sandboxed-api/sandboxed_api/sandbox2/monitor.cc

1259 lines
42 KiB
C++
Raw Normal View History

// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Implementation file for the sandbox2::Monitor class.
#include "sandboxed_api/sandbox2/monitor.h"
// clang-format off
#include <linux/posix_types.h> // NOLINT: Needs to come before linux/ipc.h
#include <linux/ipc.h>
// clang-format on
#include <sched.h>
#include <sys/mman.h>
#include <sys/ptrace.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <syscall.h>
#include <unistd.h>
#include <algorithm>
#include <atomic>
#include <cerrno>
#include <csignal>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <fstream>
#include <memory>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <glog/logging.h>
#include "absl/cleanup/cleanup.h"
#include "absl/container/flat_hash_set.h"
#include "sandboxed_api/util/flag.h"
#include "absl/memory/memory.h"
#include "absl/status/status.h"
#include "absl/strings/match.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/time/time.h"
#include "sandboxed_api/config.h"
#include "sandboxed_api/sandbox2/client.h"
#include "sandboxed_api/sandbox2/comms.h"
#include "sandboxed_api/sandbox2/executor.h"
#include "sandboxed_api/sandbox2/limits.h"
#include "sandboxed_api/sandbox2/mounts.h"
#include "sandboxed_api/sandbox2/namespace.h"
#include "sandboxed_api/sandbox2/network_proxy/server.h"
#include "sandboxed_api/sandbox2/policy.h"
#include "sandboxed_api/sandbox2/regs.h"
#include "sandboxed_api/sandbox2/result.h"
#include "sandboxed_api/sandbox2/sanitizer.h"
#include "sandboxed_api/sandbox2/stack_trace.h"
#include "sandboxed_api/sandbox2/syscall.h"
#include "sandboxed_api/sandbox2/util.h"
#include "sandboxed_api/util/file_helpers.h"
#include "sandboxed_api/util/status_macros.h"
#include "sandboxed_api/util/strerror.h"
#include "sandboxed_api/util/temp_file.h"
using std::string;
ABSL_FLAG(bool, sandbox2_report_on_sandboxee_signal, true,
"Report sandbox2 sandboxee deaths caused by signals");
ABSL_FLAG(bool, sandbox2_report_on_sandboxee_timeout, true,
"Report sandbox2 sandboxee timeouts");
ABSL_DECLARE_FLAG(bool, sandbox2_danger_danger_permit_all);
ABSL_DECLARE_FLAG(bool, sandbox_libunwind_crash_handler);
ABSL_DECLARE_FLAG(string, sandbox2_danger_danger_permit_all_and_log);
namespace sandbox2 {
namespace {
// Since waitpid() is biased towards newer threads, we run the risk of starving
// older threads if the newer ones raise a lot of events.
// To avoid it, we use this class to gather all the waiting threads and then
// return them one at a time on each call to Wait().
// In this way, everyone gets their chance.
class PidWaiter {
public:
// Constructs a PidWaiter where the given priority_pid is checked first.
explicit PidWaiter(pid_t priority_pid) : priority_pid_(priority_pid) {}
// Returns the PID of a thread that needs attention, populating 'status' with
// the status returned by the waitpid() call. It returns 0 if no threads
// require attention at the moment, or -1 if there was an error, in which case
// the error value can be found in 'errno'.
int Wait(int* status) {
if (statuses_.empty() && last_errno_ == 0) {
RefillStatuses();
}
if (statuses_.empty()) {
if (last_errno_ == 0) return 0;
errno = last_errno_;
last_errno_ = 0;
return -1;
}
const auto& entry = statuses_.front();
pid_t pid = entry.first;
*status = entry.second;
statuses_.pop_front();
return pid;
}
private:
void RefillStatuses() {
statuses_.clear();
last_errno_ = 0;
pid_t pid = priority_pid_;
int status;
while (true) {
// It should be a non-blocking operation (hence WNOHANG), so this function
// returns quickly if there are no events to be processed.
pid_t ret =
waitpid(pid, &status, __WNOTHREAD | __WALL | WUNTRACED | WNOHANG);
if (ret > 0) {
statuses_.emplace_back(ret, status);
} else if (ret < 0) {
last_errno_ = errno;
break;
} else if (pid == -1) {
break;
}
pid = -1;
}
}
pid_t priority_pid_;
std::deque<std::pair<pid_t, int>> statuses_ = {};
int last_errno_ = 0;
};
// We could use the ProcMapsIterator, however we want the full file content.
std::string ReadProcMaps(pid_t pid) {
std::ifstream input(absl::StrCat("/proc/", pid, "/maps"),
std::ios_base::in | std::ios_base::binary);
std::ostringstream contents;
contents << input.rdbuf();
return contents.str();
}
void ContinueProcess(pid_t pid, int signo) {
if (ptrace(PTRACE_CONT, pid, 0, signo) == -1) {
if (errno == ESRCH) {
LOG(WARNING) << "Process " << pid
<< " died while trying to PTRACE_CONT it";
} else {
PLOG(ERROR) << "ptrace(PTRACE_CONT, pid=" << pid << ", sig=" << signo
<< ")";
}
}
}
void StopProcess(pid_t pid, int signo) {
if (ptrace(PTRACE_LISTEN, pid, 0, signo) == -1) {
if (errno == ESRCH) {
LOG(WARNING) << "Process " << pid
<< " died while trying to PTRACE_LISTEN it";
} else {
PLOG(ERROR) << "ptrace(PTRACE_LISTEN, pid=" << pid << ", sig=" << signo
<< ")";
}
}
}
void CompleteSyscall(pid_t pid, int signo) {
if (ptrace(PTRACE_SYSCALL, pid, 0, signo) == -1) {
if (errno == ESRCH) {
LOG(WARNING) << "Process " << pid
<< " died while trying to PTRACE_SYSCALL it";
} else {
PLOG(ERROR) << "ptrace(PTRACE_SYSCALL, pid=" << pid << ", sig=" << signo
<< ")";
}
}
}
void MaybeEnableTomoyoLsmWorkaround(Mounts& mounts, std::string& comms_fd_dev) {
static auto tomoyo_active = []() -> bool {
std::string lsm_list;
if (auto status = sapi::file::GetContents(
"/sys/kernel/security/lsm", &lsm_list, sapi::file::Defaults());
!status.ok() && !absl::IsNotFound(status)) {
VLOG(1) << "Checking active LSMs failed: " << status.message() << ": "
<< sapi::StrError(errno);
return false;
}
return absl::StrContains(lsm_list, "tomoyo");
}();
if (!tomoyo_active) {
return;
}
VLOG(1) << "Tomoyo LSM active, enabling workaround";
if (mounts.ResolvePath("/dev").ok() || mounts.ResolvePath("/dev/fd").ok()) {
// Avoid shadowing /dev/fd/1022 below if /dev or /dev/fd is already mapped.
VLOG(1) << "Parent dir already mapped, skipping";
return;
}
auto temp_file = sapi::CreateNamedTempFileAndClose("/tmp/");
if (!temp_file.ok()) {
LOG(WARNING) << "Failed to create empty temp file: " << temp_file.status();
return;
}
comms_fd_dev = std::move(*temp_file);
// Ignore errors here, as the file itself might already be mapped.
if (auto status = mounts.AddFileAt(
comms_fd_dev, absl::StrCat("/dev/fd/", Comms::kSandbox2TargetExecFD),
false);
!status.ok()) {
VLOG(1) << "Mapping comms FD: %s" << status.message();
}
}
} // namespace
Monitor::Monitor(Executor* executor, Policy* policy, Notify* notify)
: executor_(executor),
notify_(notify),
policy_(policy),
// NOLINTNEXTLINE clang-diagnostic-deprecated-declarations
comms_(executor_->ipc()->comms()),
ipc_(executor_->ipc()),
wait_for_execve_(executor->enable_sandboxing_pre_execve_) {
// It's a pre-connected Comms channel, no need to accept new connection.
CHECK(comms_->IsConnected());
std::string path =
absl::GetFlag(FLAGS_sandbox2_danger_danger_permit_all_and_log);
external_kill_request_flag_.test_and_set(std::memory_order_relaxed);
dump_stack_request_flag_.test_and_set(std::memory_order_relaxed);
if (!path.empty()) {
log_file_ = std::fopen(path.c_str(), "a+");
PCHECK(log_file_ != nullptr) << "Failed to open log file '" << path << "'";
}
if (auto* ns = policy_->GetNamespace(); ns) {
// Check for the Tomoyo LSM, which is active by default in several common
// distribution kernels (esp. Debian).
MaybeEnableTomoyoLsmWorkaround(ns->mounts(), comms_fd_dev_);
}
}
Monitor::~Monitor() {
if (!comms_fd_dev_.empty()) {
std::remove(comms_fd_dev_.c_str());
}
if (log_file_) {
std::fclose(log_file_);
}
if (network_proxy_server_) {
network_proxy_thread_.join();
}
}
namespace {
void LogContainer(const std::vector<std::string>& container) {
for (size_t i = 0; i < container.size(); ++i) {
LOG(INFO) << "[" << std::setfill('0') << std::setw(4) << i
<< "]=" << container[i];
}
}
} // namespace
void Monitor::Run() {
absl::Cleanup setup_notify = [this] { setup_notification_.Notify(); };
absl::Cleanup monitor_cleanup = [this] {
getrusage(RUSAGE_THREAD, result_.GetRUsageMonitor());
notify_->EventFinished(result_);
ipc_->InternalCleanupFdMap();
done_notification_.Notify();
};
if (executor_->limits()->wall_time_limit() != absl::ZeroDuration()) {
auto deadline = absl::Now() + executor_->limits()->wall_time_limit();
deadline_millis_.store(absl::ToUnixMillis(deadline),
std::memory_order_relaxed);
}
// It'd be costly to initialize the sigset_t for each sigtimedwait()
// invocation, so do it once per Monitor.
sigset_t sigtimedwait_sset;
if (!InitSetupSignals(&sigtimedwait_sset)) {
SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_SIGNALS);
return;
}
Namespace* ns = policy_->GetNamespace();
if (VLOG_IS_ON(1) && ns != nullptr) {
std::vector<std::string> outside_entries;
std::vector<std::string> inside_entries;
ns->mounts().RecursivelyListMounts(
/*outside_entries=*/&outside_entries,
/*inside_entries=*/&inside_entries);
VLOG(1) << "Outside entries mapped to chroot:";
LogContainer(outside_entries);
VLOG(1) << "Inside entries as they appear in chroot:";
LogContainer(inside_entries);
}
// Don't trace the child: it will allow to use 'strace -f' with the whole
// sandbox master/monitor, which ptrace_attach'es to the child.
int clone_flags = CLONE_UNTRACED;
if (policy_->allowed_hosts_) {
EnableNetworkProxyServer();
}
// Get PID of the sandboxee.
bool should_have_init = ns && (ns->GetCloneFlags() & CLONE_NEWPID);
absl::StatusOr<Executor::Process> process =
executor_->StartSubProcess(clone_flags, ns, policy_->capabilities());
if (!process.ok()) {
LOG(ERROR) << "Starting sandboxed subprocess failed: " << process.status();
SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_SUBPROCESS);
return;
}
pid_ = process->main_pid;
if (process->init_pid > 0) {
if (ptrace(PTRACE_SEIZE, process->init_pid, 0, PTRACE_O_EXITKILL) != 0) {
if (errno == ESRCH) {
SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_PTRACE);
return;
}
PLOG(FATAL) << "attaching to init process failed";
}
}
if (pid_ <= 0 || (should_have_init && process->init_pid <= 0)) {
SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_SUBPROCESS);
return;
}
if (!notify_->EventStarted(pid_, comms_)) {
SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_NOTIFY);
return;
}
if (!InitSendIPC()) {
SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_IPC);
return;
}
if (!InitSendCwd()) {
SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_CWD);
return;
}
if (!InitSendPolicy()) {
SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_POLICY);
return;
}
if (!WaitForSandboxReady()) {
SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_WAIT);
return;
}
if (!InitApplyLimits()) {
SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_LIMITS);
return;
}
// This call should be the last in the init sequence, because it can cause the
// sandboxee to enter ptrace-stopped state, in which it will not be able to
// send any messages over the Comms channel.
if (!InitPtraceAttach()) {
SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_PTRACE);
return;
}
// Tell the parent thread (Sandbox2 object) that we're done with the initial
// set-up process of the sandboxee.
std::move(setup_notify).Invoke();
MainLoop(&sigtimedwait_sset);
}
bool Monitor::IsActivelyMonitoring() {
// If we're still waiting for execve(), then we allow all syscalls.
return !wait_for_execve_;
}
void Monitor::SetActivelyMonitoring() { wait_for_execve_ = false; }
void Monitor::SetExitStatusCode(Result::StatusEnum final_status,
uintptr_t reason_code) {
CHECK(result_.final_status() == Result::UNSET);
result_.SetExitStatusCode(final_status, reason_code);
}
bool Monitor::ShouldCollectStackTrace() {
// Only get the stacktrace if we are not in the libunwind sandbox (avoid
// recursion).
bool stacktrace_collection_possible =
(policy_->GetNamespace() ||
absl::GetFlag(FLAGS_sandbox_libunwind_crash_handler) == false) &&
executor_->libunwind_sbox_for_pid_ == 0;
if (!stacktrace_collection_possible) {
LOG(ERROR) << "Cannot collect stack trace. Unwind pid "
<< executor_->libunwind_sbox_for_pid_ << ", namespace "
<< policy_->GetNamespace();
return false;
}
switch (result_.final_status()) {
case Result::EXTERNAL_KILL:
return policy_->collect_stacktrace_on_kill_;
case Result::TIMEOUT:
return policy_->collect_stacktrace_on_timeout_;
case Result::SIGNALED:
return policy_->collect_stacktrace_on_signal_;
case Result::VIOLATION:
return policy_->collect_stacktrace_on_violation_;
case Result::OK:
return policy_->collect_stacktrace_on_exit_;
default:
return false;
}
}
void Monitor::SetAdditionalResultInfo(std::unique_ptr<Regs> regs) {
pid_t pid = regs->pid();
result_.SetRegs(std::move(regs));
result_.SetProgName(util::GetProgName(pid));
result_.SetProcMaps(ReadProcMaps(pid_));
if (!ShouldCollectStackTrace()) {
VLOG(1) << "Stack traces have been disabled";
return;
}
auto* ns = policy_->GetNamespace();
const Mounts empty_mounts;
absl::StatusOr<std::vector<std::string>> stack_trace =
GetStackTrace(result_.GetRegs(), ns ? ns->mounts() : empty_mounts);
if (!stack_trace.ok()) {
LOG(ERROR) << "Could not obtain stack trace: " << stack_trace.status();
return;
}
result_.set_stack_trace(*stack_trace);
LOG(INFO) << "Stack trace: [";
for (const auto& frame : CompactStackTrace(result_.stack_trace())) {
LOG(INFO) << " " << frame;
}
LOG(INFO) << "]";
}
bool Monitor::KillSandboxee() {
VLOG(1) << "Sending SIGKILL to the PID: " << pid_;
if (kill(pid_, SIGKILL) != 0) {
PLOG(ERROR) << "Could not send SIGKILL to PID " << pid_;
SetExitStatusCode(Result::INTERNAL_ERROR, Result::FAILED_KILL);
return false;
}
return true;
}
bool Monitor::InterruptSandboxee() {
if (ptrace(PTRACE_INTERRUPT, pid_, 0, 0) == -1) {
PLOG(ERROR) << "Could not send interrupt to pid=" << pid_;
SetExitStatusCode(Result::INTERNAL_ERROR, Result::FAILED_INTERRUPT);
return false;
}
return true;
}
// Not defined in glibc.
#define __WPTRACEEVENT(x) ((x & 0xff0000) >> 16)
void Monitor::MainLoop(sigset_t* sset) {
bool sandboxee_exited = false;
PidWaiter pid_waiter(pid_);
int status;
// All possible still running children of main process, will be killed due to
// PTRACE_O_EXITKILL ptrace() flag.
while (result_.final_status() == Result::UNSET) {
int64_t deadline = deadline_millis_.load(std::memory_order_relaxed);
if (deadline != 0 && absl::Now() >= absl::FromUnixMillis(deadline)) {
VLOG(1) << "Sandbox process hit timeout due to the walltime timer";
timed_out_ = true;
if (!KillSandboxee()) {
break;
}
}
if (!dump_stack_request_flag_.test_and_set(std::memory_order_relaxed)) {
should_dump_stack_ = true;
if (!InterruptSandboxee()) {
break;
}
}
if (!external_kill_request_flag_.test_and_set(std::memory_order_relaxed)) {
external_kill_ = true;
if (!KillSandboxee()) {
break;
}
}
if (network_proxy_server_ &&
network_proxy_server_->violation_occurred_.load(
std::memory_order_acquire) &&
!network_violation_) {
network_violation_ = true;
if (!KillSandboxee()) {
break;
}
}
pid_t ret = pid_waiter.Wait(&status);
if (ret == 0) {
constexpr timespec ts = {kWakeUpPeriodSec, kWakeUpPeriodNSec};
int signo = sigtimedwait(sset, nullptr, &ts);
LOG_IF(ERROR, signo != -1 && signo != SIGCHLD)
<< "Unknown signal received: " << signo;
continue;
}
if (ret == -1) {
if (errno == ECHILD) {
LOG(ERROR) << "PANIC(). The main process has not exited yet, "
<< "yet we haven't seen its exit event";
SetExitStatusCode(Result::INTERNAL_ERROR, Result::FAILED_CHILD);
} else {
PLOG(ERROR) << "waitpid() failed";
}
continue;
}
VLOG(3) << "waitpid() returned with PID: " << ret << ", status: " << status;
if (WIFEXITED(status)) {
VLOG(1) << "PID: " << ret
<< " finished with code: " << WEXITSTATUS(status);
// That's the main process, set the exit code, and exit. It will kill
// all remaining processes (if there are any) because of the
// PTRACE_O_EXITKILL ptrace() flag.
if (ret == pid_) {
if (IsActivelyMonitoring()) {
SetExitStatusCode(Result::OK, WEXITSTATUS(status));
} else {
SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_MONITOR);
}
sandboxee_exited = true;
}
} else if (WIFSIGNALED(status)) {
// This usually does not happen, but might.
// Quote from the manual:
// A SIGKILL signal may still cause a PTRACE_EVENT_EXIT stop before
// actual signal death. This may be changed in the future;
VLOG(1) << "PID: " << ret << " terminated with signal: "
<< util::GetSignalName(WTERMSIG(status));
if (ret == pid_) {
if (network_violation_) {
SetExitStatusCode(Result::VIOLATION, Result::VIOLATION_NETWORK);
result_.SetNetworkViolation(network_proxy_server_->violation_msg_);
} else if (external_kill_) {
SetExitStatusCode(Result::EXTERNAL_KILL, 0);
} else if (timed_out_) {
SetExitStatusCode(Result::TIMEOUT, 0);
} else {
SetExitStatusCode(Result::SIGNALED, WTERMSIG(status));
}
sandboxee_exited = true;
}
} else if (WIFSTOPPED(status)) {
VLOG(2) << "PID: " << ret
<< " received signal: " << util::GetSignalName(WSTOPSIG(status))
<< " with event: "
<< util::GetPtraceEventName(__WPTRACEEVENT(status));
StateProcessStopped(ret, status);
} else if (WIFCONTINUED(status)) {
VLOG(2) << "PID: " << ret << " is being continued";
}
}
// Try to make sure main pid is killed and reaped
if (!sandboxee_exited) {
kill(pid_, SIGKILL);
constexpr auto kGracefullExitTimeout = absl::Milliseconds(200);
auto deadline = absl::Now() + kGracefullExitTimeout;
for (;;) {
auto left = deadline - absl::Now();
if (absl::Now() >= deadline) {
LOG(INFO) << "Waiting for sandboxee exit timed out";
break;
}
pid_t ret = pid_waiter.Wait(&status);
if (ret == -1) {
PLOG(ERROR) << "waitpid() failed";
break;
}
if (ret == pid_ && (WIFSIGNALED(status) || WIFEXITED(status))) {
break;
}
if (ret == 0) {
auto ts = absl::ToTimespec(left);
sigtimedwait(sset, nullptr, &ts);
} else if (WIFSTOPPED(status) &&
__WPTRACEEVENT(status) == PTRACE_EVENT_EXIT) {
VLOG(2) << "PID: " << ret << " PTRACE_EVENT_EXIT ";
ContinueProcess(ret, 0);
} else {
kill(pid_, SIGKILL);
}
}
}
}
bool Monitor::InitSetupSignals(sigset_t* sset) {
if (sigemptyset(sset) == -1) {
PLOG(ERROR) << "sigemptyset()";
return false;
}
// sigtimedwait will react (wake-up) to arrival of this signal.
if (sigaddset(sset, SIGCHLD) == -1) {
PLOG(ERROR) << "sigaddset(SIGCHLD)";
return false;
}
if (pthread_sigmask(SIG_BLOCK, sset, nullptr) == -1) {
PLOG(ERROR) << "pthread_sigmask(SIG_BLOCK, SIGCHLD)";
return false;
}
return true;
}
bool Monitor::InitSendPolicy() {
if (!policy_->SendPolicy(comms_)) {
LOG(ERROR) << "Couldn't send policy";
return false;
}
return true;
}
bool Monitor::InitSendCwd() {
if (!comms_->SendString(executor_->cwd_)) {
PLOG(ERROR) << "Couldn't send cwd";
return false;
}
return true;
}
bool Monitor::InitApplyLimit(pid_t pid, int resource,
const rlimit64& rlim) const {
#if defined(__ANDROID__)
using RlimitResource = int;
#else
using RlimitResource = __rlimit_resource;
#endif
rlimit64 curr_limit;
if (prlimit64(pid, static_cast<RlimitResource>(resource), nullptr,
&curr_limit) == -1) {
PLOG(ERROR) << "prlimit64(" << pid << ", " << util::GetRlimitName(resource)
<< ")";
} else if (rlim.rlim_cur > curr_limit.rlim_max) {
// In such case, don't update the limits, as it will fail. Just stick to the
// current ones (which are already lower than intended).
LOG(ERROR) << util::GetRlimitName(resource)
<< ": new.current > current.max (" << rlim.rlim_cur << " > "
<< curr_limit.rlim_max << "), skipping";
return true;
}
if (prlimit64(pid, static_cast<RlimitResource>(resource), &rlim, nullptr) ==
-1) {
PLOG(ERROR) << "prlimit64(" << pid << ", " << util::GetRlimitName(resource)
<< ", " << rlim.rlim_cur << ")";
return false;
}
return true;
}
bool Monitor::InitApplyLimits() {
Limits* limits = executor_->limits();
return InitApplyLimit(pid_, RLIMIT_AS, limits->rlimit_as()) &&
InitApplyLimit(pid_, RLIMIT_CPU, limits->rlimit_cpu()) &&
InitApplyLimit(pid_, RLIMIT_FSIZE, limits->rlimit_fsize()) &&
InitApplyLimit(pid_, RLIMIT_NOFILE, limits->rlimit_nofile()) &&
InitApplyLimit(pid_, RLIMIT_CORE, limits->rlimit_core());
}
bool Monitor::InitSendIPC() { return ipc_->SendFdsOverComms(); }
bool Monitor::WaitForSandboxReady() {
uint32_t tmp;
if (!comms_->RecvUint32(&tmp)) {
LOG(ERROR) << "Couldn't receive 'Client::kClient2SandboxReady' message";
return false;
}
if (tmp != Client::kClient2SandboxReady) {
LOG(ERROR) << "Received " << tmp << " != Client::kClient2SandboxReady ("
<< Client::kClient2SandboxReady << ")";
return false;
}
return true;
}
bool Monitor::InitPtraceAttach() {
sanitizer::WaitForSanitizer();
// Get a list of tasks.
absl::flat_hash_set<int> tasks;
if (auto task_list = sanitizer::GetListOfTasks(pid_); task_list.ok()) {
tasks = *std::move(task_list);
} else {
LOG(ERROR) << "Could not get list of tasks: "
<< task_list.status().message();
return false;
}
if (tasks.find(pid_) == tasks.end()) {
LOG(ERROR) << "The pid " << pid_ << " was not found in its own tasklist.";
return false;
}
// With TSYNC, we can allow threads: seccomp applies to all threads.
if (tasks.size() > 1) {
LOG(WARNING) << "PID " << pid_ << " has " << tasks.size() << " threads,"
<< " at the time of call to SandboxMeHere. If you are seeing"
<< " more sandbox violations than expected, this might be"
<< " the reason why"
<< ".";
}
absl::flat_hash_set<int> tasks_attached;
int retries = 0;
absl::Time deadline = absl::Now() + absl::Seconds(2);
// In some situations we allow ptrace to try again when it fails.
while (!tasks.empty()) {
absl::flat_hash_set<int> tasks_left;
for (int task : tasks) {
constexpr intptr_t options =
PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK |
PTRACE_O_TRACEVFORKDONE | PTRACE_O_TRACECLONE | PTRACE_O_TRACEEXEC |
PTRACE_O_TRACEEXIT | PTRACE_O_TRACESECCOMP | PTRACE_O_EXITKILL;
int ret = ptrace(PTRACE_SEIZE, task, 0, options);
if (ret != 0) {
if (errno == EPERM) {
// Sometimes when a task is exiting we can get an EPERM from ptrace.
// Let's try again up until the timeout in this situation.
PLOG(WARNING) << "ptrace(PTRACE_SEIZE, " << task << ", "
<< absl::StrCat("0x", absl::Hex(options))
<< "), trying again...";
tasks_left.insert(task);
continue;
}
if (errno == ESRCH) {
// A task may have exited since we captured the task list, we will
// allow things to continue after we log a warning.
PLOG(WARNING)
<< "ptrace(PTRACE_SEIZE, " << task << ", "
<< absl::StrCat("0x", absl::Hex(options))
<< ") skipping exited task. Continuing with other tasks.";
continue;
}
// Any other errno will be considered a failure.
PLOG(ERROR) << "ptrace(PTRACE_SEIZE, " << task << ", "
<< absl::StrCat("0x", absl::Hex(options)) << ") failed.";
return false;
}
tasks_attached.insert(task);
}
if (!tasks_left.empty()) {
if (absl::Now() < deadline) {
LOG(ERROR) << "Attaching to sandboxee timed out: could not attach to "
<< tasks_left.size() << " tasks";
return false;
}
// Exponential Backoff.
constexpr absl::Duration kInitialRetry = absl::Milliseconds(1);
constexpr absl::Duration kMaxRetry = absl::Milliseconds(20);
const absl::Duration retry_interval =
kInitialRetry * (1 << std::min(10, retries++));
absl::SleepFor(
std::min({retry_interval, kMaxRetry, deadline - absl::Now()}));
}
tasks = std::move(tasks_left);
}
// Get a list of tasks after attaching.
if (auto tasks_list = sanitizer::GetListOfTasks(pid_); tasks_list.ok()) {
tasks = *std::move(tasks_list);
} else {
LOG(ERROR) << "Could not get list of tasks: "
<< tasks_list.status().message();
return false;
}
// Check that we attached to all the threads
if (tasks_attached != tasks) {
LOG(ERROR) << "The pid " << pid_
<< " spawned new threads while we were trying to attach to it.";
return false;
}
// No glibc wrapper for gettid - see 'man gettid'.
VLOG(1) << "Monitor (PID: " << getpid()
<< ", TID: " << util::Syscall(__NR_gettid)
<< ") attached to PID: " << pid_;
// Technically, the sandboxee can be in a ptrace-stopped state right now,
// because some signal could have arrived in the meantime. Yet, this
// Comms::SendUint32 call shouldn't lock our process, because the underlying
// socketpair() channel is buffered, hence it will accept the uint32_t message
// no matter what is the current state of the sandboxee, and it will allow for
// our process to continue and unlock the sandboxee with the proper ptrace
// event handling.
if (!comms_->SendUint32(Client::kSandbox2ClientDone)) {
LOG(ERROR) << "Couldn't send Client::kSandbox2ClientDone message";
return false;
}
return true;
}
void Monitor::ActionProcessSyscall(Regs* regs, const Syscall& syscall) {
// If the sandboxing is not enabled yet, allow the first __NR_execveat.
if (syscall.nr() == __NR_execveat && !IsActivelyMonitoring()) {
VLOG(1) << "[PERMITTED/BEFORE_EXECVEAT]: "
<< "SYSCALL ::: PID: " << regs->pid() << ", PROG: '"
<< util::GetProgName(regs->pid())
<< "' : " << syscall.GetDescription();
ContinueProcess(regs->pid(), 0);
return;
}
// Notify can decide whether we want to allow this syscall. It could be useful
// for sandbox setups in which some syscalls might still need some logging,
// but nonetheless be allowed ('permissible syscalls' in sandbox v1).
auto trace_response = notify_->EventSyscallTrace(syscall);
if (trace_response == Notify::TraceAction::kAllow) {
ContinueProcess(regs->pid(), 0);
return;
}
if (trace_response == Notify::TraceAction::kInspectAfterReturn) {
// Note that a process might die without an exit-stop before the syscall is
// completed (eg. a thread calls execve() and the thread group leader dies),
// so the entry is removed when the process exits.
syscalls_in_progress_[regs->pid()] = syscall;
CompleteSyscall(regs->pid(), 0);
return;
}
// TODO(wiktorg): Further clean that up, probably while doing monitor cleanup
// log_file_ not null iff FLAGS_sandbox2_danger_danger_permit_all_and_log is
// set.
if (log_file_) {
std::string syscall_description = syscall.GetDescription();
PCHECK(absl::FPrintF(log_file_, "PID: %d %s\n", regs->pid(),
syscall_description) >= 0);
ContinueProcess(regs->pid(), 0);
return;
}
if (absl::GetFlag(FLAGS_sandbox2_danger_danger_permit_all)) {
ContinueProcess(regs->pid(), 0);
return;
}
ActionProcessSyscallViolation(regs, syscall, kSyscallViolation);
}
void Monitor::ActionProcessSyscallViolation(Regs* regs, const Syscall& syscall,
ViolationType violation_type) {
LogSyscallViolation(syscall);
notify_->EventSyscallViolation(syscall, violation_type);
SetExitStatusCode(Result::VIOLATION, syscall.nr());
result_.SetSyscall(absl::make_unique<Syscall>(syscall));
SetAdditionalResultInfo(absl::make_unique<Regs>(*regs));
// Rewrite the syscall argument to something invalid (-1).
// The process will be killed anyway so this is just a precaution.
auto status = regs->SkipSyscallReturnValue(-ENOSYS);
if (!status.ok()) {
LOG(ERROR) << status;
}
}
void Monitor::LogSyscallViolation(const Syscall& syscall) const {
// Do not unwind libunwind.
if (executor_->libunwind_sbox_for_pid_ != 0) {
LOG(ERROR) << "Sandbox violation during execution of libunwind: "
<< syscall.GetDescription();
return;
}
// So, this is an invalid syscall. Will be killed by seccomp-bpf policies as
// well, but we should be on a safe side here as well.
LOG(ERROR) << "SANDBOX VIOLATION : PID: " << syscall.pid() << ", PROG: '"
<< util::GetProgName(syscall.pid())
<< "' : " << syscall.GetDescription();
if (VLOG_IS_ON(1)) {
VLOG(1) << "Cmdline: " << util::GetCmdLine(syscall.pid());
VLOG(1) << "Task Name: " << util::GetProcStatusLine(syscall.pid(), "Name");
VLOG(1) << "Tgid: " << util::GetProcStatusLine(syscall.pid(), "Tgid");
}
LogSyscallViolationExplanation(syscall);
}
void Monitor::EventPtraceSeccomp(pid_t pid, int event_msg) {
if (event_msg < sapi::cpu::Architecture::kUnknown ||
event_msg > sapi::cpu::Architecture::kMax) {
// We've observed that, if the process has exited, the event_msg may contain
// the exit status even though we haven't received the exit event yet.
// To work around this, if the event msg is not in the range of the known
// architectures, we assume that it's an exit status. We deal with it by
// ignoring this event, and we'll get the exit event in the next iteration.
LOG(WARNING) << "received event_msg for unknown architecture: " << event_msg
<< "; the program may have exited";
return;
}
// If the seccomp-policy is using RET_TRACE, we request that it returns the
// syscall architecture identifier in the SECCOMP_RET_DATA.
const auto syscall_arch = static_cast<sapi::cpu::Architecture>(event_msg);
Regs regs(pid);
auto status = regs.Fetch();
if (!status.ok()) {
// Ignore if process is killed in the meanwhile
if (absl::IsNotFound(status)) {
LOG(WARNING) << "failed to fetch regs: " << status;
return;
}
LOG(ERROR) << "failed to fetch regs: " << status;
SetExitStatusCode(Result::INTERNAL_ERROR, Result::FAILED_FETCH);
return;
}
Syscall syscall = regs.ToSyscall(syscall_arch);
// If the architecture of the syscall used is different that the current host
// architecture, report a violation.
if (syscall_arch != Syscall::GetHostArch()) {
ActionProcessSyscallViolation(&regs, syscall, kArchitectureSwitchViolation);
return;
}
ActionProcessSyscall(&regs, syscall);
}
void Monitor::EventSyscallExit(pid_t pid) {
// Check that the monitor wants to inspect the current syscall's return value.
auto index = syscalls_in_progress_.find(pid);
if (index == syscalls_in_progress_.end()) {
LOG(ERROR) << "Expected a syscall in progress in PID " << pid;
SetExitStatusCode(Result::INTERNAL_ERROR, Result::FAILED_INSPECT);
return;
}
Regs regs(pid);
auto status = regs.Fetch();
if (!status.ok()) {
// Ignore if process is killed in the meanwhile
if (absl::IsNotFound(status)) {
LOG(WARNING) << "failed to fetch regs: " << status;
return;
}
LOG(ERROR) << "failed to fetch regs: " << status;
SetExitStatusCode(Result::INTERNAL_ERROR, Result::FAILED_FETCH);
return;
}
int64_t return_value = regs.GetReturnValue(sapi::host_cpu::Architecture());
notify_->EventSyscallReturn(index->second, return_value);
syscalls_in_progress_.erase(index);
ContinueProcess(pid, 0);
}
void Monitor::EventPtraceNewProcess(pid_t pid, int event_msg) {
// ptrace doesn't issue syscall-exit-stops for successful fork/vfork/clone
// system calls. Check if the monitor wanted to inspect the syscall's return
// value, and call EventSyscallReturn for the parent process if so.
auto index = syscalls_in_progress_.find(pid);
if (index != syscalls_in_progress_.end()) {
auto syscall_nr = index->second.nr();
bool creating_new_process = syscall_nr == __NR_clone;
#ifdef __NR_fork
creating_new_process = creating_new_process || syscall_nr == __NR_fork;
#endif
#ifdef __NR_vfork
creating_new_process = creating_new_process || syscall_nr == __NR_vfork;
#endif
if (!creating_new_process) {
LOG(ERROR) << "Expected a fork/vfork/clone syscall in progress in PID "
<< pid << "; actual: " << index->second.GetDescription();
SetExitStatusCode(Result::INTERNAL_ERROR, Result::FAILED_INSPECT);
return;
}
notify_->EventSyscallReturn(index->second, event_msg);
syscalls_in_progress_.erase(index);
}
ContinueProcess(pid, 0);
}
void Monitor::EventPtraceExec(pid_t pid, int event_msg) {
if (!IsActivelyMonitoring()) {
VLOG(1) << "PTRACE_EVENT_EXEC seen from PID: " << event_msg
<< ". SANDBOX ENABLED!";
SetActivelyMonitoring();
} else {
// ptrace doesn't issue syscall-exit-stops for successful execve/execveat
// system calls. Check if the monitor wanted to inspect the syscall's return
// value, and call EventSyscallReturn if so.
auto index = syscalls_in_progress_.find(pid);
if (index != syscalls_in_progress_.end()) {
auto syscall_nr = index->second.nr();
if (syscall_nr != __NR_execve && syscall_nr != __NR_execveat) {
LOG(ERROR) << "Expected an execve/execveat syscall in progress in PID "
<< pid << "; actual: " << index->second.GetDescription();
SetExitStatusCode(Result::INTERNAL_ERROR, Result::FAILED_INSPECT);
return;
}
notify_->EventSyscallReturn(index->second, 0);
syscalls_in_progress_.erase(index);
}
}
ContinueProcess(pid, 0);
}
void Monitor::EventPtraceExit(pid_t pid, int event_msg) {
// Forget about any syscalls in progress for this PID.
syscalls_in_progress_.erase(pid);
// A regular exit, let it continue (fast-path).
if (ABSL_PREDICT_TRUE(
WIFEXITED(event_msg) &&
(!policy_->collect_stacktrace_on_exit_ || pid != pid_))) {
ContinueProcess(pid, 0);
return;
}
const bool is_seccomp =
WIFSIGNALED(event_msg) && WTERMSIG(event_msg) == SIGSYS;
// Fetch the registers as we'll need them to fill the result in any case
auto regs = absl::make_unique<Regs>(pid);
if (is_seccomp || pid == pid_) {
auto status = regs->Fetch();
if (!status.ok()) {
LOG(ERROR) << "failed to fetch regs: " << status;
SetExitStatusCode(Result::INTERNAL_ERROR, Result::FAILED_FETCH);
return;
}
}
// Process signaled due to seccomp violation.
if (is_seccomp) {
VLOG(1) << "PID: " << pid << " violation uncovered via the EXIT_EVENT";
ActionProcessSyscallViolation(
regs.get(), regs->ToSyscall(Syscall::GetHostArch()), kSyscallViolation);
return;
}
// This can be reached in four cases:
// 1) Process was killed from the sandbox.
// 2) Process was killed because it hit a timeout.
// 3) Regular signal/other exit cause.
// 4) Normal exit for which we want to obtain stack trace.
if (pid == pid_) {
VLOG(1) << "PID: " << pid << " main special exit";
if (network_violation_) {
SetExitStatusCode(Result::VIOLATION, Result::VIOLATION_NETWORK);
result_.SetNetworkViolation(network_proxy_server_->violation_msg_);
} else if (external_kill_) {
SetExitStatusCode(Result::EXTERNAL_KILL, 0);
} else if (timed_out_) {
SetExitStatusCode(Result::TIMEOUT, 0);
} else if (WIFEXITED(event_msg)) {
SetExitStatusCode(Result::OK, WEXITSTATUS(event_msg));
} else {
SetExitStatusCode(Result::SIGNALED, WTERMSIG(event_msg));
}
SetAdditionalResultInfo(std::move(regs));
}
VLOG(1) << "Continuing";
ContinueProcess(pid, 0);
}
void Monitor::EventPtraceStop(pid_t pid, int stopsig) {
// It's not a real stop signal. For example PTRACE_O_TRACECLONE and similar
// flags to ptrace(PTRACE_SEIZE) might generate this event with SIGTRAP.
if (stopsig != SIGSTOP && stopsig != SIGTSTP && stopsig != SIGTTIN &&
stopsig != SIGTTOU) {
ContinueProcess(pid, 0);
return;
}
// It's our PID stop signal. Stop it.
VLOG(2) << "PID: " << pid << " stopped due to "
<< util::GetSignalName(stopsig);
StopProcess(pid, 0);
}
void Monitor::StateProcessStopped(pid_t pid, int status) {
int stopsig = WSTOPSIG(status);
// We use PTRACE_O_TRACESYSGOOD, so we can tell it's a syscall stop without
// calling PTRACE_GETSIGINFO by checking the value of the reported signal.
bool is_syscall_exit = stopsig == (SIGTRAP | 0x80);
if (__WPTRACEEVENT(status) == 0 && !is_syscall_exit) {
// Must be a regular signal delivery.
VLOG(2) << "PID: " << pid
<< " received signal: " << util::GetSignalName(stopsig);
notify_->EventSignal(pid, stopsig);
ContinueProcess(pid, stopsig);
return;
}
unsigned long event_msg; // NOLINT
if (ptrace(PTRACE_GETEVENTMSG, pid, 0, &event_msg) == -1) {
if (errno == ESRCH) {
// This happens from time to time, the kernel does not guarantee us that
// we get the event in time.
PLOG(INFO) << "ptrace(PTRACE_GETEVENTMSG, " << pid << ")";
return;
}
PLOG(ERROR) << "ptrace(PTRACE_GETEVENTMSG, " << pid << ")";
SetExitStatusCode(Result::INTERNAL_ERROR, Result::FAILED_GETEVENT);
return;
}
if (ABSL_PREDICT_FALSE(pid == pid_ && should_dump_stack_ &&
executor_->libunwind_sbox_for_pid_ == 0 &&
policy_->GetNamespace())) {
auto stack_trace = [this,
pid]() -> absl::StatusOr<std::vector<std::string>> {
Regs regs(pid);
SAPI_RETURN_IF_ERROR(regs.Fetch());
return GetStackTrace(&regs, policy_->GetNamespace()->mounts());
}();
if (!stack_trace.ok()) {
LOG(WARNING) << "FAILED TO GET SANDBOX STACK : " << stack_trace.status();
} else if (VLOG_IS_ON(0)) {
VLOG(0) << "SANDBOX STACK: PID: " << pid << ", [";
for (const auto& frame : *stack_trace) {
VLOG(0) << " " << frame;
}
VLOG(0) << "]";
}
should_dump_stack_ = false;
}
#ifndef PTRACE_EVENT_STOP
#define PTRACE_EVENT_STOP 128
#endif
if (is_syscall_exit) {
VLOG(2) << "PID: " << pid << " syscall-exit-stop: " << event_msg;
EventSyscallExit(pid);
return;
}
switch (__WPTRACEEVENT(status)) {
case PTRACE_EVENT_FORK:
VLOG(2) << "PID: " << pid << " PTRACE_EVENT_FORK, PID: " << event_msg;
EventPtraceNewProcess(pid, event_msg);
break;
case PTRACE_EVENT_VFORK:
VLOG(2) << "PID: " << pid << " PTRACE_EVENT_VFORK, PID: " << event_msg;
EventPtraceNewProcess(pid, event_msg);
break;
case PTRACE_EVENT_CLONE:
VLOG(2) << "PID: " << pid << " PTRACE_EVENT_CLONE, PID: " << event_msg;
EventPtraceNewProcess(pid, event_msg);
break;
case PTRACE_EVENT_VFORK_DONE:
ContinueProcess(pid, 0);
break;
case PTRACE_EVENT_EXEC:
VLOG(2) << "PID: " << pid << " PTRACE_EVENT_EXEC, PID: " << event_msg;
EventPtraceExec(pid, event_msg);
break;
case PTRACE_EVENT_EXIT:
VLOG(2) << "PID: " << pid << " PTRACE_EVENT_EXIT: " << event_msg;
EventPtraceExit(pid, event_msg);
break;
case PTRACE_EVENT_STOP:
VLOG(2) << "PID: " << pid << " PTRACE_EVENT_STOP: " << event_msg;
EventPtraceStop(pid, stopsig);
break;
case PTRACE_EVENT_SECCOMP:
VLOG(2) << "PID: " << pid << " PTRACE_EVENT_SECCOMP: " << event_msg;
EventPtraceSeccomp(pid, event_msg);
break;
default:
LOG(ERROR) << "Unknown ptrace event: " << __WPTRACEEVENT(status)
<< " with data: " << event_msg;
break;
}
}
void Monitor::LogSyscallViolationExplanation(const Syscall& syscall) const {
const uintptr_t syscall_nr = syscall.nr();
const uintptr_t arg0 = syscall.args()[0];
// This follows policy in Policy::GetDefaultPolicy - keep it in sync.
if (syscall.arch() != Syscall::GetHostArch()) {
LOG(ERROR)
<< "This is a violation because the syscall was issued because the"
<< " sandboxee and executor architectures are different.";
return;
}
if (syscall_nr == __NR_ptrace) {
LOG(ERROR)
<< "This is a violation because the ptrace syscall would be unsafe in"
<< " sandbox2, so it has been blocked.";
return;
}
if (syscall_nr == __NR_bpf) {
LOG(ERROR)
<< "This is a violation because the bpf syscall would be risky in"
<< " a sandbox, so it has been blocked.";
return;
}
if (syscall_nr == __NR_clone && ((arg0 & CLONE_UNTRACED) != 0)) {
LOG(ERROR) << "This is a violation because calling clone with CLONE_UNTRACE"
<< " would be unsafe in sandbox2, so it has been blocked.";
return;
}
}
void Monitor::EnableNetworkProxyServer() {
int fd = ipc_->ReceiveFd(NetworkProxyClient::kFDName);
network_proxy_server_ = absl::make_unique<NetworkProxyServer>(
fd, &policy_->allowed_hosts_.value(), pthread_self());
network_proxy_thread_ = std::thread(&NetworkProxyServer::Run,
network_proxy_server_.get());
}
} // namespace sandbox2