2018-10-02 21:24:06 +08:00
|
|
|
''' mbinary
|
|
|
|
#########################################################################
|
|
|
|
# File : isPrime.py
|
|
|
|
# Author: mbinary
|
|
|
|
# Mail: zhuheqin1@gmail.com
|
2019-01-31 12:09:46 +08:00
|
|
|
# Blog: https://mbinary.xyz
|
2018-10-02 21:24:06 +08:00
|
|
|
# Github: https://github.com/mbinary
|
2018-12-16 17:09:54 +08:00
|
|
|
# Created Time: 2018-03-04 21:34
|
2018-10-02 21:24:06 +08:00
|
|
|
# Description:
|
|
|
|
#########################################################################
|
|
|
|
'''
|
2018-12-16 17:09:54 +08:00
|
|
|
from random import randint
|
2018-10-02 21:24:06 +08:00
|
|
|
|
2018-12-16 17:09:54 +08:00
|
|
|
|
|
|
|
def quickMulMod(a,b,m):
|
|
|
|
'''a*b%m, quick'''
|
|
|
|
ret = 0
|
|
|
|
while b:
|
|
|
|
if b&1:
|
|
|
|
ret = (a+ret)%m
|
|
|
|
b//=2
|
|
|
|
a = (a+a)%m
|
|
|
|
return ret
|
|
|
|
|
|
|
|
def quickPowMod(a,b,m):
|
|
|
|
'''a^b %m, quick, O(logn)'''
|
|
|
|
ret =1
|
|
|
|
while b:
|
|
|
|
if b&1:
|
|
|
|
ret =quickMulMod(ret,a,m)
|
|
|
|
b//=2
|
|
|
|
a = quickMulMod(a,a,m)
|
|
|
|
return ret
|
|
|
|
|
|
|
|
|
|
|
|
def isPrime(n,t=5):
|
|
|
|
'''miller rabin primality test, a probability result
|
|
|
|
t is the number of iteration(witness)
|
|
|
|
'''
|
|
|
|
t = min(n-3,t)
|
|
|
|
if n<2:
|
|
|
|
print('[Error]: {} can\'t be classed with prime or composite'.format(n))
|
|
|
|
return
|
|
|
|
if n==2: return True
|
|
|
|
d = n-1
|
|
|
|
r = 0
|
|
|
|
while d%2==0:
|
|
|
|
r+=1
|
|
|
|
d//=2
|
|
|
|
tested=set()
|
|
|
|
for i in range(t):
|
|
|
|
a = randint(2,n-2)
|
|
|
|
while a in tested:
|
|
|
|
a = randint(2,n-2)
|
|
|
|
tested.add(a)
|
|
|
|
x= quickPowMod(a,d,n)
|
|
|
|
if x==1 or x==n-1: continue #success,
|
|
|
|
for j in range(r-1):
|
|
|
|
x= quickMulMod(x,x,n)
|
|
|
|
if x==n-1:break
|
|
|
|
else:
|
|
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
|
|
'''
|
|
|
|
we shouldn't use Fermat's little theory
|
|
|
|
Namyly:
|
|
|
|
For a prime p, and any number a where (a,n)=1
|
|
|
|
a ^(p-1) \equiv 1 (mod p)
|
|
|
|
|
|
|
|
The inverse theorem of it is not True.
|
|
|
|
|
|
|
|
a counter-example: 2^340 \equiv 1 (mod 341), but 341 is a composite
|
|
|
|
'''
|
|
|
|
|
|
|
|
class primeSieve:
|
|
|
|
'''sieve of Eratosthenes, It will be more efficient when judging many times'''
|
|
|
|
primes = [2,3,5,7,11,13]
|
|
|
|
def isPrime(self,x):
|
|
|
|
if x<=primes[-1]:
|
|
|
|
return twoDivideFind(x,self.primes)
|
|
|
|
while x>self.primes[-1]:
|
|
|
|
left = self.primes[-1]
|
|
|
|
right = (left+1)**2
|
|
|
|
lst = []
|
|
|
|
for i in range(left,right):
|
|
|
|
for j in self.primes:
|
|
|
|
if i%j==0:break
|
|
|
|
else:lst.append(i)
|
|
|
|
self.primes+=lst
|
2019-03-06 19:11:01 +08:00
|
|
|
return twoDivideFind(x,lst)
|
|
|
|
def nPrime(n):
|
|
|
|
'''return the n-th prime'''
|
|
|
|
i=n-len(self.primes)
|
|
|
|
last = self.primes[-1]
|
|
|
|
for _ in range(i):
|
|
|
|
while 1:
|
|
|
|
last +=2
|
|
|
|
for p in self.primes:
|
|
|
|
if last%p==0:
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
self.primes.append(last)
|
|
|
|
break
|
|
|
|
return self.primes[n-1]
|
2018-12-16 17:09:54 +08:00
|
|
|
|
|
|
|
def twoDivideFind(x,li):
|
|
|
|
a,b = 0, len(li)
|
2018-10-02 21:24:06 +08:00
|
|
|
while a<=b:
|
|
|
|
mid = (a+b)//2
|
2018-12-16 17:09:54 +08:00
|
|
|
if li[mid]<x:a=mid+1
|
|
|
|
elif li[mid]>x: b= mid-1
|
|
|
|
else:return mid
|
|
|
|
return -1
|
|
|
|
|
|
|
|
if __name__=='__main__':
|
|
|
|
n = 100
|
|
|
|
print('prime numbers below',n)
|
|
|
|
print([i for i in range(n) if isPrime(i)])
|
|
|
|
while 1:
|
|
|
|
n = int(input('n: '))
|
|
|
|
print(isPrime(n))
|