConstCStr r_var("r");
2020-10-23 00:19:27 +08:00
absl::StatusOr<TIFF*> status_or_tif;
2020-09-26 05:21:07 +08:00
SAPI_ASSIGN_OR_RETURN(
2020-09-26 19:27:13 +08:00
status_or_tif, api.TIFFOpen(srcfile_var.PtrBefore(), r_var.PtrBefore()));
2020-09-24 04:21:33 +08:00
sapi::v::RemotePtr tif(status_or_tif.value());
if (!tif.GetValue()) {
2020-09-26 05:21:07 +08:00
return absl::InternalError(absl::StrCat("Could not open ", srcfile));
2020-09-24 04:21:33 +08:00
}
2020-10-23 00:19:27 +08:00
sapi::v::UShort h;
sapi::v::UShort v;
SAPI_ASSIGN_OR_RETURN(int return_value,
2020-09-26 19:27:13 +08:00
api.TIFFGetField2(&tif, TIFFTAG_YCBCRSUBSAMPLING,
2020-10-23 14:54:36 +08:00
h.PtrAfter(), v.PtrAfter()));
2020-10-02 00:49:59 +08:00
if (return_value == 0 || h.GetValue() != 2 || v.GetValue() != 2) {
2020-09-26 05:21:07 +08:00
return absl::InternalError("Could not retrieve subsampling tag");
2020-09-24 04:21:33 +08:00
}
2020-10-02 00:49:59 +08:00
SAPI_ASSIGN_OR_RETURN(tsize_t sz, api.TIFFTileSize(&tif));
if (sz != kClusterSize * kClusterImageSize) {
return absl::InternalError(
absl::StrCat("Unexpected TileSize ", sz, ". Expected ",
2020-10-23 00:19:27 +08:00
kClusterSize * kClusterImageSize, " bytes"));
2020-09-24 04:21:33 +08:00
}
2020-10-23 00:19:27 +08:00
sapi::v::Array<uint8_t> buffer(sz);
2020-10-02 00:49:59 +08:00
// Read a tile in decompressed form, but still YCbCr subsampled
2020-09-26 05:21:07 +08:00
SAPI_ASSIGN_OR_RETURN(
2020-10-02 00:56:45 +08:00
tsize_t new_sz,
2020-10-23 14:54:36 +08:00
api.TIFFReadEncodedTile(&tif, kRawTileNumber, buffer.PtrAfter(), sz));
2020-10-02 00:49:59 +08:00
if (new_sz != sz) {
2020-09-26 05:21:07 +08:00
return absl::InternalError(absl::StrCat(
2020-10-23 00:19:27 +08:00
"Did not get expected result code from TIFFReadEncodedTile(): ", new_sz,
" instead of ", sz));
2020-09-24 04:21:33 +08:00
}
2020-10-23 00:19:27 +08:00
absl::Status status;
bool cluster_status_ok = true;
for (const auto& [id, data] : kClusters) {
2020-10-23 00:19:27 +08:00
if (status = CheckCluster(id, buffer, data); !status.ok()) {
LOG(ERROR) << "CheckCluster failed:\n" << status.ToString() << '\n';
}
cluster_status_ok &= status.ok();
2020-09-26 05:21:07 +08:00
}
2020-09-24 04:21:33 +08:00
if (!cluster_status_ok) {
return absl::InternalError("One or more clusters failed the check");
2020-09-24 04:21:33 +08:00
}
2020-09-26 05:21:07 +08:00
SAPI_ASSIGN_OR_RETURN(
return_value,
2020-09-26 19:27:13 +08:00
api.TIFFSetFieldU1(&tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB));
2020-10-02 00:49:59 +08:00
if (return_value == 0) {
return absl::InternalError("The JPEGCOLORMODE tag cannot be changed");
2020-09-26 05:21:07 +08:00
}
2020-09-24 04:21:33 +08:00
2020-10-02 00:49:59 +08:00
SAPI_ASSIGN_OR_RETURN(sz, api.TIFFTileSize(&tif));
if (sz != kChannelsInPixel * kImageSize) {
return absl::InternalError(
absl::StrCat("Unexpected TileSize ", sz, ". Expected ",
2020-10-23 00:19:27 +08:00
kChannelsInPixel * kImageSize, " bytes"));
2020-09-24 04:21:33 +08:00
}
2020-09-26 05:21:07 +08:00
2020-10-23 14:54:36 +08:00
sapi::v::Array<uint8_t> buffer2(sz);
2020-09-26 05:21:07 +08:00
SAPI_ASSIGN_OR_RETURN(
2020-10-02 00:56:45 +08:00
new_sz,
2020-10-23 14:54:36 +08:00
api.TIFFReadEncodedTile(&tif, kRawTileNumber, buffer2.PtrAfter(), sz));
2020-10-02 00:49:59 +08:00
if (new_sz != sz) {
2020-09-26 05:21:07 +08:00
return absl::InternalError(absl::StrCat(
2020-10-02 00:56:45 +08:00
"Did not get expected result code from TIFFReadEncodedTile(): ", new_sz,
" instead of ", sz));
2020-09-26 05:21:07 +08:00
}
2020-09-24 04:21:33 +08:00
2020-10-23 00:19:27 +08:00
bool pixel_status_ok = true;
for (const auto& [id, data] : kLimits) {
2020-10-23 14:54:36 +08:00
if (status = CheckRgbPixel(id, data, buffer2); !status.ok()) {
2020-10-23 00:19:27 +08:00
LOG(ERROR) << "CheckRgbPixel failed:\n" << status.ToString() << '\n';
}
pixel_status_ok &= status.ok();
2020-09-26 05:21:07 +08:00
}
SAPI_RETURN_IF_ERROR(api.TIFFClose(&tif));
SAPI_ASSIGN_OR_RETURN(
2020-09-26 19:27:13 +08:00
status_or_tif, api.TIFFOpen(srcfile_var.PtrBefore(), r_var.PtrBefore()));
2020-09-24 04:21:33 +08:00
sapi::v::RemotePtr tif2(status_or_tif.value());
2020-10-02 00:49:59 +08:00
if (!tif2.GetValue()) {
2020-09-26 05:21:07 +08:00
return absl::InternalError(absl::StrCat("Could not reopen ", srcfile));
2020-09-24 04:21:33 +08:00
}
2020-10-23 00:19:27 +08:00
sapi::v::Array<uint32_t> rgba_buffer(kImageSize);
2020-09-24 04:21:33 +08:00
2020-10-02 00:49:59 +08:00
// read as rgba
2020-09-26 19:27:13 +08:00
SAPI_ASSIGN_OR_RETURN(
2020-10-02 00:49:59 +08:00
return_value,
2020-10-23 14:54:36 +08:00
api.TIFFReadRGBATile(&tif2, 1 * 128, 2 * 128, rgba_buffer.PtrAfter()));
2020-10-02 00:49:59 +08:00
if (return_value == 0) {
2020-09-26 05:21:07 +08:00
return absl::InternalError("TIFFReadRGBATile() returned failure code");
}
2020-10-02 00:49:59 +08:00
// Checking specific pixels from the test data, 0th, 64th and 512th
for (const auto& [id, data] : kLimits) {
2020-10-23 00:19:27 +08:00
if (status = CheckRgbaPixel(id, data, rgba_buffer); !status.ok()) {
LOG(ERROR) << "CheckRgbaPixel failed:\n" << status.ToString() << '\n';
}
pixel_status_ok &= status.ok();
2020-09-24 04:21:33 +08:00
}
2020-09-26 05:21:07 +08:00
SAPI_RETURN_IF_ERROR(api.TIFFClose(&tif2));
2020-09-24 04:21:33 +08:00
if (!pixel_status_ok) {
return absl::InternalError("wrong encoding");
2020-09-24 04:21:33 +08:00
}
2020-09-26 05:21:07 +08:00
return absl::OkStatus();
}
int main(int argc, char** argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
std::string srcfile;
std::string srcfilerel = "quad-tile.jpg.tiff";
if (argc < 2) {
srcfile = GetFilePath(srcfilerel);
} else {
srcfile = GetFilePath(argv[1], srcfilerel);
}
2020-10-23 00:19:27 +08:00
absl::Status status = LibTIFFMain(srcfile);
2020-09-26 05:21:07 +08:00
if (!status.ok()) {
2020-09-26 19:27:13 +08:00
LOG(ERROR) << "LibTIFFMain failed with error:\n"
<< status.ToString() << '\n';
2020-09-26 05:21:07 +08:00
return EXIT_FAILURE;
2020-09-24 04:21:33 +08:00
}
2020-09-26 05:21:07 +08:00
return EXIT_SUCCESS;
2020-09-24 04:21:33 +08:00
}