mirror of
https://github.com/heqin-zhu/algorithm.git
synced 2024-03-22 13:30:46 +08:00
Add license and bages, change urls
This commit is contained in:
parent
b6805c66ce
commit
b69b5641d0
12
LICENSE
Normal file
12
LICENSE
Normal file
|
@ -0,0 +1,12 @@
|
|||
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
|
||||
|
||||
Copyright (C) 2019 Heqin Zhu <zhuheqin1@gmail.com>
|
||||
|
||||
Everyone is permitted to copy and distribute verbatim or modified
|
||||
copies of this license document, and changing it is allowed as long
|
||||
as the name is changed.
|
||||
|
||||
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
|
||||
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
||||
|
||||
0. You just DO WHAT THE FUCK YOU WANT TO.
|
15
README.md
15
README.md
|
@ -1,5 +1,13 @@
|
|||
|
||||
# Algorithm
|
||||
# Algorithm and data structures
|
||||
|
||||
[![Stars](https://img.shields.io/github/stars/mbinary/algorithm-in-python.svg?label=Stars&style=social)](https://github.com/mbinary/algorithm-in-python/stargazers)
|
||||
[![Forks](https://img.shields.io/github/forks/mbinary/algorithm-in-python.svg?label=Fork&style=social)](https://github.com/mbinary/algorithm-in-python/network/members)
|
||||
[![repo-size](https://img.shields.io/github/repo-size/mbinary/algorithm-in-python.svg)]()
|
||||
[![License](https://img.shields.io/badge/LICENSE-WTFPL-blue.svg)](LICENSE)
|
||||
[![Language](https://img.shields.io/badge/language-python3-orange.svg)]()
|
||||
<!-- [![Build](https://travis-ci.org/mbinary/PL0-compiler.svg?branch=master)]() -->
|
||||
|
||||
>Notes and codes for learning algorithm and data structures :smiley:
|
||||
|
||||
Some pictures and ideas are from `<<Introduction to Algotithm>>`
|
||||
|
@ -7,10 +15,11 @@ Some pictures and ideas are from `<<Introduction to Algotithm>>`
|
|||
I use python 3.6+ and c/c++ to implement them.
|
||||
|
||||
# Notice
|
||||
Currently, Github can't render latex math formulas.Thus,if you want to view the markodwn notes which contain latex math formulas, you can visit [my blog](https://mbinary.coding.me)
|
||||
Currently, Github can't render latex math formulas.Thus,if you want to view the markodwn notes which contain latex math formulas, you can visit [my blog](https://mbinary.xyz)
|
||||
|
||||
# Index
|
||||
* [.](.)
|
||||
* [LICENSE](./LICENSE)
|
||||
* [README.md](./README.md)
|
||||
* [backtracking](./backtracking)
|
||||
* [dataStructure](./dataStructure)
|
||||
|
@ -74,6 +83,7 @@ Currently, Github can't render latex math formulas.Thus,if you want to view the
|
|||
* [binary_search.hs](./search/binary_search.hs)
|
||||
* [bloomFilter.py](./search/bloomFilter.py)
|
||||
* [schedule.py](./search/schedule.py)
|
||||
* [work_dispatch.py](./search/work_dispatch.py)
|
||||
* [sort](./sort)
|
||||
* [binaryTree.py](./sort/binaryTree.py)
|
||||
* [heapSort.py](./sort/heapSort.py)
|
||||
|
@ -88,6 +98,7 @@ Currently, Github can't render latex math formulas.Thus,if you want to view the
|
|||
* [manacher.py](./string/manacher.py)
|
||||
* [markov.py](./string/markov.py)
|
||||
* [rabin_karp.py](./string/rabin_karp.py)
|
||||
* [rotate.py](./string/rotate.py)
|
||||
* [src](./string/src)
|
||||
* [sunday.py](./string/sunday.py)
|
||||
* [wildcard_matching.py](./string/wildcard_matching.py)
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : allOoneDS.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-19 23:07
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : testAllOne.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-19 23:07
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : bTree.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-08-29 12:49
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : binaryHeap.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-19 23:06
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : binaryTree.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-19 23:07
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : adjacentList.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-04-26 10:33
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : directed.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-04-26 10:33
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : graph.cc
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-04-26 10:33
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : undirected.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-04-26 10:33
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : hashTable.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-07-08 16:39
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : huffman.cc
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-04-25 22:32
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : intervalTree.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-11-18 10:48
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : leftHeap.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-19 23:06
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : loserTree.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-19 23:06
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : map.cc
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-04-26 10:33
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : polynomial.cpp
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-19 23:07
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : polynomial.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-19 23:07
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : redBlackTree.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-07-14 16:15
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : redBlackTree.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-07-14 16:15
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : splayTree.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-19 23:06
|
||||
# Description:
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# File : mapSum.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-12-14 23:11
|
||||
# Description:
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# File : maxXor.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-12-22 09:51
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : trie.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-19 23:06
|
||||
# Description:
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# File : accountsMerge.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-12-18 17:07
|
||||
# Description:
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# File : unionFind.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-12-18 14:53
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : winnerTree.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-19 23:06
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : min_distance_of_n_points.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-11-24 22:03
|
||||
# Description:
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# 算法笔记
|
||||
>注意, 目前 github 上的文档不支持 latex 数学公式渲染
|
||||
所以如果想有较好的阅读体验, 可以移步到[我的博客](https://mbinary.coding.me)
|
||||
所以如果想有较好的阅读体验, 可以移步到[我的博客](https://mbinary.xyz)
|
||||
|
||||
# 索引
|
||||
* [.](.)
|
||||
|
|
1216
docs/b-tree.md
1216
docs/b-tree.md
File diff suppressed because it is too large
Load Diff
340
docs/fib-heap.md
340
docs/fib-heap.md
|
@ -1,170 +1,170 @@
|
|||
---
|
||||
title: 『数据结构』Fibonacci-heap
|
||||
date: 2018-09-06 19:09
|
||||
categories: 数据结构与算法
|
||||
tags: [数据结构,斐波那契堆]
|
||||
keywords: 数据结构,斐波那契堆
|
||||
mathjax: true
|
||||
description:
|
||||
---
|
||||
|
||||
<!-- TOC -->
|
||||
|
||||
- [1. 结构](#1-结构)
|
||||
- [2. 势函数](#2-势函数)
|
||||
- [3. 最大度数](#3-最大度数)
|
||||
- [4. 操作](#4-操作)
|
||||
- [4.1. 创建一个斐波那契堆](#41-创建一个斐波那契堆)
|
||||
- [4.2. 插入一个结点](#42-插入一个结点)
|
||||
- [4.3. 寻找最小结点](#43-寻找最小结点)
|
||||
- [4.4. 合并两个斐波那契堆](#44-合并两个斐波那契堆)
|
||||
- [4.5. 抽取最小值](#45-抽取最小值)
|
||||
- [4.6. 关键字减值](#46-关键字减值)
|
||||
- [4.7. 删除结点](#47-删除结点)
|
||||
- [5. 最大度数的证明](#5-最大度数的证明)
|
||||
|
||||
<!-- /TOC -->
|
||||
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-22531846a72b0d83.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
<a id="markdown-1-结构" name="1-结构"></a>
|
||||
# 1. 结构
|
||||
斐波那契堆是一系列具有最小堆序的有根树的集合, 同一代(层)结点由双向循环链表链接, **为了便于删除最小结点, 还需要维持链表为升序, 即nd<=nd.right(nd==nd.right时只有一个结点或为 None)**, 父子之间都有指向对方的指针.
|
||||
|
||||
结点有degree 属性, 记录孩子的个数, mark 属性用来标记(为了满足势函数, 达到摊还需求的)
|
||||
|
||||
还有一个最小值指针 H.min 指向最小根结点
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-d4e8a85754fdbc14.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
<a id="markdown-2-势函数" name="2-势函数"></a>
|
||||
# 2. 势函数
|
||||
下面用势函数来分析摊还代价, 如果你不明白, 可以看[摊还分析](https://www.jianshu.com/p/052fbe9d92a4)
|
||||
|
||||
$\Phi(H) = t(H) + 2m(h)$
|
||||
t 是根链表中树的数目,m(H) 表示被标记的结点数
|
||||
|
||||
最初没有结点
|
||||
<a id="markdown-3-最大度数" name="3-最大度数"></a>
|
||||
# 3. 最大度数
|
||||
结点的最大度数(即孩子数)$D(n)\leqslant \lfloor lgn \rfloor$, 证明放在最后
|
||||
<a id="markdown-4-操作" name="4-操作"></a>
|
||||
# 4. 操作
|
||||
<a id="markdown-41-创建一个斐波那契堆" name="41-创建一个斐波那契堆"></a>
|
||||
## 4.1. 创建一个斐波那契堆
|
||||
$O(1)$
|
||||
<a id="markdown-42-插入一个结点" name="42-插入一个结点"></a>
|
||||
## 4.2. 插入一个结点
|
||||
```python
|
||||
nd = new node
|
||||
nd.prt = nd.chd = None
|
||||
if H.min is None:
|
||||
creat H with nd
|
||||
H.min = nd
|
||||
else:
|
||||
insert nd into H's root list
|
||||
if H.min<nd: H.min = nd
|
||||
H.n +=1
|
||||
```
|
||||
$$
|
||||
\Delta \Phi = \Delta t(H) + 2\Delta m(H) = 1+0 = 1
|
||||
$$
|
||||
摊还代价为$O(1)$
|
||||
<a id="markdown-43-寻找最小结点" name="43-寻找最小结点"></a>
|
||||
## 4.3. 寻找最小结点
|
||||
直接用 H.min, $O(1)$
|
||||
<a id="markdown-44-合并两个斐波那契堆" name="44-合并两个斐波那契堆"></a>
|
||||
## 4.4. 合并两个斐波那契堆
|
||||
```python
|
||||
def union(H1,H2):
|
||||
if H1.min ==None or (H1.min and H2.min and H1.min>H2.min):
|
||||
H1.min = H2.min
|
||||
link H2.rootList to H1.rootList
|
||||
return H1
|
||||
```
|
||||
易知 $\Delta \Phi = 0$
|
||||
<a id="markdown-45-抽取最小值" name="45-抽取最小值"></a>
|
||||
## 4.5. 抽取最小值
|
||||
抽取最小值, 一定是在根结点, 然后将此根结点的所有子树的根放在 根结点双向循环链表中, 之后还要进行**树的合并. 以使每个根结点的度不同,**
|
||||
```python
|
||||
def extract-min(H):
|
||||
z = H.min
|
||||
if z!=None:
|
||||
for chd of z:
|
||||
link chd to H.rootList
|
||||
chd.prt = None
|
||||
remove z from the rootList of H
|
||||
if z==z.right:
|
||||
H.min = None
|
||||
else:
|
||||
H.min = z.right
|
||||
consolidate(H)
|
||||
H.n -=1
|
||||
return z
|
||||
```
|
||||
consolidate 函数使用一个 辅助数组degree来记录所有根结点(不超过lgn)对应的度数, degree[i] = nd 表示.有且只有一个结点 nd 的度数为 i.
|
||||
```python
|
||||
def consolidate(H):
|
||||
initialize degree with None
|
||||
for nd in H.rootList:
|
||||
d = nd.degree
|
||||
while degree[d] !=None:
|
||||
nd2 = degree[d]
|
||||
if nd2.degree < nd.degree:
|
||||
nd2,nd = nd,nd2
|
||||
|
||||
make nd2 child of nd
|
||||
nd.degree = d+1
|
||||
nd.mark = False # to balace the potential
|
||||
|
||||
remove nd2 from H.rootList
|
||||
degree[d] = None
|
||||
d+=1
|
||||
else: degree[d] = nd
|
||||
for i in degree:
|
||||
if i!=None:
|
||||
link i to H.rootList
|
||||
if H.min ==None: H.min = i
|
||||
else if H.min>i: H.min = i
|
||||
```
|
||||
时间复杂度为$O(lgn)$ 即数组移动的长度, 而最多有 lgn个元素
|
||||
|
||||
<a id="markdown-46-关键字减值" name="46-关键字减值"></a>
|
||||
## 4.6. 关键字减值
|
||||
```python
|
||||
def decrease-key(H,x,k):
|
||||
if k>x.key: error
|
||||
x.key = k
|
||||
y=x.p
|
||||
if y!=None and x.key < y.key:
|
||||
cut(H,x,y)
|
||||
cascading-cut(H,y)
|
||||
if x.key < H.min.key:
|
||||
H.min = x
|
||||
def cut(H,x,y):
|
||||
remove x from the child list of y, decrementing y.degree
|
||||
add x to H.rootList
|
||||
x.prt = None
|
||||
x.mark = False
|
||||
|
||||
def cascading-cut(H,y):
|
||||
z- y,prt
|
||||
if z !=None:
|
||||
if y.mark ==False:y.mark = True
|
||||
else:
|
||||
cut(H,y,z)
|
||||
cascading-cut(H,z)
|
||||
```
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-0a29221f8a1fbfbb.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
<a id="markdown-47-删除结点" name="47-删除结点"></a>
|
||||
## 4.7. 删除结点
|
||||
```python
|
||||
decrease(H,nd, MIN)
|
||||
extract-min(H)
|
||||
```
|
||||
|
||||
<a id="markdown-5-最大度数的证明" name="5-最大度数的证明"></a>
|
||||
# 5. 最大度数的证明
|
||||
这也是`斐波那契`这个名字的由来,
|
||||
$D(n)\leqslant \lfloor lgn \rfloor$
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-c9e0cd3be4e98c4b.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
---
|
||||
title: 『数据结构』Fibonacci-heap
|
||||
date: 2018-09-06 19:09
|
||||
categories: 数据结构与算法
|
||||
tags: [数据结构,斐波那契堆]
|
||||
keywords: 数据结构,斐波那契堆
|
||||
mathjax: true
|
||||
description:
|
||||
---
|
||||
|
||||
<!-- TOC -->
|
||||
|
||||
- [1. 结构](#1-结构)
|
||||
- [2. 势函数](#2-势函数)
|
||||
- [3. 最大度数](#3-最大度数)
|
||||
- [4. 操作](#4-操作)
|
||||
- [4.1. 创建一个斐波那契堆](#41-创建一个斐波那契堆)
|
||||
- [4.2. 插入一个结点](#42-插入一个结点)
|
||||
- [4.3. 寻找最小结点](#43-寻找最小结点)
|
||||
- [4.4. 合并两个斐波那契堆](#44-合并两个斐波那契堆)
|
||||
- [4.5. 抽取最小值](#45-抽取最小值)
|
||||
- [4.6. 关键字减值](#46-关键字减值)
|
||||
- [4.7. 删除结点](#47-删除结点)
|
||||
- [5. 最大度数的证明](#5-最大度数的证明)
|
||||
|
||||
<!-- /TOC -->
|
||||
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-22531846a72b0d83.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
<a id="markdown-1-结构" name="1-结构"></a>
|
||||
# 1. 结构
|
||||
斐波那契堆是一系列具有最小堆序的有根树的集合, 同一代(层)结点由双向循环链表链接, **为了便于删除最小结点, 还需要维持链表为升序, 即nd<=nd.right(nd==nd.right时只有一个结点或为 None)**, 父子之间都有指向对方的指针.
|
||||
|
||||
结点有degree 属性, 记录孩子的个数, mark 属性用来标记(为了满足势函数, 达到摊还需求的)
|
||||
|
||||
还有一个最小值指针 H.min 指向最小根结点
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-d4e8a85754fdbc14.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
<a id="markdown-2-势函数" name="2-势函数"></a>
|
||||
# 2. 势函数
|
||||
下面用势函数来分析摊还代价, 如果你不明白, 可以看[摊还分析](https://www.jianshu.com/p/052fbe9d92a4)
|
||||
|
||||
$\Phi(H) = t(H) + 2m(h)$
|
||||
t 是根链表中树的数目,m(H) 表示被标记的结点数
|
||||
|
||||
最初没有结点
|
||||
<a id="markdown-3-最大度数" name="3-最大度数"></a>
|
||||
# 3. 最大度数
|
||||
结点的最大度数(即孩子数)$D(n)\leqslant \lfloor lgn \rfloor$, 证明放在最后
|
||||
<a id="markdown-4-操作" name="4-操作"></a>
|
||||
# 4. 操作
|
||||
<a id="markdown-41-创建一个斐波那契堆" name="41-创建一个斐波那契堆"></a>
|
||||
## 4.1. 创建一个斐波那契堆
|
||||
$O(1)$
|
||||
<a id="markdown-42-插入一个结点" name="42-插入一个结点"></a>
|
||||
## 4.2. 插入一个结点
|
||||
```python
|
||||
nd = new node
|
||||
nd.prt = nd.chd = None
|
||||
if H.min is None:
|
||||
creat H with nd
|
||||
H.min = nd
|
||||
else:
|
||||
insert nd into H's root list
|
||||
if H.min<nd: H.min = nd
|
||||
H.n +=1
|
||||
```
|
||||
$$
|
||||
\Delta \Phi = \Delta t(H) + 2\Delta m(H) = 1+0 = 1
|
||||
$$
|
||||
摊还代价为$O(1)$
|
||||
<a id="markdown-43-寻找最小结点" name="43-寻找最小结点"></a>
|
||||
## 4.3. 寻找最小结点
|
||||
直接用 H.min, $O(1)$
|
||||
<a id="markdown-44-合并两个斐波那契堆" name="44-合并两个斐波那契堆"></a>
|
||||
## 4.4. 合并两个斐波那契堆
|
||||
```python
|
||||
def union(H1,H2):
|
||||
if H1.min ==None or (H1.min and H2.min and H1.min>H2.min):
|
||||
H1.min = H2.min
|
||||
link H2.rootList to H1.rootList
|
||||
return H1
|
||||
```
|
||||
易知 $\Delta \Phi = 0$
|
||||
<a id="markdown-45-抽取最小值" name="45-抽取最小值"></a>
|
||||
## 4.5. 抽取最小值
|
||||
抽取最小值, 一定是在根结点, 然后将此根结点的所有子树的根放在 根结点双向循环链表中, 之后还要进行**树的合并. 以使每个根结点的度不同,**
|
||||
```python
|
||||
def extract-min(H):
|
||||
z = H.min
|
||||
if z!=None:
|
||||
for chd of z:
|
||||
link chd to H.rootList
|
||||
chd.prt = None
|
||||
remove z from the rootList of H
|
||||
if z==z.right:
|
||||
H.min = None
|
||||
else:
|
||||
H.min = z.right
|
||||
consolidate(H)
|
||||
H.n -=1
|
||||
return z
|
||||
```
|
||||
consolidate 函数使用一个 辅助数组degree来记录所有根结点(不超过lgn)对应的度数, degree[i] = nd 表示.有且只有一个结点 nd 的度数为 i.
|
||||
```python
|
||||
def consolidate(H):
|
||||
initialize degree with None
|
||||
for nd in H.rootList:
|
||||
d = nd.degree
|
||||
while degree[d] !=None:
|
||||
nd2 = degree[d]
|
||||
if nd2.degree < nd.degree:
|
||||
nd2,nd = nd,nd2
|
||||
|
||||
make nd2 child of nd
|
||||
nd.degree = d+1
|
||||
nd.mark = False # to balace the potential
|
||||
|
||||
remove nd2 from H.rootList
|
||||
degree[d] = None
|
||||
d+=1
|
||||
else: degree[d] = nd
|
||||
for i in degree:
|
||||
if i!=None:
|
||||
link i to H.rootList
|
||||
if H.min ==None: H.min = i
|
||||
else if H.min>i: H.min = i
|
||||
```
|
||||
时间复杂度为$O(lgn)$ 即数组移动的长度, 而最多有 lgn个元素
|
||||
|
||||
<a id="markdown-46-关键字减值" name="46-关键字减值"></a>
|
||||
## 4.6. 关键字减值
|
||||
```python
|
||||
def decrease-key(H,x,k):
|
||||
if k>x.key: error
|
||||
x.key = k
|
||||
y=x.p
|
||||
if y!=None and x.key < y.key:
|
||||
cut(H,x,y)
|
||||
cascading-cut(H,y)
|
||||
if x.key < H.min.key:
|
||||
H.min = x
|
||||
def cut(H,x,y):
|
||||
remove x from the child list of y, decrementing y.degree
|
||||
add x to H.rootList
|
||||
x.prt = None
|
||||
x.mark = False
|
||||
|
||||
def cascading-cut(H,y):
|
||||
z- y,prt
|
||||
if z !=None:
|
||||
if y.mark ==False:y.mark = True
|
||||
else:
|
||||
cut(H,y,z)
|
||||
cascading-cut(H,z)
|
||||
```
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-0a29221f8a1fbfbb.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
<a id="markdown-47-删除结点" name="47-删除结点"></a>
|
||||
## 4.7. 删除结点
|
||||
```python
|
||||
decrease(H,nd, MIN)
|
||||
extract-min(H)
|
||||
```
|
||||
|
||||
<a id="markdown-5-最大度数的证明" name="5-最大度数的证明"></a>
|
||||
# 5. 最大度数的证明
|
||||
这也是`斐波那契`这个名字的由来,
|
||||
$D(n)\leqslant \lfloor lgn \rfloor$
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-c9e0cd3be4e98c4b.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
|
948
docs/graph.md
948
docs/graph.md
|
@ -1,474 +1,474 @@
|
|||
---
|
||||
title: 图算法
|
||||
date: 2018-09-06 19:10
|
||||
categories: 数据结构与算法
|
||||
tags: [图,算法]
|
||||
keywords: 图,算法
|
||||
mathjax: true
|
||||
description:
|
||||
---
|
||||
|
||||
<!-- TOC -->
|
||||
|
||||
- [1. 图](#1-图)
|
||||
- [1.1. 概念](#11-概念)
|
||||
- [1.1.1. 性质](#111-性质)
|
||||
- [1.2. 图的表示](#12-图的表示)
|
||||
- [1.3. 树](#13-树)
|
||||
- [2. 搜索](#2-搜索)
|
||||
- [2.1. BFS](#21-bfs)
|
||||
- [2.2. DFS](#22-dfs)
|
||||
- [2.2.1. DFS 的性质](#221-dfs-的性质)
|
||||
- [2.3. 拓扑排序](#23-拓扑排序)
|
||||
- [2.4. 强连通分量](#24-强连通分量)
|
||||
- [3. 最小生成树](#3-最小生成树)
|
||||
- [3.1. Kruskal 算法](#31-kruskal-算法)
|
||||
- [3.2. Prim 算法](#32-prim-算法)
|
||||
- [4. 单源最短路](#4-单源最短路)
|
||||
- [4.1. 负权重的边](#41-负权重的边)
|
||||
- [4.2. 初始化](#42-初始化)
|
||||
- [4.3. 松弛操作](#43-松弛操作)
|
||||
- [4.4. 有向无环图的单源最短路问题](#44-有向无环图的单源最短路问题)
|
||||
- [4.5. Bellman-Ford 算法](#45-bellman-ford-算法)
|
||||
- [4.6. Dijkstra 算法](#46-dijkstra-算法)
|
||||
- [5. 所有结点对的最短路问题](#5-所有结点对的最短路问题)
|
||||
- [5.1. 矩阵乘法](#51-矩阵乘法)
|
||||
- [5.2. Floyd-Warshall 算法](#52-floyd-warshall-算法)
|
||||
- [5.3. Johnson 算法](#53-johnson-算法)
|
||||
- [6. 最大流](#6-最大流)
|
||||
- [6.1. 定理](#61-定理)
|
||||
- [6.2. 多个源,汇](#62-多个源汇)
|
||||
- [6.3. Ford-Fulkerson 方法](#63-ford-fulkerson-方法)
|
||||
- [6.3.1. 残存网络](#631-残存网络)
|
||||
- [6.3.2. 增广路径](#632-增广路径)
|
||||
- [6.3.3. 割](#633-割)
|
||||
- [6.4. 基本的 Ford-Fulkerson算法](#64-基本的-ford-fulkerson算法)
|
||||
- [6.5. TBD](#65-tbd)
|
||||
- [7. 参考资料](#7-参考资料)
|
||||
|
||||
<!-- /TOC -->
|
||||
<a id="markdown-1-图" name="1-图"></a>
|
||||
# 1. 图
|
||||
<a id="markdown-11-概念" name="11-概念"></a>
|
||||
## 1.1. 概念
|
||||
* 顶
|
||||
* 顶点的度 d
|
||||
* 边
|
||||
* 相邻
|
||||
* 重边
|
||||
* 环
|
||||
* 完全图: 所有顶都相邻
|
||||
* 二分图: $V(G) = X \cup Y, X\cap Y = \varnothing$, X中, Y 中任两顶不相邻
|
||||
* 轨道
|
||||
* 圈
|
||||
<a id="markdown-111-性质" name="111-性质"></a>
|
||||
### 1.1.1. 性质
|
||||
* $\sum_{v\in V} d(v) = 2|E|$
|
||||
* G是二分图 $\Leftrightarrow$ G无奇圈
|
||||
* 树是无圈连通图
|
||||
* 树中, $|E| = |V| -1$
|
||||
<a id="markdown-12-图的表示" name="12-图的表示"></a>
|
||||
## 1.2. 图的表示
|
||||
* 邻接矩阵
|
||||
* 邻接链表
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-57ce6db904992656.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
<a id="markdown-13-树" name="13-树"></a>
|
||||
## 1.3. 树
|
||||
无圈连通图, $E = V-1$, 详细见[树](https://mbinary.coding.me/tree.html),
|
||||
|
||||
<a id="markdown-2-搜索" name="2-搜索"></a>
|
||||
# 2. 搜索
|
||||
|
||||
求图的生成树[^1]
|
||||
|
||||
<a id="markdown-21-bfs" name="21-bfs"></a>
|
||||
## 2.1. BFS
|
||||
```python
|
||||
for v in V:
|
||||
v.d = MAX
|
||||
v.pre = None
|
||||
v.isFind = False
|
||||
root. isFind = True
|
||||
root.d = 0
|
||||
que = [root]
|
||||
while que !=[]:
|
||||
nd = que.pop(0)
|
||||
for v in Adj(nd):
|
||||
if not v.isFind :
|
||||
v.d = nd.d+1
|
||||
v.pre = nd
|
||||
v.isFind = True
|
||||
que.append(v)
|
||||
```
|
||||
时间复杂度 $O(V+E)$
|
||||
<a id="markdown-22-dfs" name="22-dfs"></a>
|
||||
## 2.2. DFS
|
||||
$\Theta(V+E)$
|
||||
```python
|
||||
def dfs(G):
|
||||
time = 0
|
||||
for v in V:
|
||||
v.pre = None
|
||||
v.isFind = False
|
||||
for v in V : # note this,
|
||||
if not v.isFind:
|
||||
dfsVisit(v)
|
||||
def dfsVisit(G,u):
|
||||
time =time+1
|
||||
u.begin = time
|
||||
u.isFind = True
|
||||
for v in Adj(u):
|
||||
if not v.isFind:
|
||||
v.pre = u
|
||||
dfsVisit(G,v)
|
||||
time +=1
|
||||
u.end = time
|
||||
```
|
||||
begin, end 分别是结点的发现时间与完成时间
|
||||
<a id="markdown-221-dfs-的性质" name="221-dfs-的性质"></a>
|
||||
### 2.2.1. DFS 的性质
|
||||
* 其生成的前驱子图$G_{pre}$ 形成一个由多棵树构成的森林, 这是因为其与 dfsVisit 的递归调用树相对应
|
||||
* 括号化结构
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-ba62e68e5b883b6c.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
* 括号化定理:
|
||||
考察两个结点的发现时间与结束时间的区间 [u,begin,u.end] 与 [v.begin,v.end]
|
||||
* 如果两者没有交集, 则两个结点在两个不同的子树上(递归树)
|
||||
* 如果 u 的区间包含在 v 的区间, 则 u 是v 的后代
|
||||
|
||||
<a id="markdown-23-拓扑排序" name="23-拓扑排序"></a>
|
||||
## 2.3. 拓扑排序
|
||||
利用 DFS, 结点的完成时间的逆序就是拓扑排序
|
||||
|
||||
同一个图可能有不同的拓扑排序
|
||||
<a id="markdown-24-强连通分量" name="24-强连通分量"></a>
|
||||
## 2.4. 强连通分量
|
||||
在有向图中, 强连通分量中的结点互达
|
||||
定义 $Grev$ 为 $G$ 中所有边反向后的图
|
||||
|
||||
将图分解成强连通分量的算法
|
||||
在 Grev 上根据 G 中结点的拓扑排序来 dfsVisit, 即
|
||||
```python
|
||||
compute Grev
|
||||
initalization
|
||||
for v in topo-sort(G.V):
|
||||
if not v.isFind: dfsVisit(Grev,v)
|
||||
```
|
||||
然后得到的DFS 森林(也是递归树森林)中每个树就是一个强连通分量
|
||||
|
||||
<a id="markdown-3-最小生成树" name="3-最小生成树"></a>
|
||||
# 3. 最小生成树
|
||||
利用了贪心算法,
|
||||
<a id="markdown-31-kruskal-算法" name="31-kruskal-算法"></a>
|
||||
## 3.1. Kruskal 算法
|
||||
总体上, 从最开始 每个结点就是一颗树的森林中(不相交集合, 并查集), 逐渐添加不形成圈的(两个元素不再同一个集合),最小边权的边.
|
||||
```python
|
||||
edges=[]
|
||||
for edge as u,v in sorted(G.E):
|
||||
if find-set(u) != find-set(v):
|
||||
edges.append(edge)
|
||||
union(u,v)
|
||||
return edges
|
||||
```
|
||||
如果并查集的实现采用了 按秩合并与路径压缩技巧, 则 find 与 union 的时间接近常数
|
||||
所以时间复杂度在于排序边, 即 $O(ElgE)$, 而 $ E\< V^2 $, 所以 $lgE = O(lgV)$, 时间复杂度为 $O(ElgV)$
|
||||
<a id="markdown-32-prim-算法" name="32-prim-算法"></a>
|
||||
## 3.2. Prim 算法
|
||||
用了 BFS, 类似 Dijkstra 算法
|
||||
从根结点开始 BFS, 一直保持成一颗树
|
||||
```python
|
||||
for v in V:
|
||||
v.minAdjEdge = MAX
|
||||
v.pre = None
|
||||
root.minAdjEdge = 0
|
||||
que = priority-queue (G.V) # sort by minAdjEdge
|
||||
while not que.isempty():
|
||||
u = que.extractMin()
|
||||
for v in Adj(u):
|
||||
if v in que and v.minAdjEdge>w(u,v):
|
||||
v.pre = u
|
||||
v.minAdjEdge = w(u,v)
|
||||
```
|
||||
* 建堆 $O(V)$ `//note it's v, not vlgv`
|
||||
* 主循环中
|
||||
* extractMin: $O(VlgV)$
|
||||
* in 操作 可以另设标志位, 在常数时间完成, 总共 $O(E)$
|
||||
* 设置结点的 minAdjEdge, 需要$O(lgv)$, 循环 E 次,则 总共$O(ElgV)$
|
||||
|
||||
综上, 时间复杂度为$O(ElgV)$
|
||||
如果使用的是 [斐波那契堆](https://mbinary.coding.me/fib-heap.html), 则可改进到 $O(E+VlgV)$
|
||||
|
||||
<a id="markdown-4-单源最短路" name="4-单源最短路"></a>
|
||||
# 4. 单源最短路
|
||||
求一个结点到其他结点的最短路径, 可以用 Bellman-Ford算法, 或者 Dijkstra算法.
|
||||
定义两个结点u,v间的最短路
|
||||
$$
|
||||
\delta(u,v) = \begin{cases}
|
||||
min(w(path)),\quad u\xrightarrow{path} v\\
|
||||
MAX, \quad u\nrightarrow v
|
||||
\end{cases}
|
||||
$$
|
||||
问题的变体
|
||||
* 单目的地最短路问题: 可以将所有边反向转换成求单源最短路问题
|
||||
* 单结点对的最短路径
|
||||
* 所有结点对最短路路径
|
||||
|
||||
<a id="markdown-41-负权重的边" name="41-负权重的边"></a>
|
||||
## 4.1. 负权重的边
|
||||
Dijkstra 算法不能处理负权边, 只能用 Bellman-Ford 算法,
|
||||
而且如果有负值圈, 则没有最短路, bellman-ford算法也可以检测出来
|
||||
<a id="markdown-42-初始化" name="42-初始化"></a>
|
||||
## 4.2. 初始化
|
||||
```python
|
||||
def initialaize(G,s):
|
||||
for v in G.V:
|
||||
v.pre = None
|
||||
v.distance = MAX
|
||||
s.distance = 0
|
||||
```
|
||||
<a id="markdown-43-松弛操作" name="43-松弛操作"></a>
|
||||
## 4.3. 松弛操作
|
||||
```python
|
||||
def relax(u,v,w):
|
||||
if v.distance > u.distance + w:
|
||||
v.distance = u.distance + w:
|
||||
v.pre = u
|
||||
```
|
||||
性质
|
||||
* 三角不等式: $\delta(s,v) \leqslant \delta(s,u) + w(u,v)$
|
||||
* 上界: $v.distance \geqslant \delta(s,v)$
|
||||
* 收敛: 对于某些结点u,v 如果s->...->u->v是图G中的一条最短路径,并且在对边,进行松弛前任意时间有 $u.distance=\delta(s,u)$则在之后的所有时间有 $v.distance=\delta(s,v)$
|
||||
* 路径松弛性质: 如果$p=v_0 v_1 \ldots v_k$是从源结点下v0到结点vk的一条最短路径,并且对p中的边所进行松弛的次序为$(v_0,v_1),(v_1,v_2), \ldots ,(v_{k-1},v_k)$, 则 $v_k.distance = \delta(s,v_k)$
|
||||
该性质的成立与任何其他的松弛操作无关,即使这些松弛操作是与对p上的边所进行的松弛操作穿插进行的。
|
||||
|
||||
证明
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-424a6929bd389825.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
<a id="markdown-44-有向无环图的单源最短路问题" name="44-有向无环图的单源最短路问题"></a>
|
||||
## 4.4. 有向无环图的单源最短路问题
|
||||
```python
|
||||
def dag-shortest-path(G,s):
|
||||
initialize(G,s)
|
||||
for u in topo-sort(G.V):
|
||||
for v in Adj(v):
|
||||
relax(u,v,w(u,v))
|
||||
```
|
||||
<a id="markdown-45-bellman-ford-算法" name="45-bellman-ford-算法"></a>
|
||||
## 4.5. Bellman-Ford 算法
|
||||
```python
|
||||
def bellman-ford(G,s):
|
||||
initialize(G,s)
|
||||
for ct in range(|V|-1): # v-1times
|
||||
for u,v as edge in E:
|
||||
relax(u,v,w(u,v))
|
||||
for u,v as edge in E:
|
||||
if v.distance > u.distance + w(u,v):
|
||||
return False
|
||||
return True
|
||||
```
|
||||
第一个 for 循环就是进行松弛操作, 最后结果已经存储在 结点的distance 和 pre 属性中了, 第二个 for 循环利用三角不等式检查有不有负值圈.
|
||||
|
||||
下面是证明该算法的正确性![](https://upload-images.jianshu.io/upload_images/7130568-f84e00ac35aadc81.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
<a id="markdown-46-dijkstra-算法" name="46-dijkstra-算法"></a>
|
||||
## 4.6. Dijkstra 算法
|
||||
```python
|
||||
def dijkstra(G,s):
|
||||
initialize(G,s)
|
||||
paths=[]
|
||||
q = priority-queue(G.V) # sort by distance
|
||||
while not q.empty():
|
||||
u = q.extract-min()
|
||||
paths.append(u)
|
||||
for v in Adj(u):
|
||||
relax(u,v,w(u,v))
|
||||
```
|
||||
|
||||
<a id="markdown-5-所有结点对的最短路问题" name="5-所有结点对的最短路问题"></a>
|
||||
# 5. 所有结点对的最短路问题
|
||||
<a id="markdown-51-矩阵乘法" name="51-矩阵乘法"></a>
|
||||
## 5.1. 矩阵乘法
|
||||
使用动态规划算法, 可以得到最短路径的结构
|
||||
设 $l_{ij}^{(m)}$为从结点i 到结点 j 的至多包含 m 条边的任意路径的最小权重,当m = 0, 此时i=j, 则 为0,
|
||||
可以得到递归定义
|
||||
$$
|
||||
l_{ij}^{(m)} =\min( l_{ij}^{(m-1)}, \min_{1\leqslant k\leqslant n}( l_{ik}^{(m-1)}+w_{kj})) = \min_{1\leqslant k\leqslant n}( l_{ik}^{(m-1)}+w_{kj}))
|
||||
$$
|
||||
由于是简单路径, 则包含的边最多为 |V|-1 条, 所以
|
||||
$$
|
||||
\delta(i,j) = l_{ij}^{(|V|-1)} = l_{ij}^{(|V|)} =l_{ij}^{(|V| + 1)}= ...
|
||||
$$
|
||||
所以可以自底向上计算, 如下
|
||||
输入权值矩阵 $W(w_{ij})), L^{(m-1)}$,输出$ L^{(m)}$, 其中 $L^{(1)} = W$,
|
||||
```python
|
||||
n = L.rows
|
||||
L' = new matrix(nxn)
|
||||
for i in range(n):
|
||||
for j in range(n):
|
||||
l'[i][j] = MAX
|
||||
for k in range(n):
|
||||
l'[i][j] = min(l'[i][j], l[i][k]+w[k][j])
|
||||
return L'
|
||||
```
|
||||
可以看出该算法与矩阵乘法的关系
|
||||
$L^{(m)} = W^m$,
|
||||
所以可以直接计算乘法, 每次计算一个乘积是 $O(V^3)$, 计算 V 次, 所以总体 $O(V^4)$, 使用矩阵快速幂可以将时间复杂度降低为$O(V^3lgV)$
|
||||
```python
|
||||
def f(W):
|
||||
L = W
|
||||
i = 1
|
||||
while i<W.rows:
|
||||
L = L*L
|
||||
i*=2
|
||||
return L
|
||||
```
|
||||
|
||||
<a id="markdown-52-floyd-warshall-算法" name="52-floyd-warshall-算法"></a>
|
||||
## 5.2. Floyd-Warshall 算法
|
||||
同样要求可以存在负权边, 但不能有负值圈. 用动态规划算法:
|
||||
设 $ d_{ij}^{(k)}$ 为 从 i 到 j 所有中间结点来自集合 ${\{1,2,\ldots,k\}}$ 的一条最短路径的权重. 则有
|
||||
$$
|
||||
d_{ij}^{(k)} = \begin{cases}
|
||||
w_{ij},\quad k=0\\
|
||||
min(d_{ij}^{(k-1)},d_{ik}^{(k-1)}+d_{kj}^{(k-1)}),\quad k\geqslant 1
|
||||
\end{cases}
|
||||
$$
|
||||
而且为了找出路径, 需要记录前驱结点, 定义如下前驱矩阵 $\Pi$, 设 $ \pi_{ij}^{(k)}$ 为 从 i 到 j 所有中间结点来自集合 ${\{1,2,\ldots,k\}}$ 的最短路径上 j 的前驱结点
|
||||
则
|
||||
$$
|
||||
\pi_{ij}^{(0)} = \begin{cases}
|
||||
nil,\quad i=j \ or \ w_{ij}=MAX\\
|
||||
i, \quad i\neq j and \ w_{ij}<MAX
|
||||
\end{cases}
|
||||
$$
|
||||
对 $k\geqslant 1$
|
||||
$$
|
||||
\pi_{ij}^{(k)} = \begin{cases}
|
||||
\pi_{ij}^{(k-1)} ,\quad d_{ij}^{(k-1)}\leqslant d_{ik}^{(k-1)}+d_{kj}^{(k-1)}\\
|
||||
\pi_{kj}^{(k-1)} ,\quad otherwise
|
||||
\end{cases}
|
||||
$$
|
||||
|
||||
由此得出此算法
|
||||
```python
|
||||
def floyd-warshall(w):
|
||||
n = len(w)
|
||||
d= w
|
||||
initial pre # 0
|
||||
for k in range(n):
|
||||
d2 = d.copy()
|
||||
pre2 = pre.copy()
|
||||
for j in range(n):
|
||||
for i in range(v)
|
||||
if d[i][j] > d[i][k]+d[k][j]:
|
||||
d2[i][j] = min(d[i][j], d[i][k]+d[k][j])
|
||||
pre2[i][j] = pre[k][j]
|
||||
pre = pre2
|
||||
d = d2
|
||||
return d,pre
|
||||
```
|
||||
<a id="markdown-53-johnson-算法" name="53-johnson-算法"></a>
|
||||
## 5.3. Johnson 算法
|
||||
思路是通过重新赋予权重, 将图中负权边转换为正权,然后就可以用 dijkstra 算法(要求是正值边)来计算一个结点到其他所有结点的, 然后对所有结点用dijkstra
|
||||
|
||||
1. 首先构造一个新图 G'
|
||||
先将G拷贝到G', 再添加一个新结点 s, 添加 G.V条边, s 到G中顶点的, 权赋值为 0
|
||||
2. 用 Bellman-Ford 算法检查是否有负值圈, 如果没有, 同时求出 $\delta(s,v) 记为 h(v)$
|
||||
3. 求新的非负值权, w'(u,v) = w(u,v)+h(u)-h(v)
|
||||
4. 对所有结点在 新的权矩阵w'上 用 Dijkstra 算法
|
||||
![image.png](https://upload-images.jianshu.io/upload_images/7130568-6c2146ad64d692f3.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
```python
|
||||
JOHNSON (G, u)
|
||||
|
||||
s = newNode
|
||||
G' = G.copy()
|
||||
G'.addNode(s)
|
||||
for v in G.V: G'.addArc(s,v,w=0)
|
||||
|
||||
if BELLMAN-FORD(G' , w, s) ==FALSE
|
||||
error "the input graph contains a negative-weight cycle"
|
||||
|
||||
for v in G'.V:
|
||||
# computed by the bellman-ford algorithm, delta(s,v) is the shortest distance from s to v
|
||||
h(v) = delta(s,v)
|
||||
for edge(u,v) in G'.E:
|
||||
w' = w(u,v)+h(u)-h(v)
|
||||
d = matrix(n,n)
|
||||
for u in G:
|
||||
dijkstra(G,w',u) # compute delta' for all v in G.V
|
||||
for v in G.V:
|
||||
d[u][v] = delta'(u,v) + h(v)-h(u)
|
||||
return d
|
||||
```
|
||||
<a id="markdown-6-最大流" name="6-最大流"></a>
|
||||
# 6. 最大流
|
||||
G 是弱连通严格有向加权图, s为源, t 为汇, 每条边e容量 c(e), 由此定义了网络N(G,s,t,c(e)),
|
||||
* 流函数 $f(e):E \rightarrow R$
|
||||
$$
|
||||
\begin{aligned}
|
||||
(1)\quad & 0\leqslant f(e) \leqslant c(e),\quad e \in E\\
|
||||
(2)\quad & \sum_{e\in \alpha(v)} f(e)= \sum_{e\in \beta(v)}f(e),\quad v \in V-\{s,t\}
|
||||
\end{aligned}
|
||||
$$
|
||||
其中 $\alpha(v)$ 是以 v 为头的边集, $\beta(v)$是以 v 为尾的边集
|
||||
* 流量: $F = \sum_{e\in \alpha(t)} f(e)- \sum_{e\in -\beta(t)}f(e),$
|
||||
* 截$(S,\overline S)$: $S\subset V,s\in S, t\in \overline S =V-S$
|
||||
* 截量$C(S) = \sum_{e\in(S,\overline S)}c(e)$
|
||||
<a id="markdown-61-定理" name="61-定理"></a>
|
||||
## 6.1. 定理
|
||||
参考 图论[^2]
|
||||
* 对于任一截$(S,\overline S)$, 有 $F = \sum_{e\in (S,\overline S)} f(e)- \sum_{e\in(\overline S,S)}f(e),$
|
||||
![prove](https://upload-images.jianshu.io/upload_images/7130568-19bf6cc3c7d6ce06.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
* $F\leqslant C(S)$
|
||||
证明: 由上面定理
|
||||
$$F = \sum_{e\in (S,\overline S)} f(e)- \sum_{e\in(\overline S,S)}f(e),$$
|
||||
而 $0\leqslant f(e) \leqslant c(e)$, 则
|
||||
$$F\leqslant \sum_{e\in (S,\overline S)} f(e) \leqslant \sum_{e\in (S,\overline S)} c(e) = C(S) $$
|
||||
* 最大流,最小截: 若$F= C(S) $, 则F'是最大流量, C(S) 是最小截量
|
||||
<a id="markdown-62-多个源汇" name="62-多个源汇"></a>
|
||||
## 6.2. 多个源,汇
|
||||
可以新增一个总的源,一个总的汇,
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-3e9e87fdf9655883.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
<a id="markdown-63-ford-fulkerson-方法" name="63-ford-fulkerson-方法"></a>
|
||||
## 6.3. Ford-Fulkerson 方法
|
||||
由于其实现可以有不同的运行时间, 所以称其为方法, 而不是算法.
|
||||
思路是 循环增加流的值, 在一个关联的"残存网络" 中寻找一条"增广路径", 然后对这些边进行修改流量. 重复直至残存网络上不再存在增高路径为止.
|
||||
```python
|
||||
def ford-fulkerson(G,s,t):
|
||||
initialize flow f to 0
|
||||
while exists an augmenting path p in residual network Gf:
|
||||
augment flow f along p
|
||||
return f
|
||||
```
|
||||
<a id="markdown-631-残存网络" name="631-残存网络"></a>
|
||||
### 6.3.1. 残存网络
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-c74a571b9121dbbf.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
<a id="markdown-632-增广路径" name="632-增广路径"></a>
|
||||
### 6.3.2. 增广路径
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-b9e841cfa4d04b57.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
<a id="markdown-633-割" name="633-割"></a>
|
||||
### 6.3.3. 割
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-74b065e86eb285b7.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
<a id="markdown-64-基本的-ford-fulkerson算法" name="64-基本的-ford-fulkerson算法"></a>
|
||||
## 6.4. 基本的 Ford-Fulkerson算法
|
||||
```python
|
||||
def ford-fulkerson(G,s,t):
|
||||
for edge in G.E: edge.f = 0
|
||||
while exists path p:s->t in Gf:
|
||||
cf(p) = min{cf(u,v):(u,v) is in p}
|
||||
for edge in p:
|
||||
if edge in E:
|
||||
edge.f +=cf(p)
|
||||
else: reverse_edge.f -=cf(p)
|
||||
```
|
||||
|
||||
<a id="markdown-65-tbd" name="65-tbd"></a>
|
||||
## 6.5. TBD
|
||||
|
||||
<a id="markdown-7-参考资料" name="7-参考资料"></a>
|
||||
# 7. 参考资料
|
||||
[^1]: 算法导论
|
||||
[^2]: 图论, 王树禾
|
||||
---
|
||||
title: 图算法
|
||||
date: 2018-09-06 19:10
|
||||
categories: 数据结构与算法
|
||||
tags: [图,算法]
|
||||
keywords: 图,算法
|
||||
mathjax: true
|
||||
description:
|
||||
---
|
||||
|
||||
<!-- TOC -->
|
||||
|
||||
- [1. 图](#1-图)
|
||||
- [1.1. 概念](#11-概念)
|
||||
- [1.1.1. 性质](#111-性质)
|
||||
- [1.2. 图的表示](#12-图的表示)
|
||||
- [1.3. 树](#13-树)
|
||||
- [2. 搜索](#2-搜索)
|
||||
- [2.1. BFS](#21-bfs)
|
||||
- [2.2. DFS](#22-dfs)
|
||||
- [2.2.1. DFS 的性质](#221-dfs-的性质)
|
||||
- [2.3. 拓扑排序](#23-拓扑排序)
|
||||
- [2.4. 强连通分量](#24-强连通分量)
|
||||
- [3. 最小生成树](#3-最小生成树)
|
||||
- [3.1. Kruskal 算法](#31-kruskal-算法)
|
||||
- [3.2. Prim 算法](#32-prim-算法)
|
||||
- [4. 单源最短路](#4-单源最短路)
|
||||
- [4.1. 负权重的边](#41-负权重的边)
|
||||
- [4.2. 初始化](#42-初始化)
|
||||
- [4.3. 松弛操作](#43-松弛操作)
|
||||
- [4.4. 有向无环图的单源最短路问题](#44-有向无环图的单源最短路问题)
|
||||
- [4.5. Bellman-Ford 算法](#45-bellman-ford-算法)
|
||||
- [4.6. Dijkstra 算法](#46-dijkstra-算法)
|
||||
- [5. 所有结点对的最短路问题](#5-所有结点对的最短路问题)
|
||||
- [5.1. 矩阵乘法](#51-矩阵乘法)
|
||||
- [5.2. Floyd-Warshall 算法](#52-floyd-warshall-算法)
|
||||
- [5.3. Johnson 算法](#53-johnson-算法)
|
||||
- [6. 最大流](#6-最大流)
|
||||
- [6.1. 定理](#61-定理)
|
||||
- [6.2. 多个源,汇](#62-多个源汇)
|
||||
- [6.3. Ford-Fulkerson 方法](#63-ford-fulkerson-方法)
|
||||
- [6.3.1. 残存网络](#631-残存网络)
|
||||
- [6.3.2. 增广路径](#632-增广路径)
|
||||
- [6.3.3. 割](#633-割)
|
||||
- [6.4. 基本的 Ford-Fulkerson算法](#64-基本的-ford-fulkerson算法)
|
||||
- [6.5. TBD](#65-tbd)
|
||||
- [7. 参考资料](#7-参考资料)
|
||||
|
||||
<!-- /TOC -->
|
||||
<a id="markdown-1-图" name="1-图"></a>
|
||||
# 1. 图
|
||||
<a id="markdown-11-概念" name="11-概念"></a>
|
||||
## 1.1. 概念
|
||||
* 顶
|
||||
* 顶点的度 d
|
||||
* 边
|
||||
* 相邻
|
||||
* 重边
|
||||
* 环
|
||||
* 完全图: 所有顶都相邻
|
||||
* 二分图: $V(G) = X \cup Y, X\cap Y = \varnothing$, X中, Y 中任两顶不相邻
|
||||
* 轨道
|
||||
* 圈
|
||||
<a id="markdown-111-性质" name="111-性质"></a>
|
||||
### 1.1.1. 性质
|
||||
* $\sum_{v\in V} d(v) = 2|E|$
|
||||
* G是二分图 $\Leftrightarrow$ G无奇圈
|
||||
* 树是无圈连通图
|
||||
* 树中, $|E| = |V| -1$
|
||||
<a id="markdown-12-图的表示" name="12-图的表示"></a>
|
||||
## 1.2. 图的表示
|
||||
* 邻接矩阵
|
||||
* 邻接链表
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-57ce6db904992656.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
<a id="markdown-13-树" name="13-树"></a>
|
||||
## 1.3. 树
|
||||
无圈连通图, $E = V-1$, 详细见[树](https://mbinary.xyz/tree.html),
|
||||
|
||||
<a id="markdown-2-搜索" name="2-搜索"></a>
|
||||
# 2. 搜索
|
||||
|
||||
求图的生成树[^1]
|
||||
|
||||
<a id="markdown-21-bfs" name="21-bfs"></a>
|
||||
## 2.1. BFS
|
||||
```python
|
||||
for v in V:
|
||||
v.d = MAX
|
||||
v.pre = None
|
||||
v.isFind = False
|
||||
root. isFind = True
|
||||
root.d = 0
|
||||
que = [root]
|
||||
while que !=[]:
|
||||
nd = que.pop(0)
|
||||
for v in Adj(nd):
|
||||
if not v.isFind :
|
||||
v.d = nd.d+1
|
||||
v.pre = nd
|
||||
v.isFind = True
|
||||
que.append(v)
|
||||
```
|
||||
时间复杂度 $O(V+E)$
|
||||
<a id="markdown-22-dfs" name="22-dfs"></a>
|
||||
## 2.2. DFS
|
||||
$\Theta(V+E)$
|
||||
```python
|
||||
def dfs(G):
|
||||
time = 0
|
||||
for v in V:
|
||||
v.pre = None
|
||||
v.isFind = False
|
||||
for v in V : # note this,
|
||||
if not v.isFind:
|
||||
dfsVisit(v)
|
||||
def dfsVisit(G,u):
|
||||
time =time+1
|
||||
u.begin = time
|
||||
u.isFind = True
|
||||
for v in Adj(u):
|
||||
if not v.isFind:
|
||||
v.pre = u
|
||||
dfsVisit(G,v)
|
||||
time +=1
|
||||
u.end = time
|
||||
```
|
||||
begin, end 分别是结点的发现时间与完成时间
|
||||
<a id="markdown-221-dfs-的性质" name="221-dfs-的性质"></a>
|
||||
### 2.2.1. DFS 的性质
|
||||
* 其生成的前驱子图$G_{pre}$ 形成一个由多棵树构成的森林, 这是因为其与 dfsVisit 的递归调用树相对应
|
||||
* 括号化结构
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-ba62e68e5b883b6c.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
* 括号化定理:
|
||||
考察两个结点的发现时间与结束时间的区间 [u,begin,u.end] 与 [v.begin,v.end]
|
||||
* 如果两者没有交集, 则两个结点在两个不同的子树上(递归树)
|
||||
* 如果 u 的区间包含在 v 的区间, 则 u 是v 的后代
|
||||
|
||||
<a id="markdown-23-拓扑排序" name="23-拓扑排序"></a>
|
||||
## 2.3. 拓扑排序
|
||||
利用 DFS, 结点的完成时间的逆序就是拓扑排序
|
||||
|
||||
同一个图可能有不同的拓扑排序
|
||||
<a id="markdown-24-强连通分量" name="24-强连通分量"></a>
|
||||
## 2.4. 强连通分量
|
||||
在有向图中, 强连通分量中的结点互达
|
||||
定义 $Grev$ 为 $G$ 中所有边反向后的图
|
||||
|
||||
将图分解成强连通分量的算法
|
||||
在 Grev 上根据 G 中结点的拓扑排序来 dfsVisit, 即
|
||||
```python
|
||||
compute Grev
|
||||
initalization
|
||||
for v in topo-sort(G.V):
|
||||
if not v.isFind: dfsVisit(Grev,v)
|
||||
```
|
||||
然后得到的DFS 森林(也是递归树森林)中每个树就是一个强连通分量
|
||||
|
||||
<a id="markdown-3-最小生成树" name="3-最小生成树"></a>
|
||||
# 3. 最小生成树
|
||||
利用了贪心算法,
|
||||
<a id="markdown-31-kruskal-算法" name="31-kruskal-算法"></a>
|
||||
## 3.1. Kruskal 算法
|
||||
总体上, 从最开始 每个结点就是一颗树的森林中(不相交集合, 并查集), 逐渐添加不形成圈的(两个元素不再同一个集合),最小边权的边.
|
||||
```python
|
||||
edges=[]
|
||||
for edge as u,v in sorted(G.E):
|
||||
if find-set(u) != find-set(v):
|
||||
edges.append(edge)
|
||||
union(u,v)
|
||||
return edges
|
||||
```
|
||||
如果并查集的实现采用了 按秩合并与路径压缩技巧, 则 find 与 union 的时间接近常数
|
||||
所以时间复杂度在于排序边, 即 $O(ElgE)$, 而 $ E\< V^2 $, 所以 $lgE = O(lgV)$, 时间复杂度为 $O(ElgV)$
|
||||
<a id="markdown-32-prim-算法" name="32-prim-算法"></a>
|
||||
## 3.2. Prim 算法
|
||||
用了 BFS, 类似 Dijkstra 算法
|
||||
从根结点开始 BFS, 一直保持成一颗树
|
||||
```python
|
||||
for v in V:
|
||||
v.minAdjEdge = MAX
|
||||
v.pre = None
|
||||
root.minAdjEdge = 0
|
||||
que = priority-queue (G.V) # sort by minAdjEdge
|
||||
while not que.isempty():
|
||||
u = que.extractMin()
|
||||
for v in Adj(u):
|
||||
if v in que and v.minAdjEdge>w(u,v):
|
||||
v.pre = u
|
||||
v.minAdjEdge = w(u,v)
|
||||
```
|
||||
* 建堆 $O(V)$ `//note it's v, not vlgv`
|
||||
* 主循环中
|
||||
* extractMin: $O(VlgV)$
|
||||
* in 操作 可以另设标志位, 在常数时间完成, 总共 $O(E)$
|
||||
* 设置结点的 minAdjEdge, 需要$O(lgv)$, 循环 E 次,则 总共$O(ElgV)$
|
||||
|
||||
综上, 时间复杂度为$O(ElgV)$
|
||||
如果使用的是 [斐波那契堆](https://mbinary.xyz/fib-heap.html), 则可改进到 $O(E+VlgV)$
|
||||
|
||||
<a id="markdown-4-单源最短路" name="4-单源最短路"></a>
|
||||
# 4. 单源最短路
|
||||
求一个结点到其他结点的最短路径, 可以用 Bellman-Ford算法, 或者 Dijkstra算法.
|
||||
定义两个结点u,v间的最短路
|
||||
$$
|
||||
\delta(u,v) = \begin{cases}
|
||||
min(w(path)),\quad u\xrightarrow{path} v\\
|
||||
MAX, \quad u\nrightarrow v
|
||||
\end{cases}
|
||||
$$
|
||||
问题的变体
|
||||
* 单目的地最短路问题: 可以将所有边反向转换成求单源最短路问题
|
||||
* 单结点对的最短路径
|
||||
* 所有结点对最短路路径
|
||||
|
||||
<a id="markdown-41-负权重的边" name="41-负权重的边"></a>
|
||||
## 4.1. 负权重的边
|
||||
Dijkstra 算法不能处理负权边, 只能用 Bellman-Ford 算法,
|
||||
而且如果有负值圈, 则没有最短路, bellman-ford算法也可以检测出来
|
||||
<a id="markdown-42-初始化" name="42-初始化"></a>
|
||||
## 4.2. 初始化
|
||||
```python
|
||||
def initialaize(G,s):
|
||||
for v in G.V:
|
||||
v.pre = None
|
||||
v.distance = MAX
|
||||
s.distance = 0
|
||||
```
|
||||
<a id="markdown-43-松弛操作" name="43-松弛操作"></a>
|
||||
## 4.3. 松弛操作
|
||||
```python
|
||||
def relax(u,v,w):
|
||||
if v.distance > u.distance + w:
|
||||
v.distance = u.distance + w:
|
||||
v.pre = u
|
||||
```
|
||||
性质
|
||||
* 三角不等式: $\delta(s,v) \leqslant \delta(s,u) + w(u,v)$
|
||||
* 上界: $v.distance \geqslant \delta(s,v)$
|
||||
* 收敛: 对于某些结点u,v 如果s->...->u->v是图G中的一条最短路径,并且在对边,进行松弛前任意时间有 $u.distance=\delta(s,u)$则在之后的所有时间有 $v.distance=\delta(s,v)$
|
||||
* 路径松弛性质: 如果$p=v_0 v_1 \ldots v_k$是从源结点下v0到结点vk的一条最短路径,并且对p中的边所进行松弛的次序为$(v_0,v_1),(v_1,v_2), \ldots ,(v_{k-1},v_k)$, 则 $v_k.distance = \delta(s,v_k)$
|
||||
该性质的成立与任何其他的松弛操作无关,即使这些松弛操作是与对p上的边所进行的松弛操作穿插进行的。
|
||||
|
||||
证明
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-424a6929bd389825.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
<a id="markdown-44-有向无环图的单源最短路问题" name="44-有向无环图的单源最短路问题"></a>
|
||||
## 4.4. 有向无环图的单源最短路问题
|
||||
```python
|
||||
def dag-shortest-path(G,s):
|
||||
initialize(G,s)
|
||||
for u in topo-sort(G.V):
|
||||
for v in Adj(v):
|
||||
relax(u,v,w(u,v))
|
||||
```
|
||||
<a id="markdown-45-bellman-ford-算法" name="45-bellman-ford-算法"></a>
|
||||
## 4.5. Bellman-Ford 算法
|
||||
```python
|
||||
def bellman-ford(G,s):
|
||||
initialize(G,s)
|
||||
for ct in range(|V|-1): # v-1times
|
||||
for u,v as edge in E:
|
||||
relax(u,v,w(u,v))
|
||||
for u,v as edge in E:
|
||||
if v.distance > u.distance + w(u,v):
|
||||
return False
|
||||
return True
|
||||
```
|
||||
第一个 for 循环就是进行松弛操作, 最后结果已经存储在 结点的distance 和 pre 属性中了, 第二个 for 循环利用三角不等式检查有不有负值圈.
|
||||
|
||||
下面是证明该算法的正确性![](https://upload-images.jianshu.io/upload_images/7130568-f84e00ac35aadc81.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
<a id="markdown-46-dijkstra-算法" name="46-dijkstra-算法"></a>
|
||||
## 4.6. Dijkstra 算法
|
||||
```python
|
||||
def dijkstra(G,s):
|
||||
initialize(G,s)
|
||||
paths=[]
|
||||
q = priority-queue(G.V) # sort by distance
|
||||
while not q.empty():
|
||||
u = q.extract-min()
|
||||
paths.append(u)
|
||||
for v in Adj(u):
|
||||
relax(u,v,w(u,v))
|
||||
```
|
||||
|
||||
<a id="markdown-5-所有结点对的最短路问题" name="5-所有结点对的最短路问题"></a>
|
||||
# 5. 所有结点对的最短路问题
|
||||
<a id="markdown-51-矩阵乘法" name="51-矩阵乘法"></a>
|
||||
## 5.1. 矩阵乘法
|
||||
使用动态规划算法, 可以得到最短路径的结构
|
||||
设 $l_{ij}^{(m)}$为从结点i 到结点 j 的至多包含 m 条边的任意路径的最小权重,当m = 0, 此时i=j, 则 为0,
|
||||
可以得到递归定义
|
||||
$$
|
||||
l_{ij}^{(m)} =\min( l_{ij}^{(m-1)}, \min_{1\leqslant k\leqslant n}( l_{ik}^{(m-1)}+w_{kj})) = \min_{1\leqslant k\leqslant n}( l_{ik}^{(m-1)}+w_{kj}))
|
||||
$$
|
||||
由于是简单路径, 则包含的边最多为 |V|-1 条, 所以
|
||||
$$
|
||||
\delta(i,j) = l_{ij}^{(|V|-1)} = l_{ij}^{(|V|)} =l_{ij}^{(|V| + 1)}= ...
|
||||
$$
|
||||
所以可以自底向上计算, 如下
|
||||
输入权值矩阵 $W(w_{ij})), L^{(m-1)}$,输出$ L^{(m)}$, 其中 $L^{(1)} = W$,
|
||||
```python
|
||||
n = L.rows
|
||||
L' = new matrix(nxn)
|
||||
for i in range(n):
|
||||
for j in range(n):
|
||||
l'[i][j] = MAX
|
||||
for k in range(n):
|
||||
l'[i][j] = min(l'[i][j], l[i][k]+w[k][j])
|
||||
return L'
|
||||
```
|
||||
可以看出该算法与矩阵乘法的关系
|
||||
$L^{(m)} = W^m$,
|
||||
所以可以直接计算乘法, 每次计算一个乘积是 $O(V^3)$, 计算 V 次, 所以总体 $O(V^4)$, 使用矩阵快速幂可以将时间复杂度降低为$O(V^3lgV)$
|
||||
```python
|
||||
def f(W):
|
||||
L = W
|
||||
i = 1
|
||||
while i<W.rows:
|
||||
L = L*L
|
||||
i*=2
|
||||
return L
|
||||
```
|
||||
|
||||
<a id="markdown-52-floyd-warshall-算法" name="52-floyd-warshall-算法"></a>
|
||||
## 5.2. Floyd-Warshall 算法
|
||||
同样要求可以存在负权边, 但不能有负值圈. 用动态规划算法:
|
||||
设 $ d_{ij}^{(k)}$ 为 从 i 到 j 所有中间结点来自集合 ${\{1,2,\ldots,k\}}$ 的一条最短路径的权重. 则有
|
||||
$$
|
||||
d_{ij}^{(k)} = \begin{cases}
|
||||
w_{ij},\quad k=0\\
|
||||
min(d_{ij}^{(k-1)},d_{ik}^{(k-1)}+d_{kj}^{(k-1)}),\quad k\geqslant 1
|
||||
\end{cases}
|
||||
$$
|
||||
而且为了找出路径, 需要记录前驱结点, 定义如下前驱矩阵 $\Pi$, 设 $ \pi_{ij}^{(k)}$ 为 从 i 到 j 所有中间结点来自集合 ${\{1,2,\ldots,k\}}$ 的最短路径上 j 的前驱结点
|
||||
则
|
||||
$$
|
||||
\pi_{ij}^{(0)} = \begin{cases}
|
||||
nil,\quad i=j \ or \ w_{ij}=MAX\\
|
||||
i, \quad i\neq j and \ w_{ij}<MAX
|
||||
\end{cases}
|
||||
$$
|
||||
对 $k\geqslant 1$
|
||||
$$
|
||||
\pi_{ij}^{(k)} = \begin{cases}
|
||||
\pi_{ij}^{(k-1)} ,\quad d_{ij}^{(k-1)}\leqslant d_{ik}^{(k-1)}+d_{kj}^{(k-1)}\\
|
||||
\pi_{kj}^{(k-1)} ,\quad otherwise
|
||||
\end{cases}
|
||||
$$
|
||||
|
||||
由此得出此算法
|
||||
```python
|
||||
def floyd-warshall(w):
|
||||
n = len(w)
|
||||
d= w
|
||||
initial pre # 0
|
||||
for k in range(n):
|
||||
d2 = d.copy()
|
||||
pre2 = pre.copy()
|
||||
for j in range(n):
|
||||
for i in range(v)
|
||||
if d[i][j] > d[i][k]+d[k][j]:
|
||||
d2[i][j] = min(d[i][j], d[i][k]+d[k][j])
|
||||
pre2[i][j] = pre[k][j]
|
||||
pre = pre2
|
||||
d = d2
|
||||
return d,pre
|
||||
```
|
||||
<a id="markdown-53-johnson-算法" name="53-johnson-算法"></a>
|
||||
## 5.3. Johnson 算法
|
||||
思路是通过重新赋予权重, 将图中负权边转换为正权,然后就可以用 dijkstra 算法(要求是正值边)来计算一个结点到其他所有结点的, 然后对所有结点用dijkstra
|
||||
|
||||
1. 首先构造一个新图 G'
|
||||
先将G拷贝到G', 再添加一个新结点 s, 添加 G.V条边, s 到G中顶点的, 权赋值为 0
|
||||
2. 用 Bellman-Ford 算法检查是否有负值圈, 如果没有, 同时求出 $\delta(s,v) 记为 h(v)$
|
||||
3. 求新的非负值权, w'(u,v) = w(u,v)+h(u)-h(v)
|
||||
4. 对所有结点在 新的权矩阵w'上 用 Dijkstra 算法
|
||||
![image.png](https://upload-images.jianshu.io/upload_images/7130568-6c2146ad64d692f3.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
```python
|
||||
JOHNSON (G, u)
|
||||
|
||||
s = newNode
|
||||
G' = G.copy()
|
||||
G'.addNode(s)
|
||||
for v in G.V: G'.addArc(s,v,w=0)
|
||||
|
||||
if BELLMAN-FORD(G' , w, s) ==FALSE
|
||||
error "the input graph contains a negative-weight cycle"
|
||||
|
||||
for v in G'.V:
|
||||
# computed by the bellman-ford algorithm, delta(s,v) is the shortest distance from s to v
|
||||
h(v) = delta(s,v)
|
||||
for edge(u,v) in G'.E:
|
||||
w' = w(u,v)+h(u)-h(v)
|
||||
d = matrix(n,n)
|
||||
for u in G:
|
||||
dijkstra(G,w',u) # compute delta' for all v in G.V
|
||||
for v in G.V:
|
||||
d[u][v] = delta'(u,v) + h(v)-h(u)
|
||||
return d
|
||||
```
|
||||
<a id="markdown-6-最大流" name="6-最大流"></a>
|
||||
# 6. 最大流
|
||||
G 是弱连通严格有向加权图, s为源, t 为汇, 每条边e容量 c(e), 由此定义了网络N(G,s,t,c(e)),
|
||||
* 流函数 $f(e):E \rightarrow R$
|
||||
$$
|
||||
\begin{aligned}
|
||||
(1)\quad & 0\leqslant f(e) \leqslant c(e),\quad e \in E\\
|
||||
(2)\quad & \sum_{e\in \alpha(v)} f(e)= \sum_{e\in \beta(v)}f(e),\quad v \in V-\{s,t\}
|
||||
\end{aligned}
|
||||
$$
|
||||
其中 $\alpha(v)$ 是以 v 为头的边集, $\beta(v)$是以 v 为尾的边集
|
||||
* 流量: $F = \sum_{e\in \alpha(t)} f(e)- \sum_{e\in -\beta(t)}f(e),$
|
||||
* 截$(S,\overline S)$: $S\subset V,s\in S, t\in \overline S =V-S$
|
||||
* 截量$C(S) = \sum_{e\in(S,\overline S)}c(e)$
|
||||
<a id="markdown-61-定理" name="61-定理"></a>
|
||||
## 6.1. 定理
|
||||
参考 图论[^2]
|
||||
* 对于任一截$(S,\overline S)$, 有 $F = \sum_{e\in (S,\overline S)} f(e)- \sum_{e\in(\overline S,S)}f(e),$
|
||||
![prove](https://upload-images.jianshu.io/upload_images/7130568-19bf6cc3c7d6ce06.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
* $F\leqslant C(S)$
|
||||
证明: 由上面定理
|
||||
$$F = \sum_{e\in (S,\overline S)} f(e)- \sum_{e\in(\overline S,S)}f(e),$$
|
||||
而 $0\leqslant f(e) \leqslant c(e)$, 则
|
||||
$$F\leqslant \sum_{e\in (S,\overline S)} f(e) \leqslant \sum_{e\in (S,\overline S)} c(e) = C(S) $$
|
||||
* 最大流,最小截: 若$F= C(S) $, 则F'是最大流量, C(S) 是最小截量
|
||||
<a id="markdown-62-多个源汇" name="62-多个源汇"></a>
|
||||
## 6.2. 多个源,汇
|
||||
可以新增一个总的源,一个总的汇,
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-3e9e87fdf9655883.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
<a id="markdown-63-ford-fulkerson-方法" name="63-ford-fulkerson-方法"></a>
|
||||
## 6.3. Ford-Fulkerson 方法
|
||||
由于其实现可以有不同的运行时间, 所以称其为方法, 而不是算法.
|
||||
思路是 循环增加流的值, 在一个关联的"残存网络" 中寻找一条"增广路径", 然后对这些边进行修改流量. 重复直至残存网络上不再存在增高路径为止.
|
||||
```python
|
||||
def ford-fulkerson(G,s,t):
|
||||
initialize flow f to 0
|
||||
while exists an augmenting path p in residual network Gf:
|
||||
augment flow f along p
|
||||
return f
|
||||
```
|
||||
<a id="markdown-631-残存网络" name="631-残存网络"></a>
|
||||
### 6.3.1. 残存网络
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-c74a571b9121dbbf.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
<a id="markdown-632-增广路径" name="632-增广路径"></a>
|
||||
### 6.3.2. 增广路径
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-b9e841cfa4d04b57.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
<a id="markdown-633-割" name="633-割"></a>
|
||||
### 6.3.3. 割
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-74b065e86eb285b7.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
<a id="markdown-64-基本的-ford-fulkerson算法" name="64-基本的-ford-fulkerson算法"></a>
|
||||
## 6.4. 基本的 Ford-Fulkerson算法
|
||||
```python
|
||||
def ford-fulkerson(G,s,t):
|
||||
for edge in G.E: edge.f = 0
|
||||
while exists path p:s->t in Gf:
|
||||
cf(p) = min{cf(u,v):(u,v) is in p}
|
||||
for edge in p:
|
||||
if edge in E:
|
||||
edge.f +=cf(p)
|
||||
else: reverse_edge.f -=cf(p)
|
||||
```
|
||||
|
||||
<a id="markdown-65-tbd" name="65-tbd"></a>
|
||||
## 6.5. TBD
|
||||
|
||||
<a id="markdown-7-参考资料" name="7-参考资料"></a>
|
||||
# 7. 参考资料
|
||||
[^1]: 算法导论
|
||||
[^2]: 图论, 王树禾
|
||||
|
|
|
@ -383,7 +383,7 @@ def find(root,i):
|
|||
# File : redBlackTree.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-07-14 16:15
|
||||
# Description:
|
||||
|
|
|
@ -215,7 +215,7 @@ Aho-Corasick automation,是在字典树上添加匹配失败边(失配指针),
|
|||
|
||||
<a id="markdown-54-treap" name="54-treap"></a>
|
||||
## 5.4. treap
|
||||
[前面提到](#21-随机构造的二叉查找树), 随机构造的二叉查找树高度为 $h=O(logn)$,以及在[算法 general](https://mbinary.coding.me/alg-genral.html) 中说明了怎样 随机化(shuffle)一个给定的序列.
|
||||
[前面提到](#21-随机构造的二叉查找树), 随机构造的二叉查找树高度为 $h=O(logn)$,以及在[算法 general](https://mbinary.xyz/alg-genral.html) 中说明了怎样 随机化(shuffle)一个给定的序列.
|
||||
|
||||
所以,为了得到一个平衡的二叉排序树,我们可以将给定的序列随机化, 然后再进行构造二叉排序树.
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : lcs.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-08-25 12:00
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : matrixChainMultiply.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-11-05 19:09
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : splitStripe.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-08-24 17:07
|
||||
# Description:
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# File : stoneGame.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-12-14 14:32
|
||||
# Description:
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# File : wildcard_matching.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-12-13 22:46
|
||||
# Description:
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# File : isBipartGraph.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-12-21 15:00
|
||||
# Description: Judge if a graph is bipartite
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
# Number Theory
|
||||
>See more details on [my blog](https://mbinary.coding.me/number-theory.html)
|
||||
>See more details on [my blog](https://mbinary.xyz/number-theory.html)
|
||||
|
||||
## gcd.py
|
||||
- gcd(a,b)
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : num_weight.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-19 21:36
|
||||
# Description:
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# File : fastPow.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-12-17 21:39
|
||||
# Description: fast power
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# File : euler.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-12-16 10:53
|
||||
# Description:
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# File : factorize.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-12-16 09:36
|
||||
# Description: factorization, using pollard's rho algorithm and miller-rabin primality test
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# File : gcd.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-12-16 10:06
|
||||
# Description:
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# File : hammingDistance.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-12-17 17:36
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : isPrime.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-03-04 21:34
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : modulo_equation.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-3-4 21:14
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : interplotion.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-10-02 21:14
|
||||
# Description:
|
||||
|
@ -14,7 +14,7 @@
|
|||
# File : interplotion.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.github.io
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-18 09:29
|
||||
# Description: 插值计算,有牛顿插值,拉格朗日插值,以及通过插值得到的多项式估计新的函数值
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : iteration.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-10-02 21:14
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : least_square.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-10-02 21:14
|
||||
# Description:
|
||||
|
@ -15,7 +15,7 @@
|
|||
> Author: mbinary
|
||||
> Mail: zhuheqin1@gmail.com
|
||||
> Created Time: Sat 07 Apr 2018 09:55:25 PM DST
|
||||
> Blog: https://mbinary.github.io
|
||||
> Blog: https://mbinary.xyz
|
||||
> Description: 最小二乘法解线性方程组, 解矛盾方程组
|
||||
************************************************************************'''
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : linear_equation.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-10-02 21:14
|
||||
# Description:
|
||||
|
@ -15,7 +15,7 @@
|
|||
> File Name: doolittle.py
|
||||
> Author: mbinary
|
||||
> Mail: zhuheqin1@gmail.com
|
||||
> Blog: https://mbinary.github.io
|
||||
> Blog: https://mbinary.xyz
|
||||
> Created Time: 2018-04-20 08:32
|
||||
************************************************************************'''
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : numerical_differential.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-10-02 21:14
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : numerical_integration.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-10-02 21:14
|
||||
# Description:
|
||||
|
@ -15,7 +15,7 @@
|
|||
# File : numerical integration.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.github.io
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-11 08:58
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : solve-linear-by-iteration.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-10-02 21:14
|
||||
# Description:
|
||||
|
@ -15,7 +15,7 @@
|
|||
# File : solve-linear-by-iteration.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.github.io
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-04 07:42
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : vector_norm.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-10-02 21:14
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : permute_back_track.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-11-25 12:32
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : permute_cantor.c
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-11-17 11:25
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : permute_divide_and_conquer.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-11-25 12:23
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : permute_next_permutation.c
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-11-17 14:31
|
||||
# Description: support duplicate values.
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : 8Astar.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-19 23:06
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : BFS_knight.hs
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-11-11 19:40
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : bloomFilter.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-10-17 11:19
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : schedule.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-11-30 12:00
|
||||
# Description:
|
||||
|
|
37
search/work_dispatch.py
Normal file
37
search/work_dispatch.py
Normal file
|
@ -0,0 +1,37 @@
|
|||
'''
|
||||
设有n件工作要分配给n个人去完成,将工作i分配给第j个人所需费用为c_ij 。试设计一个算法,为每个人分配1件不同的工作,并使总费用达到最小。
|
||||
'''
|
||||
def dispatch(mat):
|
||||
'''mat: matrix of c_ij'''
|
||||
def _util(i,arrange,cost):
|
||||
''' for i-th work'''
|
||||
nonlocal total,used,rst
|
||||
if i==n:
|
||||
total=cost
|
||||
rst = arrange.copy() # copy is needed
|
||||
else:
|
||||
for j in range(n):
|
||||
if not used[j] and( total is None or cost+mat[i][j]<total):
|
||||
used[j]=True
|
||||
arrange[i] = j
|
||||
_util(i+1,arrange,cost+mat[i][j])
|
||||
used[j]=False
|
||||
total = None
|
||||
rst = None
|
||||
n = len(mat)
|
||||
used = [False for i in range(n)]
|
||||
_util(0,[-1]*n,0)
|
||||
return total,rst
|
||||
|
||||
|
||||
import random
|
||||
if __name__=='__main__':
|
||||
n = 10
|
||||
mat = [[random.randint(1,100) for i in range(n)] for i in range(n)]
|
||||
print('work matrix: c_ij: work_i and person_j')
|
||||
for i in range(n):
|
||||
print(mat[i])
|
||||
print('result: ',end='')
|
||||
print(dispatch(mat))
|
||||
|
||||
|
|
@ -3,7 +3,7 @@
|
|||
# File : sort.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-07-05 17:18
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : heapSort.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-07-05 16:24
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : quickSort.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-07-06 10:31
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : radixSort.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-07-06 15:52
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : select.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-07-06 17:13
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : shellSort.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-07-06 16:30
|
||||
# Description:
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# File : KMP.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-12-11 14:02
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : manacher.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-07-06 15:56
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : markov.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-07-06 15:57
|
||||
# Description:
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# File : rabin_karp.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-12-11 00:01
|
||||
# Description: rabin-karp algorithm
|
||||
|
|
112
string/rotate.py
Normal file
112
string/rotate.py
Normal file
|
@ -0,0 +1,112 @@
|
|||
''' mbinary
|
||||
#########################################################################
|
||||
# File : rotate.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-19 21:54
|
||||
# Description: three methods of rotating a list
|
||||
|
||||
1. 利用 ba=(br)^T(ar)^T=(arbr)^T,通过三次反转字符串: 即首先对序列前部分逆序,再对序列后部分逆序,再对整个序列全部逆序
|
||||
|
||||
2. 分组交换(尽可能使数组的前面连续几个数为所要结果):a长度大于b,将 ab 分成 a0a1b,交换 a0 和 b,得 ba1a0,只需再交换 a1和 a0。若 a 长度小于 b,将 ab 分成 ab0b1,交换 a 和 b0,得 b0ab1,只需再交换 a 和b0。通过不断将数组划分,和交换,直到不能再划分为止。分组过程与求最大公约数很相似。
|
||||
|
||||
3.所有序号为 (j+i*m) % n (j 表示每个循环链起始位置,i 为计数变量,m 表示左旋转位数,n 表示字符串长度),会构成一个循环链(共有 gcd(n,m)个,gcd 为 n、m 的最大公约数),每个循环链上的元素只要移动一个位置即可,最后整个过程总共交换了 n 次(每一次循环链,是交换 n/gcd(n,m)次,总共 gcd(n,m)个循环链。所以,总共交换 n 次)。
|
||||
|
||||
#########################################################################
|
||||
'''
|
||||
|
||||
def rotate(s,k,right=False):
|
||||
def reverse(a,b):
|
||||
while a<b:
|
||||
s[a],s[b]=s[b],s[a]
|
||||
a+=1
|
||||
b-=1
|
||||
n=len(s)
|
||||
k = k%n if not right else n-k%n
|
||||
reverse(0,k-1)
|
||||
reverse(k,n-1)
|
||||
reverse(0,n-1)
|
||||
return s
|
||||
|
||||
|
||||
|
||||
def rotate2(s,k,right=False):
|
||||
def swap(a,b,c):
|
||||
for i in range(c):
|
||||
s[a+i],s[b+i] = s[b+i],s[a+i]
|
||||
def _rot(pl,pr):
|
||||
''' swap s[pl,pr) , s[pr:]'''
|
||||
if pr==n:return
|
||||
if pr-pl<=n-pr:
|
||||
swap(pl,pr,pr-pl)
|
||||
_rot(pr,2*pr-pl)
|
||||
else:
|
||||
swap(pl,pr,n-pr)
|
||||
_rot(n-pr+pl,pr)
|
||||
n=len(s)
|
||||
k = k%n if not right else n-k%n
|
||||
_rot(0,k)
|
||||
return s
|
||||
|
||||
|
||||
|
||||
def rotate3(s,k,right=False):
|
||||
def gcd(a,b):
|
||||
if b==0:return a
|
||||
return gcd(b,a%b)
|
||||
|
||||
n=len(s)
|
||||
k = k%n if not right else n-k%n
|
||||
r=gcd(n,k)
|
||||
for i in range(r):
|
||||
tmp = s[i]
|
||||
j = (i+k)%n
|
||||
while j!=i:
|
||||
s[j-k] = s[j]
|
||||
j = (j+k)%n
|
||||
s[(j-k+n)%n] = tmp
|
||||
return s
|
||||
|
||||
|
||||
def test():
|
||||
def f(func,*args,right=False):
|
||||
print(' '.join(['testing:',func.__name__,str(args),'right=',str(right)]))
|
||||
rst = func(*args,right=right)
|
||||
print('result',rst)
|
||||
print()
|
||||
return f
|
||||
|
||||
|
||||
if __name__=='__main__':
|
||||
s=[i for i in range(10)]
|
||||
tester= test()
|
||||
tester(rotate,s,4,right=True)
|
||||
tester(rotate,s,4)
|
||||
tester(rotate2,s,2,right=True)
|
||||
tester(rotate2,s,2)
|
||||
tester(rotate3,s,132,right=True)
|
||||
tester(rotate3,s,132)
|
||||
|
||||
|
||||
'''
|
||||
testing: rotate ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 4) right= True
|
||||
result [6, 7, 8, 9, 0, 1, 2, 3, 4, 5]
|
||||
|
||||
testing: rotate ([6, 7, 8, 9, 0, 1, 2, 3, 4, 5], 4) right= False
|
||||
result [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||
|
||||
testing: rotate2 ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 2) right= True
|
||||
result [8, 9, 0, 1, 2, 3, 4, 5, 6, 7]
|
||||
|
||||
testing: rotate2 ([8, 9, 0, 1, 2, 3, 4, 5, 6, 7], 2) right= False
|
||||
result [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||
|
||||
testing: rotate3 ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 132) right= True
|
||||
result [8, 9, 0, 1, 2, 3, 4, 5, 6, 7]
|
||||
|
||||
testing: rotate3 ([8, 9, 0, 1, 2, 3, 4, 5, 6, 7], 132) right= False
|
||||
result [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||
|
||||
'''
|
|
@ -3,7 +3,7 @@
|
|||
# File : sunday.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-07-11 15:26
|
||||
# Description: 字符串模式匹配, sunday 算法, kmp 的改进
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# File : wildcard_matching.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-12-13 22:46
|
||||
# Description:
|
||||
|
|
|
@ -1,5 +1,13 @@
|
|||
README = r'''
|
||||
# Algorithm
|
||||
# Algorithm and data structures
|
||||
|
||||
[![Stars](https://img.shields.io/github/stars/mbinary/algorithm-in-python.svg?label=Stars&style=social)](https://github.com/mbinary/algorithm-in-python/stargazers)
|
||||
[![Forks](https://img.shields.io/github/forks/mbinary/algorithm-in-python.svg?label=Fork&style=social)](https://github.com/mbinary/algorithm-in-python/network/members)
|
||||
[![repo-size](https://img.shields.io/github/repo-size/mbinary/algorithm-in-python.svg)]()
|
||||
[![License](https://img.shields.io/badge/LICENSE-WTFPL-blue.svg)](LICENSE)
|
||||
[![Language](https://img.shields.io/badge/language-python3-orange.svg)]()
|
||||
<!-- [![Build](https://travis-ci.org/mbinary/PL0-compiler.svg?branch=master)]() -->
|
||||
|
||||
>Notes and codes for learning algorithm and data structures :smiley:
|
||||
|
||||
Some pictures and ideas are from `<<Introduction to Algotithm>>`
|
||||
|
@ -7,7 +15,7 @@ Some pictures and ideas are from `<<Introduction to Algotithm>>`
|
|||
I use python 3.6+ and c/c++ to implement them.
|
||||
|
||||
# Notice
|
||||
Currently, Github can't render latex math formulas.Thus,if you want to view the markodwn notes which contain latex math formulas, you can visit [my blog](https://mbinary.coding.me)
|
||||
Currently, Github can't render latex math formulas.Thus,if you want to view the markodwn notes which contain latex math formulas, you can visit [my blog](https://mbinary.xyz)
|
||||
|
||||
# Index
|
||||
{index}
|
||||
|
@ -18,7 +26,7 @@ HEAD = '''{begin} mbinary
|
|||
# File : {name}
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: {ctime}
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : genReadme.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-12-11 15:53
|
||||
# Description:
|
||||
|
@ -17,7 +17,7 @@ from config import README
|
|||
parser = ArgumentParser()
|
||||
|
||||
parser.add_argument('-p','--path',default='.',help='path to walk')
|
||||
parser.add_argument('-f','--fileinclude',action='store_true',help='if has, list files and dirs, else only dirs')
|
||||
parser.add_argument('-f','--fileinclude',action='store_true',default=True,help='if has, list files and dirs, else only dirs')
|
||||
parser.add_argument('-d','--depth', type = int, default = 2)
|
||||
#获取参数
|
||||
args = parser.parse_args()
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : headInfo.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-07-08 14:48
|
||||
# Description:
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# File : tree.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Blog: https://mbinary.xyz
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-12-11 15:56
|
||||
# Description:
|
||||
|
|
Loading…
Reference in New Issue
Block a user