sandboxed-api/sandboxed_api/sandbox2/monitor.cc

1059 lines
36 KiB
C++
Raw Normal View History

// Copyright 2019 Google LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Implementation file for the sandbox2::Monitor class.
#include "sandboxed_api/sandbox2/monitor.h"
#include <linux/posix_types.h> // NOLINT: Needs to come before linux/ipc.h
#include <linux/ipc.h>
#include <sched.h>
#include <sys/mman.h>
#include <sys/ptrace.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <syscall.h>
#include <unistd.h>
#include <algorithm>
#include <atomic>
#include <cerrno>
#include <csignal>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <fstream>
#include <memory>
#include <set>
#include <sstream>
#include <string>
#include <glog/logging.h>
#include "sandboxed_api/util/flag.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/time/time.h"
#include "sandboxed_api/sandbox2/client.h"
#include "sandboxed_api/sandbox2/comms.h"
#include "sandboxed_api/sandbox2/executor.h"
#include "sandboxed_api/sandbox2/limits.h"
#include "sandboxed_api/sandbox2/mounts.h"
#include "sandboxed_api/sandbox2/namespace.h"
#include "sandboxed_api/sandbox2/policy.h"
#include "sandboxed_api/sandbox2/regs.h"
#include "sandboxed_api/sandbox2/result.h"
#include "sandboxed_api/sandbox2/sanitizer.h"
#include "sandboxed_api/sandbox2/stack-trace.h"
#include "sandboxed_api/sandbox2/syscall.h"
#include "sandboxed_api/sandbox2/util.h"
ABSL_FLAG(bool, sandbox2_report_on_sandboxee_signal, true,
"Report sandbox2 sandboxee deaths caused by signals");
ABSL_FLAG(bool, sandbox2_report_on_sandboxee_timeout, true,
"Report sandbox2 sandboxee timeouts");
ABSL_DECLARE_FLAG(bool, sandbox2_danger_danger_permit_all);
ABSL_DECLARE_FLAG(string, sandbox2_danger_danger_permit_all_and_log);
namespace sandbox2 {
namespace {
// We could use the ProcMapsIterator, however we want the full file content.
std::string ReadProcMaps(pid_t pid) {
std::ifstream input(absl::StrCat("/proc/", pid, "/maps"),
std::ios_base::in | std::ios_base::binary);
std::ostringstream contents;
contents << input.rdbuf();
return contents.str();
}
} // namespace
Monitor::Monitor(Executor* executor, Policy* policy, Notify* notify)
: executor_(executor),
notify_(notify),
policy_(policy),
comms_(executor_->ipc()->comms()),
ipc_(executor_->ipc()),
setup_counter_(new absl::BlockingCounter(1)),
done_(false),
wait_for_execve_(executor->enable_sandboxing_pre_execve_) {
std::string path = absl::GetFlag(FLAGS_sandbox2_danger_danger_permit_all_and_log);
if (!path.empty()) {
log_file_ = std::fopen(path.c_str(), "a+");
PCHECK(log_file_ != nullptr) << "Failed to open log file '" << path << "'";
}
}
Monitor::~Monitor() {
CleanUpTimer();
if (log_file_) {
std::fclose(log_file_);
}
}
void Monitor::Run() {
using DecrementCounter = decltype(setup_counter_);
std::unique_ptr<DecrementCounter, std::function<void(DecrementCounter*)>>
decrement_count{&setup_counter_, [](DecrementCounter* counter) {
(*counter)->DecrementCount();
}};
struct MonitorCleanup {
~MonitorCleanup() {
getrusage(RUSAGE_THREAD, capture->result_.GetRUsageMonitor());
capture->notify_->EventFinished(capture->result_);
capture->ipc_->InternalCleanupFdMap();
absl::MutexLock lock(&capture->done_mutex_);
capture->done_.store(true, std::memory_order_release);
}
Monitor* capture;
} monitor_cleanup{this};
if (!InitSetupTimer()) {
result_.SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_TIMERS);
return;
}
// It'd be costly to initialize the sigset_t for each sigtimedwait()
// invocation, so do it once per Monitor.
sigset_t sigtimedwait_sset;
if (!InitSetupSignals(&sigtimedwait_sset)) {
result_.SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_SIGNALS);
return;
}
// Don't trace the child: it will allow to use 'strace -f' with the whole
// sandbox master/monitor, which ptrace_attach'es to the child.
int clone_flags = CLONE_UNTRACED;
// Get PID of the sandboxee.
pid_t init_pid = 0;
pid_ = executor_->StartSubProcess(clone_flags, policy_->GetNamespace(),
policy_->GetCapabilities(), &init_pid);
if (init_pid < 0) {
// TODO(hamacher): does this require additional handling here?
LOG(ERROR) << "Spawning init process failed";
} else if (init_pid > 0) {
PCHECK(ptrace(PTRACE_SEIZE, init_pid, 0, PTRACE_O_EXITKILL) == 0);
}
if (pid_ < 0) {
result_.SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_SUBPROCESS);
return;
}
if (!notify_->EventStarted(pid_, comms_)) {
result_.SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_NOTIFY);
return;
}
if (!InitAcceptConnection()) {
result_.SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_CONNECTION);
return;
}
if (!InitSendIPC()) {
result_.SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_IPC);
return;
}
if (!InitSendCwd()) {
result_.SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_CWD);
return;
}
if (!InitSendPolicy()) {
result_.SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_POLICY);
return;
}
if (!WaitForSandboxReady()) {
result_.SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_WAIT);
return;
}
if (!InitApplyLimits()) {
result_.SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_LIMITS);
return;
}
// This call should be the last in the init sequence, because it can cause the
// sandboxee to enter ptrace-stopped state, in which it will not be able to
// send any messages over the Comms channel.
if (!InitPtraceAttach()) {
result_.SetExitStatusCode(Result::SETUP_ERROR, Result::FAILED_PTRACE);
return;
}
// Tell the parent thread (Sandbox2 object) that we're done with the initial
// set-up process of the sandboxee.
decrement_count.reset();
MainLoop(&sigtimedwait_sset);
// Disarm the timer: it will be deleted in ~Monitor, but the Monitor object
// lifetime is controlled by owner of Sandbox2, and we don't want to leave any
// timers behind (esp. armed ones) in the meantime.
TimerArm(absl::ZeroDuration());
}
bool Monitor::IsActivelyMonitoring() {
// If we're still waiting for execve(), then we allow all syscalls.
return !wait_for_execve_;
}
void Monitor::SetActivelyMonitoring() { wait_for_execve_ = false; }
void Monitor::MainSignals(int signo, siginfo_t* si) {
VLOG(3) << "Signal '" << strsignal(signo) << "' (" << signo
<< ") received from PID: " << si->si_pid;
// SIGCHLD is received frequently due to ptrace() events being sent by child
// processes; return early to avoid costly syscalls.
if (signo == SIGCHLD) {
return;
}
// We should only receive signals from the same process (thread group). Other
// signals are suspicious (esp. if coming from a sandboxed process) Using
// syscall(__NR_getpid) here because getpid() is cached in glibc, and it
// might return previous pid if bare syscall(__NR_fork) was used instead of
// fork().
//
// The notable exception are signals caused by timer_settime which are sent
// by the kernel.
if (signo != Monitor::kTimerWallTimeSignal &&
si->si_pid != util::Syscall(__NR_getpid)) {
LOG(ERROR) << "Monitor received signal '" << strsignal(signo) << "' ("
<< signo << ") from PID " << si->si_pid
<< " which is not in the current thread group";
return;
}
switch (signo) {
case Monitor::kExternalKillSignal:
VLOG(1) << "Will kill the main pid";
ActionProcessKill(pid_, Result::EXTERNAL_KILL, 0);
break;
case Monitor::kTimerWallTimeSignal:
VLOG(1) << "Sandbox process hit timeout due to the walltime timer";
ActionProcessKill(pid_, Result::TIMEOUT, 0);
break;
case Monitor::kTimerSetSignal:
VLOG(1) << "Will set the walltime timer to " << si->si_value.sival_int
<< " seconds";
TimerArm(absl::Seconds(si->si_value.sival_int));
break;
case Monitor::kDumpStackSignal:
VLOG(1) << "Dump the main pid's stack";
should_dump_stack_ = true;
PidInterrupt(pid_);
break;
default:
LOG(ERROR) << "Unknown signal received: " << signo;
break;
}
}
// Not defined in glibc.
#define __WPTRACEEVENT(x) ((x & 0xff0000) >> 16)
bool Monitor::MainWait() {
// All possible process status change event must be checked as SIGCHLD
// is reported once only for all events that arrived at the same time.
for (;;) {
int status;
// It should be a non-blocking operation (hence WNOHANG), so this function
// returns quickly if there are no events to be processed.
int ret = waitpid(-1, &status, __WNOTHREAD | __WALL | WUNTRACED | WNOHANG);
// No traced processes have changed their status yet.
if (ret == 0) {
return false;
}
if (ret == -1 && errno == ECHILD) {
LOG(ERROR) << "PANIC(). The main process has not exited yet, "
<< "yet we haven't seen its exit event";
// We'll simply exit which will kill all remaining processes (if
// there are any) because of the PTRACE_O_EXITKILL ptrace() flag.
return true;
}
if (ret == -1 && errno == EINTR) {
VLOG(3) << "waitpid() interruped with EINTR";
continue;
}
if (ret == -1) {
PLOG(ERROR) << "waitpid() failed";
continue;
}
VLOG(3) << "waitpid() returned with PID: " << ret << ", status: " << status;
if (WIFEXITED(status)) {
VLOG(1) << "PID: " << ret
<< " finished with code: " << WEXITSTATUS(status);
// That's the main process, set the exit code, and exit. It will kill
// all remaining processes (if there are any) because of the
// PTRACE_O_EXITKILL ptrace() flag.
if (ret == pid_) {
if (IsActivelyMonitoring()) {
result_.SetExitStatusCode(Result::OK, WEXITSTATUS(status));
} else {
result_.SetExitStatusCode(Result::SETUP_ERROR,
Result::FAILED_MONITOR);
}
return true;
}
} else if (WIFSIGNALED(status)) {
VLOG(1) << "PID: " << ret << " terminated with signal: "
<< util::GetSignalName(WTERMSIG(status));
if (ret == pid_) {
// That's the main process, depending on the result of the process take
// the register content and/or the stack trace. The death of this
// process will cause all remaining processes to be killed (if there are
// any), see the PTRACE_O_EXITKILL ptrace() flag.
// When the process is killed from a signal from within the result
// status will be still unset, fix this.
// The other cases should either be already handled, or (in the case of
// Result::OK) should be impossible to reach.
if (result_.final_status() == Result::UNSET) {
result_.SetExitStatusCode(Result::SIGNALED, WTERMSIG(status));
} else if (result_.final_status() == Result::OK) {
LOG(ERROR) << "Unexpected codepath taken";
}
return true;
}
} else if (WIFSTOPPED(status)) {
VLOG(2) << "PID: " << ret
<< " received signal: " << util::GetSignalName(WSTOPSIG(status))
<< " with event: " << __WPTRACEEVENT(status);
StateProcessStopped(ret, status);
} else if (WIFCONTINUED(status)) {
VLOG(2) << "PID: " << ret << " is being continued";
}
}
}
void Monitor::MainLoop(sigset_t* sset) {
for (;;) {
// Use a time-out, so we can check for missed waitpid() events. It should
// not happen during regular operations, so it's a defense-in-depth
// mechanism against SIGCHLD signals being lost by the kernel (since these
// are not-RT signals - i.e. not queued).
static const timespec ts = {kWakeUpPeriodSec, kWakeUpPeriodNSec};
// Wait for any kind of events, e.g. signals sent from the parent process,
// or SIGCHLD sent by kernel indicating that state of one of the traced
// processes has changed.
siginfo_t si;
int ret = sigtimedwait(sset, &si, &ts);
if (ret > 0) {
// Process signals which arrived.
MainSignals(ret, &si);
}
// If CheckWait reported no more traced processes, or that
// the main pid had exited, we should break this loop (i.e. our job is
// done here).
//
// MainWait() should use a not-blocking (e.g. WNOHANG with waitpid())
// syntax, so it returns quickly if there are not status changes in
// traced processes.
if (MainWait()) {
return;
}
}
}
bool Monitor::InitSetupTimer() {
walltime_timer_ = absl::make_unique<timer_t>();
// Set the wall-time timer.
sigevent sevp;
sevp.sigev_value.sival_ptr = walltime_timer_.get();
sevp.sigev_signo = kTimerWallTimeSignal;
sevp.sigev_notify = SIGEV_THREAD_ID | SIGEV_SIGNAL;
sevp._sigev_un._tid = static_cast<pid_t>(util::Syscall(__NR_gettid));
// GLibc's implementation seem to mis-behave during timer_delete, as it's
// trying to find out whether POSIX TIMERs are available. So, we stick to
// syscalls for this class of calls.
if (util::Syscall(__NR_timer_create, CLOCK_REALTIME,
reinterpret_cast<uintptr_t>(&sevp),
reinterpret_cast<uintptr_t>(walltime_timer_.get())) == -1) {
walltime_timer_ = nullptr;
PLOG(ERROR) << "timer_create(CLOCK_REALTIME, walltime_timer_)";
return false;
}
return TimerArm(executor_->limits()->wall_time_limit());
}
// Can be used from a signal handler. Avoid non-reentrant functions.
bool Monitor::TimerArm(absl::Duration duration) {
VLOG(2) << (duration == absl::ZeroDuration() ? "Disarming" : "Arming")
<< " the walltime timer with " << absl::FormatDuration(duration);
itimerspec ts;
absl::Duration rem;
ts.it_value.tv_sec = absl::IDivDuration(duration, absl::Seconds(1), &rem);
ts.it_value.tv_nsec = absl::ToInt64Nanoseconds(rem);
ts.it_interval.tv_sec =
duration != absl::ZeroDuration() ? 1L : 0L; // Re-fire every 1 sec.
ts.it_interval.tv_nsec = 0UL;
itimerspec* null_ts = nullptr;
if (util::Syscall(__NR_timer_settime,
reinterpret_cast<uintptr_t>(*walltime_timer_), 0,
reinterpret_cast<uintptr_t>(&ts),
reinterpret_cast<uintptr_t>(null_ts)) == -1) {
PLOG(ERROR) << "timer_settime(): time: " << absl::FormatDuration(duration);
return false;
}
return true;
}
void Monitor::CleanUpTimer() {
if (walltime_timer_) {
if (util::Syscall(__NR_timer_delete,
reinterpret_cast<uintptr_t>(*walltime_timer_)) == -1) {
PLOG(ERROR) << "timer_delete()";
}
}
}
bool Monitor::InitSetupSig(int signo, sigset_t* sset) {
// sigtimedwait will react (wake-up) to arrival of this signal.
sigaddset(sset, signo);
// Block this specific signal, so only sigtimedwait reacts to it.
sigset_t block_set;
if (sigemptyset(&block_set) == -1) {
PLOG(ERROR) << "sigemptyset()";
return false;
}
if (sigaddset(&block_set, signo) == -1) {
PLOG(ERROR) << "sigaddset(" << signo << ")";
return false;
}
if (pthread_sigmask(SIG_BLOCK, &block_set, nullptr) == -1) {
PLOG(ERROR) << "pthread_sigmask(SIG_BLOCK, " << signo << ")";
return false;
}
return true;
}
bool Monitor::InitSetupSignals(sigset_t* sset) {
sigemptyset(sset);
return Monitor::InitSetupSig(kExternalKillSignal, sset) &&
Monitor::InitSetupSig(kTimerWallTimeSignal, sset) &&
Monitor::InitSetupSig(kTimerSetSignal, sset) &&
Monitor::InitSetupSig(kDumpStackSignal, sset) &&
// SIGCHLD means that a new children process status change event
// has been delivered (e.g. due ptrace notification).
Monitor::InitSetupSig(SIGCHLD, sset);
}
bool Monitor::InitSendPolicy() {
if (!policy_->SendPolicy(comms_)) {
LOG(ERROR) << "Couldn't send policy";
return false;
}
return true;
}
bool Monitor::InitSendCwd() {
if (!comms_->SendString(executor_->cwd_)) {
PLOG(ERROR) << "Couldn't send cwd";
return false;
}
return true;
}
bool Monitor::InitApplyLimit(pid_t pid, __rlimit_resource resource,
const rlimit64& rlim) const {
std::string rlim_name = absl::StrCat("UNKNOWN: ", resource);
switch (resource) {
case RLIMIT_AS:
rlim_name = "RLIMIT_AS";
break;
case RLIMIT_FSIZE:
rlim_name = "RLIMIT_FSIZE";
break;
case RLIMIT_NOFILE:
rlim_name = "RLIMIT_NOFILE";
break;
case RLIMIT_CPU:
rlim_name = "RLIMIT_CPU";
break;
case RLIMIT_CORE:
rlim_name = "RLIMIT_CORE";
break;
default:
break;
}
rlimit64 curr_limit;
if (prlimit64(pid, resource, nullptr, &curr_limit) == -1) {
PLOG(ERROR) << "prlimit64(" << pid << ", " << rlim_name << ")";
} else {
// In such case, don't update the limits, as it will fail. Just stick to the
// current ones (which are already lower than intended).
if (rlim.rlim_cur > curr_limit.rlim_max) {
LOG(ERROR) << rlim_name << ": new.current > current.max ("
<< rlim.rlim_cur << " > " << curr_limit.rlim_max
<< "), skipping";
return true;
}
}
if (prlimit64(pid, resource, &rlim, nullptr) == -1) {
PLOG(ERROR) << "prlimit64(RLIMIT_AS, " << rlim.rlim_cur << ")";
return false;
}
return true;
}
bool Monitor::InitApplyLimits() {
Limits* limits = executor_->limits();
return InitApplyLimit(pid_, RLIMIT_AS, limits->rlimit_as()) &&
InitApplyLimit(pid_, RLIMIT_CPU, limits->rlimit_cpu()) &&
InitApplyLimit(pid_, RLIMIT_FSIZE, limits->rlimit_fsize()) &&
InitApplyLimit(pid_, RLIMIT_NOFILE, limits->rlimit_nofile()) &&
InitApplyLimit(pid_, RLIMIT_CORE, limits->rlimit_core());
}
bool Monitor::InitSendIPC() { return ipc_->SendFdsOverComms(); }
bool Monitor::WaitForSandboxReady() {
uint32_t tmp;
if (!comms_->RecvUint32(&tmp)) {
LOG(ERROR) << "Couldn't receive 'Client::kClient2SandboxReady' message";
return false;
}
if (tmp != Client::kClient2SandboxReady) {
LOG(ERROR) << "Received " << tmp << " != Client::kClient2SandboxReady ("
<< Client::kClient2SandboxReady << ")";
return false;
}
return true;
}
bool Monitor::InitPtraceAttach() {
sanitizer::WaitForTsan();
// Get a list of tasks.
std::set<int> tasks;
if (!sanitizer::GetListOfTasks(pid_, &tasks)) {
LOG(ERROR) << "Could not get list of tasks";
return false;
}
// With TSYNC, we can allow threads: seccomp applies to all threads.
if (tasks.size() > 1) {
LOG(WARNING) << "PID " << pid_ << " has " << tasks.size() << " threads,"
<< " at the time of call to SandboxMeHere. If you are seeing"
<< " more sandbox violations than expected, this might be"
<< " the reason why"
<< ".";
}
intptr_t ptrace_opts =
PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK |
PTRACE_O_TRACEVFORKDONE | PTRACE_O_TRACECLONE | PTRACE_O_TRACEEXEC |
PTRACE_O_TRACEEXIT | PTRACE_O_TRACESECCOMP | PTRACE_O_EXITKILL;
bool main_pid_found = false;
for (auto task : tasks) {
if (task == pid_) {
main_pid_found = true;
}
// In some situations we allow ptrace to try again when it fails.
bool ptrace_succeeded = false;
int retries = 0;
auto deadline = absl::Now() + absl::Seconds(2);
while (absl::Now() < deadline) {
int ret = ptrace(PTRACE_SEIZE, task, 0, ptrace_opts);
if (ret == 0) {
ptrace_succeeded = true;
break;
}
if (ret != 0 && errno == ESRCH) {
// A task may have exited since we captured the task list, we will allow
// things to continue after we log a warning.
PLOG(WARNING) << "ptrace(PTRACE_SEIZE, " << task << ", "
<< absl::StrCat("0x", absl::Hex(ptrace_opts))
<< ") skipping exited task. Continuing with other tasks.";
ptrace_succeeded = true;
break;
}
if (ret != 0 && errno == EPERM) {
// Sometimes when a task is exiting we can get an EPERM from ptrace.
// Let's try again up until the timeout in this situation.
PLOG(WARNING) << "ptrace(PTRACE_SEIZE, " << task << ", "
<< absl::StrCat("0x", absl::Hex(ptrace_opts))
<< "), trying again...";
// Exponential Backoff.
constexpr auto kInitialRetry = absl::Milliseconds(1);
constexpr auto kMaxRetry = absl::Milliseconds(20);
const auto retry_interval =
kInitialRetry * (1 << std::min(10, retries++));
absl::SleepFor(std::min(retry_interval, kMaxRetry));
continue;
}
// Any other errno will be considered a failure.
PLOG(ERROR) << "ptrace(PTRACE_SEIZE, " << task << ", "
<< absl::StrCat("0x", absl::Hex(ptrace_opts)) << ") failed.";
return false;
}
if (!ptrace_succeeded) {
LOG(ERROR) << "ptrace(PTRACE_SEIZE, " << task << ", "
<< absl::StrCat("0x", absl::Hex(ptrace_opts))
<< ") failed after retrying until the timeout.";
return false;
}
}
if (!main_pid_found) {
LOG(ERROR) << "The pid " << pid_ << " was not found in its own tasklist.";
return false;
}
// Get a list of tasks after attaching.
std::set<int> tasks_after;
if (!sanitizer::GetListOfTasks(pid_, &tasks_after)) {
LOG(ERROR) << "Could not get list of tasks";
return false;
}
// Check that no new threads have shown up. Note: tasks_after can have fewer
// tasks than before but no new tasks can be added as they would be missing
// from the initial task list.
if (!std::includes(tasks.begin(), tasks.end(), tasks_after.begin(),
tasks_after.end())) {
LOG(ERROR) << "The pid " << pid_
<< " spawned new threads while we were trying to attach to it.";
return false;
}
// No glibc wrapper for gettid - see 'man gettid'.
VLOG(1) << "Monitor (PID: " << getpid()
<< ", TID: " << util::Syscall(__NR_gettid)
<< ") attached to PID: " << pid_;
// Technically, the sandboxee can be in a ptrace-stopped state right now,
// because some signal could have arrived in the meantime. Yet, this
// Comms::SendUint32 call shouldn't lock our process, because the underlying
// socketpair() channel is buffered, hence it will accept the uint32_t message
// no matter what is the current state of the sandboxee, and it will allow for
// our process to continue and unlock the sandboxee with the proper ptrace
// event handling.
if (!comms_->SendUint32(Client::kSandbox2ClientDone)) {
LOG(ERROR) << "Couldn't send Client::kSandbox2ClientDone message";
return false;
}
return true;
}
bool Monitor::InitAcceptConnection() {
// It's a pre-connected Comms channel, no need to accept new connection or
// verify the peer (sandboxee).
if (comms_->IsConnected()) {
return true;
}
if (!comms_->Accept()) {
return false;
}
// Check whether the PID which has connected to us, is the PID we're
// expecting.
pid_t cred_pid;
uid_t cred_uid;
gid_t cred_gid;
if (!comms_->RecvCreds(&cred_pid, &cred_uid, &cred_gid)) {
LOG(ERROR) << "Couldn't receive credentials";
return false;
}
if (pid_ != cred_pid) {
LOG(ERROR) << "Initial PID (" << pid_ << ") differs from the PID received "
<< "from the peer (" << cred_pid << ")";
return false;
}
return true;
}
void Monitor::ActionProcessContinue(pid_t pid, int signo) {
if (ptrace(PTRACE_CONT, pid, 0, signo) == -1) {
PLOG(ERROR) << "ptrace(PTRACE_CONT, pid=" << pid << ", sig=" << signo
<< ")";
}
}
void Monitor::ActionProcessStop(pid_t pid, int signo) {
if (ptrace(PTRACE_LISTEN, pid, 0, signo) == -1) {
PLOG(ERROR) << "ptrace(PTRACE_LISTEN, pid=" << pid << ", sig=" << signo
<< ")";
}
}
void Monitor::ActionProcessSyscall(Regs* regs, const Syscall& syscall) {
// If the sandboxing is not enabled yet, allow the first __NR_execveat.
if (syscall.nr() == __NR_execveat && !IsActivelyMonitoring()) {
VLOG(1) << "[PERMITTED/BEFORE_EXECVEAT]: "
<< "SYSCALL ::: PID: " << regs->pid() << ", PROG: '"
<< util::GetProgName(regs->pid())
<< "' : " << syscall.GetDescription();
ActionProcessContinue(regs->pid(), 0);
return;
}
// Notify can decide whether we want to allow this syscall. It could be useful
// for sandbox setups in which some syscalls might still need some logging,
// but nonetheless be allowed ('permissible syscalls' in sandbox v1).
if (notify_->EventSyscallTrap(syscall)) {
LOG(WARNING) << "[PERMITTED]: SYSCALL ::: PID: " << regs->pid()
<< ", PROG: '" << util::GetProgName(regs->pid())
<< "' : " << syscall.GetDescription();
ActionProcessContinue(regs->pid(), 0);
return;
}
// TODO(wiktorg): Further clean that up, probably while doing monitor cleanup
// log_file_ not null iff FLAGS_sandbox2_danger_danger_permit_all_and_log is
// set.
if (log_file_) {
std::string syscall_description = syscall.GetDescription();
PCHECK(absl::FPrintF(log_file_, "PID: %d %s\n", regs->pid(),
syscall_description) >= 0);
ActionProcessContinue(regs->pid(), 0);
return;
}
if (absl::GetFlag(FLAGS_sandbox2_danger_danger_permit_all)) {
ActionProcessContinue(regs->pid(), 0);
return;
}
ActionProcessSyscallViolation(regs, syscall, kSyscallViolation);
}
void Monitor::ActionProcessSyscallViolation(Regs* regs, const Syscall& syscall,
ViolationType violation_type) {
pid_t pid = regs->pid();
LogAccessViolation(syscall);
notify_->EventSyscallViolation(syscall, violation_type);
result_.SetExitStatusCode(Result::VIOLATION, syscall.nr());
result_.SetSyscall(absl::make_unique<Syscall>(syscall));
// Only get the stacktrace if we are not in the libunwind sandbox (avoid
// recursion).
if (executor_->libunwind_sbox_for_pid_ == 0 && policy_->GetNamespace()) {
if (policy_->collect_stacktrace_on_violation_) {
result_.SetStackTrace(
GetStackTrace(regs, policy_->GetNamespace()->mounts()));
LOG(ERROR) << "Stack trace: " << result_.GetStackTrace();
} else {
LOG(ERROR) << "Stack traces have been disabled";
}
}
// We make the result object create its own Reg instance. our regs is a
// pointer to a stack variable which might not live long enough.
result_.LoadRegs(pid);
result_.SetProgName(util::GetProgName(pid));
result_.SetProcMaps(ReadProcMaps(pid_));
// Rewrite the syscall argument to something invalid (-1). The process will
// be killed by ActionProcessKill(), so this is just a precaution.
auto status = regs->SkipSyscallReturnValue(-ENOSYS);
if (!status.ok()) {
LOG(ERROR) << status;
}
ActionProcessKill(pid, Result::VIOLATION, syscall.nr());
}
void Monitor::LogAccessViolation(const Syscall& syscall) {
// Do not unwind libunwind.
if (executor_->libunwind_sbox_for_pid_ != 0) {
LOG(ERROR) << "Sandbox violation during execution of libunwind: "
<< syscall.GetDescription();
return;
}
uintptr_t syscall_nr = syscall.nr();
uintptr_t arg0 = syscall.args()[0];
// So, this is an invalid syscall. Will be killed by seccomp-bpf policies as
// well, but we should be on a safe side here as well.
LOG(ERROR) << "SANDBOX VIOLATION : PID: " << syscall.pid() << ", PROG: '"
<< util::GetProgName(syscall.pid())
<< "' : " << syscall.GetDescription();
// This follows policy in Policy::GetDefaultPolicy - keep it in sync.
if (syscall.arch() != Syscall::GetHostArch()) {
LOG(ERROR)
<< "This is a violation because the syscall was issued because the"
<< " sandboxee and executor architectures are different.";
return;
}
if (syscall_nr == __NR_ptrace) {
LOG(ERROR)
<< "This is a violation because the ptrace syscall would be unsafe in"
<< " sandbox2, so it has been blocked.";
return;
}
if (syscall_nr == __NR_bpf) {
LOG(ERROR)
<< "This is a violation because the bpf syscall would be risky in"
<< " a sandbox, so it has been blocked.";
return;
}
if (syscall_nr == __NR_clone && ((arg0 & CLONE_UNTRACED) != 0)) {
LOG(ERROR) << "This is a violation because calling clone with CLONE_UNTRACE"
<< " would be unsafe in sandbox2, so it has been blocked.";
return;
}
}
void Monitor::ActionProcessKill(pid_t pid, Result::StatusEnum status,
uintptr_t code) {
// Avoid overwriting result if we set it for instance after a violation.
if (result_.final_status() == Result::UNSET) {
result_.SetExitStatusCode(status, code);
}
VLOG(1) << "Sending SIGKILL to the PID: " << pid_;
if (kill(pid_, SIGKILL) != 0) {
LOG(FATAL) << "Could not send SIGKILL to PID " << pid_;
}
}
void Monitor::EventPtraceSeccomp(pid_t pid, int event_msg) {
VLOG(1) << "PID: " << pid << " violation uncovered via the SECCOMP_EVENT";
// If the seccomp-policy is using RET_TRACE, we request that it returns the
// syscall architecture identifier in the SECCOMP_RET_DATA.
const auto syscall_arch = static_cast<Syscall::CpuArch>(event_msg);
Regs regs(pid);
auto status = regs.Fetch();
if (!status.ok()) {
LOG(ERROR) << status;
ActionProcessKill(pid, Result::INTERNAL_ERROR, Result::FAILED_FETCH);
return;
}
Syscall syscall = regs.ToSyscall(syscall_arch);
// If the architecture of the syscall used is different that the current host
// architecture, report a violation.
if (syscall_arch != Syscall::GetHostArch()) {
ActionProcessSyscallViolation(&regs, syscall, kArchitectureSwitchViolation);
return;
}
ActionProcessSyscall(&regs, syscall);
}
void Monitor::EventPtraceExec(pid_t pid, int event_msg) {
if (!IsActivelyMonitoring()) {
VLOG(1) << "PTRACE_EVENT_EXEC seen from PID: " << event_msg
<< ". SANDBOX ENABLED!";
SetActivelyMonitoring();
}
ActionProcessContinue(pid, 0);
}
void Monitor::EventPtraceExit(pid_t pid, int event_msg) {
// A regular exit, let it continue.
if (WIFEXITED(event_msg)) {
ActionProcessContinue(pid, 0);
return;
}
// Everything except the SECCOMP violation can continue.
if (!WIFSIGNALED(event_msg) || WTERMSIG(event_msg) != SIGSYS) {
// Process is dying because it received a signal.
// This can occur in three cases:
// 1) Process was killed from the sandbox, in this case the result status
// was already set to Result::EXTERNAL_KILL. We do not get the stack
// trace in this case.
// 2) Process was killed because it hit a timeout. The result status is
// also already set, however we are interested in the stack trace.
// 3) Regular signal. We need to obtain everything. The status will be set
// upon the process exit handler.
if (pid == pid_) {
result_.LoadRegs(pid_);
result_.SetProgName(util::GetProgName(pid_));
result_.SetProcMaps(ReadProcMaps(pid_));
bool stacktrace_collection_possible =
policy_->GetNamespace() && executor_->libunwind_sbox_for_pid_ == 0;
auto collect_stacktrace = [this]() {
result_.SetStackTrace(GetStackTrace(result_.GetRegs(),
policy_->GetNamespace()->mounts()));
};
switch (result_.final_status()) {
case Result::EXTERNAL_KILL:
if (stacktrace_collection_possible &&
policy_->collect_stacktrace_on_kill_) {
collect_stacktrace();
}
break;
case Result::TIMEOUT:
if (stacktrace_collection_possible &&
policy_->collect_stacktrace_on_timeout_) {
collect_stacktrace();
}
break;
case Result::VIOLATION:
break;
case Result::UNSET:
// Regular signal.
if (stacktrace_collection_possible &&
policy_->collect_stacktrace_on_signal_) {
collect_stacktrace();
}
break;
default:
LOG(ERROR) << "Unexpected codepath taken";
break;
}
}
ActionProcessContinue(pid, 0);
return;
}
VLOG(1) << "PID: " << pid << " violation uncovered via the EXIT_EVENT";
// We do not generate the stack trace in the SECCOMP case as it will be
// generated during ActionProcessSyscallViolation anyway.
Regs regs(pid);
auto status = regs.Fetch();
if (!status.ok()) {
LOG(ERROR) << status;
ActionProcessKill(pid, Result::INTERNAL_ERROR, Result::FAILED_FETCH);
return;
}
auto syscall = regs.ToSyscall(Syscall::GetHostArch());
ActionProcessSyscallViolation(&regs, syscall, kSyscallViolation);
}
void Monitor::EventPtraceStop(pid_t pid, int stopsig) {
// It's not a real stop signal. For example PTRACE_O_TRACECLONE and similar
// flags to ptrace(PTRACE_SEIZE) might generate this event with SIGTRAP.
if (stopsig != SIGSTOP && stopsig != SIGTSTP && stopsig != SIGTTIN &&
stopsig != SIGTTOU) {
ActionProcessContinue(pid, 0);
return;
}
// It's our PID stop signal. Stop it.
VLOG(2) << "PID: " << pid << " stopped due to "
<< util::GetSignalName(stopsig);
ActionProcessStop(pid, 0);
}
void Monitor::StateProcessStopped(pid_t pid, int status) {
int stopsig = WSTOPSIG(status);
if (__WPTRACEEVENT(status) == 0) {
// Must be a regular signal delivery.
VLOG(2) << "PID: " << pid
<< " received signal: " << util::GetSignalName(stopsig);
notify_->EventSignal(pid, stopsig);
ActionProcessContinue(pid, stopsig);
return;
}
unsigned long event_msg; // NOLINT
if (ptrace(PTRACE_GETEVENTMSG, pid, 0, &event_msg) == -1) {
if (errno == ESRCH) {
// This happens from time to time, the kernel does not guarantee us that
// we get the event in time.
PLOG(INFO) << "ptrace(PTRACE_GETEVENTMSG, " << pid << ")";
return;
}
PLOG(ERROR) << "ptrace(PTRACE_GETEVENTMSG, " << pid << ")";
ActionProcessKill(pid, Result::INTERNAL_ERROR, Result::FAILED_GETEVENT);
return;
}
if (pid == pid_ && should_dump_stack_ &&
executor_->libunwind_sbox_for_pid_ == 0 && policy_->GetNamespace()) {
Regs regs(pid);
auto status = regs.Fetch();
if (status.ok()) {
VLOG(0) << "SANDBOX STACK : PID: " << pid << ", ["
<< GetStackTrace(&regs, policy_->GetNamespace()->mounts()) << "]";
} else {
LOG(WARNING) << "FAILED TO GET SANDBOX STACK : " << status;
}
should_dump_stack_ = false;
}
#if !defined(PTRACE_EVENT_STOP)
#define PTRACE_EVENT_STOP 128
#endif
switch (__WPTRACEEVENT(status)) {
case PTRACE_EVENT_FORK:
/* fall through */
case PTRACE_EVENT_VFORK:
/* fall through */
case PTRACE_EVENT_CLONE:
/* fall through */
case PTRACE_EVENT_VFORK_DONE:
ActionProcessContinue(pid, 0);
break;
case PTRACE_EVENT_EXEC:
VLOG(2) << "PID: " << pid << " PTRACE_EVENT_EXEC, PID: " << event_msg;
EventPtraceExec(pid, event_msg);
break;
case PTRACE_EVENT_EXIT:
VLOG(2) << "PID: " << pid << " PTRACE_EVENT_EXIT: " << event_msg;
EventPtraceExit(pid, event_msg);
break;
case PTRACE_EVENT_STOP:
VLOG(2) << "PID: " << pid << " PTRACE_EVENT_STOP: " << event_msg;
EventPtraceStop(pid, stopsig);
break;
case PTRACE_EVENT_SECCOMP:
VLOG(2) << "PID: " << pid << " PTRACE_EVENT_SECCOMP: " << event_msg;
EventPtraceSeccomp(pid, event_msg);
break;
default:
LOG(ERROR) << "Unknown ptrace event: " << __WPTRACEEVENT(status)
<< " with data: " << event_msg;
break;
}
}
void Monitor::PidInterrupt(pid_t pid) {
if (ptrace(PTRACE_INTERRUPT, pid, 0, 0) == -1) {
PLOG(WARNING) << "ptrace(PTRACE_INTERRUPT, pid=" << pid << ")";
}
}
} // namespace sandbox2