Add computaional method
2
.gitignore
vendored
@ -1,7 +1,5 @@
|
||||
.*
|
||||
*.o
|
||||
*.exe
|
||||
tree_link.py
|
||||
__pycache__/**
|
||||
!.gitignore
|
||||
todo
|
||||
|
73
README.md
@ -1,7 +1,7 @@
|
||||
# Algorithm and Data Structures
|
||||
>Notes and codes for learning algorithm and data structures :smiley:
|
||||
|
||||
Some pictures and idead are from `<<Introduction to Algotithm>>
|
||||
Some pictures and ideas are from `<<Introduction to Algotithm>>
|
||||
|
||||
I use python 3.6+ and c++ to implements them.
|
||||
Since I used f-Strings in python, you may use python 3.6+ to run the following python scripts.
|
||||
@ -14,36 +14,67 @@ So,if you wannt to view the notes which contain latex math formulas and are in m
|
||||
|
||||
# Index
|
||||
* [.](.)
|
||||
* [notes](./notes)
|
||||
* [alg-general.md](./notes/alg-general.md)
|
||||
* [hashTable.md](./notes/hashTable.md)
|
||||
* [red-black-tree.md](./notes/red-black-tree.md)
|
||||
* [sort.md](./notes/sort.md)
|
||||
* [tree.md](./notes/tree.md)
|
||||
* [b-tree.md](./notes/b-tree.md)
|
||||
* [graph](./notes/graph.md)
|
||||
* [fibonacci-heap](./notes/fib-heap.md)
|
||||
* [algorithm](./algorithm)
|
||||
* [8Astar.py](./algorithm/8Astar.py)
|
||||
* [cantor.cc](./algorithm/cantor.cc)
|
||||
* [manacher.py](./algorithm/manacher.py)
|
||||
* [markov.py](./algorithm/markov.py)
|
||||
* [sort](./algorithm/sort)
|
||||
* [sunday.py](./algorithm/sunday.py)
|
||||
* [computationalMethod](./computationalMethod)
|
||||
* [interplotion.py](./computationalMethod/interplotion.py)
|
||||
* [iteration.py](./computationalMethod/iteration.py)
|
||||
* [least_square.py](./computationalMethod/least_square.py)
|
||||
* [linear_equation.py](./computationalMethod/linear_equation.py)
|
||||
* [numerical_differential.py](./computationalMethod/numerical_differential.py)
|
||||
* [numerical_integration.py](./computationalMethod/numerical_integration.py)
|
||||
* [README.md](./computationalMethod/README.md)
|
||||
* [solve-linear-by-iteration.py](./computationalMethod/solve-linear-by-iteration.py)
|
||||
* [tongyu_equation.py](./computationalMethod/tongyu_equation.py)
|
||||
* [vector_norm.py](./computationalMethod/vector_norm.py)
|
||||
* [dataStructure](./dataStructure)
|
||||
* [redBlackTree.py](./dataStructure/redBlackTree.py)
|
||||
* [bTree.py](./dataStructure/bTree.py)
|
||||
* [hashTable.py](./dataStructure/hashTable.py)
|
||||
* [splayTree.py](./dataStructure/splayTree.py)
|
||||
* [allOone](./dataStructure/allOone)
|
||||
* [binaryHeap.py](./dataStructure/binaryHeap.py)
|
||||
* [binaryTree.py](./dataStructure/binaryTree.py)
|
||||
* [bTree.py](./dataStructure/bTree.py)
|
||||
* [graph](./dataStructure/graph)
|
||||
* [hashTable.py](./dataStructure/hashTable.py)
|
||||
* [huffman](./dataStructure/huffman)
|
||||
* [leftHeap.py](./dataStructure/leftHeap.py)
|
||||
* [loserTree.py](./dataStructure/loserTree.py)
|
||||
* [map.cc](./dataStructure/map.cc)
|
||||
* [polynomial.cpp](./dataStructure/polynomial.cpp)
|
||||
* [polynomial.py](./dataStructure/polynomial.py)
|
||||
* [redBlackTree.py](./dataStructure/redBlackTree.py)
|
||||
* [splayTree.py](./dataStructure/splayTree.py)
|
||||
* [trie.py](./dataStructure/trie.py)
|
||||
* [winnerTree.py](./dataStructure/winnerTree.py)
|
||||
* [docs](./docs)
|
||||
* [algorithm-general.md](./docs/algorithm-general.md)
|
||||
* [b-tree.md](./docs/b-tree.md)
|
||||
* [fib-heap.md](./docs/fib-heap.md)
|
||||
* [graph.md](./docs/graph.md)
|
||||
* [hashTable.md](./docs/hashTable.md)
|
||||
* [README.md](./docs/README.md)
|
||||
* [red-black-tree.md](./docs/red-black-tree.md)
|
||||
* [sort.md](./docs/sort.md)
|
||||
* [tree.md](./docs/tree.md)
|
||||
* [dynamicProgramming](./dynamicProgramming)
|
||||
* [lcs.hs](./dynamicProgramming/lcs.hs)
|
||||
* [lcs.py](./dynamicProgramming/lcs.py)
|
||||
* [matrix-multiply.py](./dynamicProgramming/matrix-multiply.py)
|
||||
* [splitStripe.hs](./dynamicProgramming/splitStripe.hs)
|
||||
* [splitStripe.py](./dynamicProgramming/splitStripe.py)
|
||||
* [testVec2d.hs](./dynamicProgramming/testVec2d.hs)
|
||||
* [Vec2d.hs](./dynamicProgramming/Vec2d.hs)
|
||||
* [math](./math)
|
||||
* [cantor.cc](./math/cantor.cc)
|
||||
* [isPrime.py](./math/isPrime.py)
|
||||
* [num_weight.py](./math/num_weight.py)
|
||||
* [README.md](./README.md)
|
||||
* [search](./search)
|
||||
* [8Astar.py](./search/8Astar.py)
|
||||
* [sort](./sort)
|
||||
* [binaryTree.py](./sort/binaryTree.py)
|
||||
* [heapSort.py](./sort/heapSort.py)
|
||||
* [quickSort.py](./sort/quickSort.py)
|
||||
* [radixSort.py](./sort/radixSort.py)
|
||||
* [select.py](./sort/select.py)
|
||||
* [shellSort.py](./sort/shellSort.py)
|
||||
* [string](./string)
|
||||
* [manacher.py](./string/manacher.py)
|
||||
* [markov.py](./string/markov.py)
|
||||
* [sunday.py](./string/sunday.py)
|
||||
|
@ -1,4 +0,0 @@
|
||||
def adjustOrd(sizes):
|
||||
''' adjust the chain-multiply of matrix, sizes=[row1,row2,..,rown,coln]'''
|
||||
n = len(sizes)
|
||||
if n<3: return
|
35
computationalMethod/README.md
Normal file
@ -0,0 +1,35 @@
|
||||
# 计算方法
|
||||
>一些计算方法的算法,比如插值,拟合 近似计算,解方程组等
|
||||
有些功能numpy, sympy可能已经就有,但是为了学习各种计算方法,我就重新写了一遍,主要使用的是numpy的数组,矩阵,sympy的符号运算
|
||||
|
||||
# 需要
|
||||
* python3
|
||||
* python modules
|
||||
- sympy
|
||||
- numpy
|
||||
|
||||
# 目录说明
|
||||
## interplotion
|
||||
插值, 有Lagrange插值, Newton插值
|
||||
## iteration
|
||||
迭代, 二分迭代, 不动点迭代,差商迭代, 弦截法迭代
|
||||
## least_square
|
||||
最小二乘拟合, 解矛盾方程组
|
||||
## linear_equation
|
||||
解线性方程组,用到
|
||||
* doolittle分解
|
||||
* crout分解
|
||||
* ldlt分解
|
||||
* 列主元消元法
|
||||
## vector-norm
|
||||
计算向量,矩阵的各种范数
|
||||
## tongyu_equation
|
||||
解同余方程
|
||||
|
||||
|
||||
## LICENCE
|
||||
[MIT](LICENCE.txt)
|
||||
|
||||
## 联系我
|
||||
* mail: <img style="display:inline" src="http://ounix1xcw.bkt.clouddn.com/gmail.png"></img>
|
||||
* QQ : 414313516
|
84
computationalMethod/interplotion.py
Normal file
@ -0,0 +1,84 @@
|
||||
''' mbinary
|
||||
#########################################################################
|
||||
# File : interplotion.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-10-02 21:14
|
||||
# Description:
|
||||
#########################################################################
|
||||
'''
|
||||
|
||||
#########################################################################
|
||||
# File : interplotion.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.github.io
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-18 09:29
|
||||
# Description: 插值计算,有牛顿插值,拉格朗日插值,以及通过插值得到的多项式估计新的函数值
|
||||
#########################################################################
|
||||
|
||||
|
||||
import sympy
|
||||
from collections import namedtuple
|
||||
from functools import reduce
|
||||
from operator import mul
|
||||
|
||||
X = sympy.Symbol ('x')
|
||||
point = namedtuple('point',['x','y'])
|
||||
|
||||
class interplotion:
|
||||
def __init__(self,points):
|
||||
self.points = [point(x,y) for x,y in points]
|
||||
self.xs= [i for i,j in points]
|
||||
self.poly,self.rem = self.newton(self.points,0,len(self.points)-1)
|
||||
|
||||
def newton(self,li,a,b):
|
||||
'''li:[(x,f(x))...]'''
|
||||
|
||||
qs = [li[0].y]
|
||||
|
||||
def quoDiff(begin,end):
|
||||
if begin == end:return li[begin].y
|
||||
q = (quoDiff(begin+1,end)-quoDiff(begin,end-1))/(li[end].x-li[begin].x)
|
||||
if begin == a:qs.append(q)
|
||||
return q
|
||||
|
||||
quoDiff(a,b)
|
||||
poly ,base = 0, 1
|
||||
for i,q in enumerate(qs):
|
||||
poly += q*base
|
||||
base*= X-li[i].x
|
||||
return poly, base*qs[-1]
|
||||
def lagrange(self,points=None):
|
||||
xs = None
|
||||
if points is None:
|
||||
xs = self.xs
|
||||
points = self.points
|
||||
else: xs =[x for x,y in points]
|
||||
product = reduce(mul,[X-x for x in xs],1)
|
||||
poly = 0
|
||||
for x,y in points:
|
||||
tmp = product/(X-x)
|
||||
coef = y/(tmp.subs(X,x))
|
||||
poly+= coef *tmp
|
||||
return poly
|
||||
|
||||
def predict(self,val,poly = None):
|
||||
if poly is None:poly = self.poly
|
||||
return poly.subs(X,val) # note the func subs
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
f = interplotion([(81,9),(100,10),(121,11)])
|
||||
p = f.lagrange()
|
||||
print(p.subs(X,105))
|
||||
print(p)
|
||||
|
||||
intor = interplotion([(0,11),(0.02,9),(0.04,7),(0.06,10)])
|
||||
p = intor.lagrange()
|
||||
print(p)
|
||||
res = intor.predict(0.08)
|
||||
print(res)
|
108
computationalMethod/iteration.py
Normal file
@ -0,0 +1,108 @@
|
||||
''' mbinary
|
||||
#########################################################################
|
||||
# File : iteration.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-10-02 21:14
|
||||
# Description:
|
||||
#########################################################################
|
||||
'''
|
||||
|
||||
import sympy
|
||||
import numpy as np
|
||||
from math import sqrt
|
||||
|
||||
|
||||
def newton(y:sympy.core,x0:float,epsilon:float=0.00001,maxtime:int=50) ->(list,list):
|
||||
'''
|
||||
newton 's iteration method for finding a zeropoint of a func
|
||||
y is the func, x0 is the init x val: int float epsilon is the accurrency
|
||||
'''
|
||||
if epsilon <0:epsilon = -epsilon
|
||||
ct =0
|
||||
t = y.free_symbols
|
||||
varsymbol = 'x' if len(t)==0 else t.pop()
|
||||
x0= float(x0)
|
||||
y_diff = y.diff()
|
||||
li = [x0]
|
||||
vals = []
|
||||
while 1:
|
||||
val = y.subs(varsymbol,x0)
|
||||
vals.append(val)
|
||||
x = x0- val/y_diff.subs(varsymbol,x0)
|
||||
li.append(x)
|
||||
ct+=1
|
||||
if ct>maxtime:
|
||||
print("after iteration for {} times, I still havn't reach the accurrency.\
|
||||
Maybe this function havsn't zeropoint\n".format(ct))
|
||||
return li ,val
|
||||
if abs(x-x0)<epsilon:return li,vals
|
||||
x0 = x
|
||||
|
||||
|
||||
def secant(y:sympy.core,x0:float,x1:float,epsilon:float =0.00001,maxtime:int=50) ->(list,list):
|
||||
'''
|
||||
弦截法, 使用newton 差商计算,每次只需计算一次f(x)
|
||||
secant method for finding a zeropoint of a func
|
||||
y is the func , x0 is the init x val, epsilon is the accurrency
|
||||
'''
|
||||
if epsilon <0:epsilon = -epsilon
|
||||
ct =0
|
||||
x0,x1 = float(x0),float(x1)
|
||||
li = [x0,x1]
|
||||
t = y.free_symbols
|
||||
varsymbol = 'x' if len(t)==0 else t.pop()
|
||||
last = y.subs(varsymbol,x0)
|
||||
vals = [last]
|
||||
while 1:
|
||||
cur = y.subs(varsymbol,x1)
|
||||
vals.append(cur)
|
||||
x = x1-cur*(x1-x0)/(cur-last)
|
||||
x0 ,x1= x1,x
|
||||
last = cur
|
||||
li.append(x)
|
||||
ct+=1
|
||||
if ct>maxtime:
|
||||
print("after iteration for {} times, I still havn't reach the accurrency.\
|
||||
Maybe this function havsn't zeropoint\n".format(ct))
|
||||
return li,vals
|
||||
if abs(x0-x1)<epsilon:return li,vals
|
||||
x0 = x
|
||||
|
||||
|
||||
def solveNonlinearEquations(funcs:[sympy.core],init_dic:dict,epsilon:float=0.001,maxtime:int=50)->dict:
|
||||
'''solve nonlinear equations:'''
|
||||
li = list(init_dic.keys())
|
||||
delta = {i:0 for i in li}
|
||||
ct = 0
|
||||
while 1:
|
||||
ys = np.array([f.subs(init_dic) for f in funcs],dtype = 'float')
|
||||
mat = np.matrix([[i.diff(x).subs(init_dic) for x in li] for i in funcs ],dtype = 'float')
|
||||
delt = np.linalg.solve(mat,-ys)
|
||||
for i,j in enumerate(delt):
|
||||
init_dic[li[i]] +=j
|
||||
delta[li[i]] = j
|
||||
if ct>maxtime:
|
||||
print("after iteration for {} times, I still havn't reach the accurrency.\
|
||||
Maybe this function havsn't zeropoint\n".format(ct))
|
||||
return init_dic
|
||||
if sqrt(sum(i**2 for i in delta.values()))<epsilon:return init_dic
|
||||
|
||||
|
||||
if __name__ =='__main__':
|
||||
x,y,z = sympy.symbols('x y z')
|
||||
|
||||
res,res2= newton(x**5-9,2,0.01)
|
||||
print(res,res2)
|
||||
|
||||
|
||||
res,res2 = secant (x**3-3*x-2,1,3,1e-3)
|
||||
print(res,res2)
|
||||
|
||||
|
||||
funcs=[x**2+y**2-1,x**3-y]
|
||||
init = {x:0.8,y:0.6}
|
||||
res_dic = solveNonlinearEquations(funcs,init,0.001)
|
||||
print(res_dic)
|
104
computationalMethod/least_square.py
Normal file
@ -0,0 +1,104 @@
|
||||
''' mbinary
|
||||
#########################################################################
|
||||
# File : least_square.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-10-02 21:14
|
||||
# Description:
|
||||
#########################################################################
|
||||
'''
|
||||
|
||||
'''*************************************************************************
|
||||
> File Name: least-square.py
|
||||
> Author: mbinary
|
||||
> Mail: zhuheqin1@gmail.com
|
||||
> Created Time: Sat 07 Apr 2018 09:55:25 PM DST
|
||||
> Blog: https://mbinary.github.io
|
||||
> Description: 最小二乘法解线性方程组, 解矛盾方程组
|
||||
************************************************************************'''
|
||||
|
||||
|
||||
import re
|
||||
import numpy as np
|
||||
|
||||
|
||||
|
||||
def solveConflitEqualtion(A,y):
|
||||
'''solve equation like this: Av = y,
|
||||
A:m*n v:n*1 y:m*1
|
||||
return vector v
|
||||
'''
|
||||
A = np.matrix(A)
|
||||
y = np.array(y)
|
||||
ata = A.T*A
|
||||
print('AtA')
|
||||
print(ata)
|
||||
return np.linalg.solve(ata,A.T*y) # note that is numpy.linalg.solve
|
||||
|
||||
def solveLinear(point,index):
|
||||
y = [[i[1]] for i in point]
|
||||
x = [[i[0]] for i in point]
|
||||
A = []
|
||||
for i in x:
|
||||
A.append([i[0]**j for j in index])
|
||||
res = solveConflitEqualtion(A,y)
|
||||
print('the solution is : \n',res)
|
||||
print('namely: ')
|
||||
items = ['{:.4f}x^{}'.format(res[i,0],j) for i, j in enumerate(index)]
|
||||
print('phi(x) = ',' + '.join(items))
|
||||
|
||||
def handleInput(s=None,y=None):
|
||||
# numPt = re.compile (r'\d*\.{0,1}\d+')
|
||||
if not s: s = input('input matrix A:m*n //m>=n\n')
|
||||
s = s.replace(' ','')
|
||||
li = re.findall(r'(\[(\d+)(,(\d+))+\])',s)
|
||||
li = [parseLst(i[0]) for i in li]
|
||||
if not y:y = input('input a vector y:n*1\n')
|
||||
y = parseLst(y)
|
||||
print('Equation: Av = y:')
|
||||
|
||||
print('y is as follows: ')
|
||||
print(y)
|
||||
print('A is as follows: ')
|
||||
for i in li:
|
||||
for j in i:
|
||||
print('{}'.format(j).rjust(5),end='')
|
||||
print('')
|
||||
|
||||
print('result v is as follows: ')
|
||||
res = solveConflitEqualtion(li,y)
|
||||
print(res)
|
||||
def parseLst(s):
|
||||
s = s.strip('[]')
|
||||
li = s.split(',')
|
||||
li = [float(j) for j in li]
|
||||
return li
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
'''
|
||||
li = '[[23,2],[2,5],[2,6]]'
|
||||
y = '[1,3]'
|
||||
while True:
|
||||
handleInput(li,y)
|
||||
s = input('input y to continue, n for exit')
|
||||
if s!='y':break
|
||||
'''
|
||||
point = [(-3,14.3),(-2,8.3),(-1,4.7),(2,-8.3),(4,-22.7)]
|
||||
lst = [0,3]
|
||||
solveLinear(point,lst)
|
||||
|
||||
point= [(-3,14.3),(-2,8.3),(-1,4.7),(2,8.3),(4,22.7)]
|
||||
lst = [0,2]
|
||||
solveLinear(point,lst)
|
||||
|
||||
A = [[1,2],[2,1],[1,1]]
|
||||
y = [[5],[6],[4]]
|
||||
res = solveConflitEqualtion(A,y)
|
||||
|
||||
print(res)
|
||||
A = [[1,-2],[1,5],[2,1],[1,1]]
|
||||
y = [[1],[13.1],[7.9],[5.1]]
|
||||
print(solveConflitEqualtion(A,y))
|
118
computationalMethod/linear_equation.py
Normal file
@ -0,0 +1,118 @@
|
||||
''' mbinary
|
||||
#########################################################################
|
||||
# File : linear_equation.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-10-02 21:14
|
||||
# Description:
|
||||
#########################################################################
|
||||
'''
|
||||
|
||||
#coding: utf-8
|
||||
'''************************************************************************
|
||||
> File Name: doolittle.py
|
||||
> Author: mbinary
|
||||
> Mail: zhuheqin1@gmail.com
|
||||
> Blog: https://mbinary.github.io
|
||||
> Created Time: 2018-04-20 08:32
|
||||
************************************************************************'''
|
||||
|
||||
import numpy as np
|
||||
def getLU(A):
|
||||
'''doolittle : A = LU,
|
||||
L is in down-triangle form,
|
||||
U is in up-triangle form
|
||||
'''
|
||||
m,n = A.shape
|
||||
if m!=n:raise Exception("this matrix is not inversable")
|
||||
|
||||
L = np.zeros([m,m])
|
||||
U = np.zeros([m,m])
|
||||
L = np.matrix(L)
|
||||
U = np. matrix(U)
|
||||
U[0] = A[0]
|
||||
L[:,0] = A[:,0] / A[0,0]
|
||||
for i in range(1,m):
|
||||
for j in range(i,m):
|
||||
U[i,j]= A[i,j] - sum(L[i,k]*U[k,j] for k in range(i))
|
||||
L[j,i] = (A[j,i] - sum(L[j,k]*U[k,i] for k in range(i)))/U[i,i]
|
||||
print(L)
|
||||
print(U)
|
||||
return L,U
|
||||
|
||||
|
||||
def gauss_prior_elimination(A):
|
||||
'''using guass elimination,get up_trianglge form of A'''
|
||||
m,n = A.shape
|
||||
if m!=n:raise Exception("[Error]: matrix is not inversable")
|
||||
B = np.matrix(A,dtype=float) # necessary,otherwise when the dtype of A is int, then it will be wrong
|
||||
for i in range(m-1):
|
||||
col = abs(B[i:,i]) # note using abs value, return a matrix in (m-i)x1 form
|
||||
mx = col.max()
|
||||
if mx==0: raise Exception("[Error]: matrix is not inversable")
|
||||
pos = i+col.argmax()
|
||||
if pos != i : B[[pos,i],:] = B[[i,pos],:] # note how to swap cols/rows
|
||||
B[i,:] = 1/mx*B[i,:]
|
||||
for j in range(i+1,m):
|
||||
#print(B)
|
||||
B[j,:] -= B[j,i] * B[i,:]
|
||||
print(B)
|
||||
return B
|
||||
|
||||
def solveDown(A,b):
|
||||
'''A is a matrix in down-triangle form'''
|
||||
sol = np.zeros(b.shape)
|
||||
for i in range(b.shape[0]):
|
||||
sol[i,0] = (b[i,0]-sum(A[i,j]*sol[j,0] for j in range(i)))/A[i,i]
|
||||
return sol
|
||||
|
||||
def solveUp(A,b):
|
||||
'''A is a matrix in up-triangle form'''
|
||||
sol = np.zeros(b.shape)
|
||||
n = b.shape[0]
|
||||
for i in range(n-1,-1,-1):
|
||||
sol[i,0] = (b[i,0]-sum(A[i,j]*sol[j,0] for j in range(n-1,i,-1)))/A[i,i]
|
||||
return sol
|
||||
def doolittle(A,b):
|
||||
L,U = getLU(A)
|
||||
y = solveDown(L,b)
|
||||
x = solveUp(U,y)
|
||||
print(y)
|
||||
print(x)
|
||||
return x
|
||||
def ldlt(A,b):
|
||||
L,U = getLU(A)
|
||||
D = np.diag(np.diag(U))
|
||||
print(D,"D")
|
||||
z = np.linalg.solve(L,b)
|
||||
print(z,"z")
|
||||
y = np.linalg.solve(D,z)
|
||||
print(y,"y")
|
||||
x = np.linalg.solve(L.T,y)
|
||||
print(x,"x")
|
||||
return x
|
||||
if __name__ == '__main__':
|
||||
A = np.matrix([[10,5,0,0],
|
||||
[2,2,1,0],
|
||||
[0,10,0,5],
|
||||
[0,0,2,1]])
|
||||
b = np.matrix([[5],[3],[27],[6]])
|
||||
gauss_prior_elimination(A)
|
||||
|
||||
'''ldlt
|
||||
A = np.matrix([[-6,3,2],
|
||||
[3,5,1],
|
||||
[2,1,6]])
|
||||
b = np.matrix([[-4],[11],[-8]])
|
||||
ldlt(A,b)
|
||||
'''
|
||||
'''
|
||||
A = np.matrix([[2,1,1],
|
||||
[1,3,2],
|
||||
[1,2,2]])
|
||||
b = np.matrix([[4],[6],[5]])
|
||||
doolittle(A,b)
|
||||
'''
|
||||
|
13
computationalMethod/numerical_differential.py
Normal file
@ -0,0 +1,13 @@
|
||||
''' mbinary
|
||||
#########################################################################
|
||||
# File : numerical_differential.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-10-02 21:14
|
||||
# Description:
|
||||
#########################################################################
|
||||
'''
|
||||
|
||||
|
70
computationalMethod/numerical_integration.py
Normal file
@ -0,0 +1,70 @@
|
||||
''' mbinary
|
||||
#########################################################################
|
||||
# File : numerical_integration.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-10-02 21:14
|
||||
# Description:
|
||||
#########################################################################
|
||||
'''
|
||||
|
||||
|
||||
#########################################################################
|
||||
# File : numerical integration.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.github.io
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-11 08:58
|
||||
# Description:
|
||||
# numerical intergration: using Newton-Cotes integration, and Simpson
|
||||
# 数值积分, 使用 牛顿-科特斯积分, 辛普森
|
||||
#########################################################################
|
||||
|
||||
|
||||
|
||||
import numpy as np
|
||||
def trapezoidal(a,b,h,fs):
|
||||
'''梯形积分公式'''
|
||||
xs = [i for i in np.arange(a,b+h,h)]
|
||||
print(xs)
|
||||
ret = h*(sum(fs)-fs[0]/2 - fs[-1]/2)
|
||||
print(ret)
|
||||
return ret
|
||||
|
||||
|
||||
def simpson(a,b,h,fs):
|
||||
'''辛普森积分公式'''
|
||||
xs = [i for i in np.arange(a,b+h,h)]
|
||||
print(xs)
|
||||
ret = h/3*(4* sum(fs[1::2])+ 2*sum(fs[2:-1:2]) + fs[0]+fs[-1])
|
||||
print(ret)
|
||||
return ret
|
||||
|
||||
|
||||
def romberg(a,b,f,epcilon):
|
||||
'''romberg(龙贝格) 数值积分'''
|
||||
h = b-a
|
||||
lst1=[h*(f(a)+f(b))/2]
|
||||
print(lst1)
|
||||
delta = epcilon
|
||||
k=1
|
||||
while delta >= epcilon:
|
||||
h/=2
|
||||
k+=1
|
||||
lst2=[]
|
||||
lst2.append((lst1[0]+h*2*sum(f(a+(2*i-1)*h) for i in range(1,2**(k-2)+1)))/2)
|
||||
for j in range(0,k-1):
|
||||
lst2.append(lst2[j]+(lst2[j]-lst1[j])/(4**(j+1)-1))
|
||||
delta = abs(lst2[-1]-lst1[-1])
|
||||
lst1=lst2
|
||||
print(lst1)
|
||||
|
||||
if __name__=='__main__':
|
||||
a,b,h = 0.6,1.8,0.2
|
||||
fs=[5.7,4.6,3.5,3.7,4.9,5.2,5.5]
|
||||
trapezoidal(a,b,h,fs)
|
||||
simpson(a,b,h,fs)
|
||||
romberg(1,2,lambda x:sin(x**4),1e-4)
|
130
computationalMethod/solve-linear-by-iteration.py
Normal file
@ -0,0 +1,130 @@
|
||||
''' mbinary
|
||||
#########################################################################
|
||||
# File : solve-linear-by-iteration.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-10-02 21:14
|
||||
# Description:
|
||||
#########################################################################
|
||||
'''
|
||||
|
||||
'''
|
||||
#########################################################################
|
||||
# File : solve-linear-by-iteration.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.github.io
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-04 07:42
|
||||
# Description:
|
||||
#########################################################################
|
||||
'''
|
||||
import numpy as np
|
||||
from operator import le,lt
|
||||
|
||||
def jacob(A,b,x,accuracy=None,times=6):
|
||||
''' Ax=b, arg x is the init val, times is the time of iterating'''
|
||||
A,b,x = np.matrix(A),np.matrix(b),np.matrix(x)
|
||||
n,m = A.shape
|
||||
if n!=m:raise Exception("Not square matrix: {A}".format(A=A))
|
||||
if b.shape !=( n,1) : raise Exception('Error: {b} must be {n} x1 in dimension'.format(b = b,n=n))
|
||||
D = np.diag(np.diag(A))
|
||||
DI = np.zeros([n,n])
|
||||
for i in range(n):DI[i,i]= 1/D[i,i]
|
||||
R = np.eye(n) - DI * A
|
||||
g = DI * b
|
||||
print('R =\n{}'.format(R))
|
||||
print('g =\n{}'.format(g))
|
||||
last = -x
|
||||
if accuracy != None:
|
||||
ct=0
|
||||
while 1:
|
||||
ct+=1
|
||||
tmp = x-last
|
||||
last = x
|
||||
mx = max ( abs(i) for i in tmp)
|
||||
if mx<accuracy:return x
|
||||
x = R*x+g
|
||||
print('x{ct} =\n{x}'.format(ct = ct,x=x))
|
||||
else:
|
||||
for i in range(times):
|
||||
x = R*x+g
|
||||
print('x{ct} = \n{x}'.format(ct=i+1,x=x))
|
||||
print('isLimitd: {}'.format(isLimited(A)))
|
||||
return x
|
||||
def gauss_seidel(A,b,x,accuracy=None,times=6):
|
||||
''' Ax=b, arg x is the init val, times is the time of iterating'''
|
||||
A,b,x = np.matrix(A),np.matrix(b),np.matrix(x)
|
||||
n,m = A.shape
|
||||
if n!=m:raise Exception("Not square matrix: {A}".format(A=A))
|
||||
if b.shape !=( n,1) : raise Exception('Error: {b} must be {n} x1 in dimension'.format(b = b,n=n))
|
||||
D =np. matrix(np.diag(np.diag(A)))
|
||||
L = np.tril(A) - D # L = np.triu(D.T) - D
|
||||
U = np.triu(A) - D
|
||||
DLI = (D+L).I
|
||||
S = - (DLI) * U
|
||||
f = (DLI)*b
|
||||
print('S =\n{}'.format(S))
|
||||
print('f =\n{}'.format(f))
|
||||
last = -x
|
||||
if accuracy != None:
|
||||
ct=0
|
||||
while 1:
|
||||
ct+=1
|
||||
tmp = x-last
|
||||
last = x
|
||||
mx = max ( abs(i) for i in tmp)
|
||||
if mx<accuracy:return x
|
||||
x = S*x+f
|
||||
print('x{ct} =\n{x}'.format(ct=ct,x=x))
|
||||
else:
|
||||
for i in range(times):
|
||||
x = S*x+f
|
||||
print('x{ct} = \n{x}'.format(ct=i+1,x=x))
|
||||
print('isLimitd: {}'.format(isLimited(A)))
|
||||
return x
|
||||
|
||||
|
||||
def isLimited(A,strict=False):
|
||||
'''通过检查A是否是[严格]对角优来判断迭代是否收敛, 即对角线上的值是否都大于对应行(或者列)的值'''
|
||||
diag = np.diag(A)
|
||||
op = lt if strict else le
|
||||
if op(A.max(axis=0),diag).all(): return True
|
||||
if op(A.max(axis=1), diag).all(): return True
|
||||
return False
|
||||
|
||||
testcase=[]
|
||||
def test():
|
||||
for func,A,b,x,*args in testcase:
|
||||
acc =None
|
||||
times = 6
|
||||
if args !=[] :
|
||||
if isinstance(args[0],int):times = args[0]
|
||||
else : acc = args[0]
|
||||
return func(A,b,x,acc,times)
|
||||
|
||||
|
||||
if __name__ =='__main__':
|
||||
A = [[2,-1,-1],
|
||||
[1,5,-1],
|
||||
[1,1,10]
|
||||
]
|
||||
b = [[-5],[8],[11]]
|
||||
x = [[1],[1],[1]]
|
||||
#testcase.append([gauss_seidel,A,b,x])
|
||||
|
||||
A = [[2,-1,1],[3,3,9],[3,3,5]]
|
||||
b = [[-1],[0],[4]]
|
||||
x = [[0],[0],[0]]
|
||||
#testcase.append([jacob,A,b,x])
|
||||
|
||||
A = [[5,-1,-1],
|
||||
[3,6,2],
|
||||
[1,-1,2]
|
||||
]
|
||||
b= [[16],[11],[-2]]
|
||||
x = [[1],[1],[-1]]
|
||||
testcase.append([gauss_seidel,A,b,x,0.001])
|
||||
test()
|
163
computationalMethod/tongyu_equation.py
Normal file
@ -0,0 +1,163 @@
|
||||
''' mbinary
|
||||
#########################################################################
|
||||
# File : tongyu_equation.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-10-02 21:14
|
||||
# Description:
|
||||
#########################################################################
|
||||
'''
|
||||
|
||||
# created by mbinary @2018-3-4
|
||||
# description: solve tongyu equation
|
||||
# notice that i use -- to repr tongyu symbol
|
||||
|
||||
from isPrime import isPrime,primes
|
||||
from operator import mul, and_
|
||||
from functools import reduce,partial
|
||||
import re
|
||||
|
||||
|
||||
def primeFactoize(x):
|
||||
'''质因数分解 , ret {p:r}'''
|
||||
if isPrime(x):return {x:1}
|
||||
mp={}
|
||||
for i in primes:
|
||||
if x==1:break
|
||||
ct=0
|
||||
while x%i==0:
|
||||
ct+=1
|
||||
x//=i
|
||||
if ct!=0:mp[i]=ct
|
||||
return mp
|
||||
def xgcd(a,b):
|
||||
'''ax+by=gcd(a,b) ,用辗转相除法得到gcd,x,y'''
|
||||
def _xgcd(a,b):
|
||||
if b==0:return a,1,0
|
||||
gcd,x,y=_xgcd(b,a%b)
|
||||
return gcd,y,x-y*a//b
|
||||
if a<b:
|
||||
g,x,y = _xgcd(b,a)
|
||||
return g,y,x
|
||||
return _xgcd(a,b)
|
||||
|
||||
def gcd(a,b):
|
||||
return a if b==0 else gcd(b,a%b)
|
||||
|
||||
def lcm(a,b):
|
||||
return a*b//gcd(a,b)
|
||||
|
||||
def euler(x):
|
||||
mp = primeFactoize(x)
|
||||
fac = [1-1/i for i in mp]
|
||||
return round(reduce(mul,fac,x))
|
||||
|
||||
def ind(m,g):
|
||||
''' mod m ,primary root g -> {n:indg n}'''
|
||||
return {j:i for i in range(m-1) \
|
||||
for j in range(m) if (g**i-j)%m==0}
|
||||
|
||||
def gs(m,num=100):
|
||||
'''return list of m's primary roots below num'''
|
||||
phi = euler(m)
|
||||
mp = primeFactoize(phi)
|
||||
checkLst = [phi//i for i in mp]
|
||||
return [i for i in range(2,num) \
|
||||
if reduce(and_,[(i**n-1)%m !=0 for n in checkLst])]
|
||||
|
||||
def minG(m):
|
||||
phi = euler(m)
|
||||
mp = primeFactoize(phi)
|
||||
checkLst = [phi//i for i in mp]
|
||||
i=2
|
||||
while 1:
|
||||
if reduce(and_,[(i**n-1)%m !=0 for n in checkLst]):return i
|
||||
i+=1
|
||||
|
||||
|
||||
class solve:
|
||||
def __init__(self,equ=None):
|
||||
self.linearPat= re.compile(r'\s*(\d+)\s*--\s*(\d+)[\s\(]*mod\s*(\d+)')
|
||||
self.sol = []
|
||||
#self.m = m
|
||||
#self.ind_mp = ind(m,minG(m))
|
||||
def noSol(self):
|
||||
print('equation {equ} has no solution'.format(equ=self.equ))
|
||||
def error(self):
|
||||
print("Error! The divisor m must be postive integer")
|
||||
|
||||
|
||||
def solveLinear(self,a,b,m):
|
||||
'''ax--b(mod m): solve linear equation with one unknown
|
||||
return ([x1,x2,...],m)
|
||||
'''
|
||||
a,b,m = self.check(a,b,m)
|
||||
g,x,y=xgcd(a,m)
|
||||
if a*b%g!=0:
|
||||
self.noSol()
|
||||
return None
|
||||
sol=x*b//g
|
||||
m0 = m//g
|
||||
return ([(sol+i*m0)%m for i in range(g)],m)
|
||||
def check(self,a,b,m):
|
||||
if m<=0:
|
||||
self.error()
|
||||
return None
|
||||
if a<0:a,b=-a,-b ## important
|
||||
if b<0:b+= -b//m * m
|
||||
return a,b,m
|
||||
|
||||
|
||||
#def solvePoly(self,m,mp):
|
||||
''' mod m, mp:{index:coef} is a dict of the polynomials' coefficient and index'''
|
||||
''' g = minG(m)
|
||||
ind_mp = ind(m,g)
|
||||
li = []
|
||||
for i in mp:
|
||||
solve
|
||||
'''
|
||||
|
||||
def solveHigh(self,a,n,b,m):
|
||||
''' ax^n -- b (mod m) ind_mp is a dict of m's {n: indg n}'''
|
||||
ind_mp = ind(m,minG(m))
|
||||
tmp = ind_mp[b] - ind_mp[a]
|
||||
if tmp < 0:tmp+=m
|
||||
print(n,tmp)
|
||||
sol = self.solveLinear(n,tmp,euler(m))
|
||||
re_mp = {j:i for i ,j in ind_mp.items()}
|
||||
print(sol)
|
||||
return [re_mp[i] for i in sol[0]],m
|
||||
|
||||
def solveGroup(tups):
|
||||
'''tups is a list of tongyu equation groups, like
|
||||
[(a1,b1,m1),(a2,b2,m2)...]
|
||||
and, m1,m2... are all primes
|
||||
'''
|
||||
mp = {}
|
||||
for a,b,m in tups:
|
||||
if m in mp:
|
||||
if mp[m][0]*b!=mp[m][1]*a:
|
||||
self.noSol()
|
||||
return
|
||||
else:mp[m] = (a,b)
|
||||
product= reduce(lambda i,j:i*j, mp.keys(), 1)
|
||||
sol = 0
|
||||
for i in mp:
|
||||
x = self.solveLinear(product//i*mp[i][0],1,i)
|
||||
sol+= x*product//i*mp[i][1]
|
||||
sol%=m
|
||||
return ([sol],m)
|
||||
def __call__(self):
|
||||
s=input('输入同余方程,用--代表同于号,形如3--5(mod 7)代表3x模7同余于5')
|
||||
li= self.linearPat.findall(s)
|
||||
li = [(int(a),int(b),int(m)) for a,b,m in li]
|
||||
print(self.solveLinear(li[0]))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
solver = solve()
|
||||
res = solver.solveLinear(3,6,9)
|
||||
print(res)
|
||||
print(solver.solveHigh(1,8,3,11))
|
134
computationalMethod/vector_norm.py
Normal file
@ -0,0 +1,134 @@
|
||||
''' mbinary
|
||||
#########################################################################
|
||||
# File : vector_norm.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-10-02 21:14
|
||||
# Description:
|
||||
#########################################################################
|
||||
'''
|
||||
|
||||
from random import randint,random
|
||||
import numpy as np
|
||||
from operator import neg,and_
|
||||
from functools import reduce
|
||||
|
||||
|
||||
class obj():
|
||||
def __init__(self,data):
|
||||
self.data=np.array(data)
|
||||
def __add__(self,x):
|
||||
data = x.data if self.__class__ == x.__class__ else x
|
||||
return self.__class__(self.data + data)
|
||||
def __radd__(self,x):
|
||||
data = x.data if self.__class__ == x.__class__ else x
|
||||
return self.__class__(data +self.data)
|
||||
def __iadd__(self,x):
|
||||
data = x.data if self.__class__ == x.__class__ else x
|
||||
self.data += data
|
||||
def __mul__(self,x):
|
||||
data = x.data if self.__class__ == x.__class__ else x
|
||||
return self.__class__(self.data * data)
|
||||
def __imul__(self,x):
|
||||
data = x.data if self.__class__ == x.__class__ else x
|
||||
self.data *= data
|
||||
def __rmul__(self,x):
|
||||
data = x.data if self.__class__ == x.__class__ else x
|
||||
return self.__class__(data * self.data)
|
||||
def __neg__(self):
|
||||
return neg(self)
|
||||
def __abs__(self):
|
||||
return abs(self.data)
|
||||
'''
|
||||
@property
|
||||
def data(self):
|
||||
return self.data
|
||||
@data.setter
|
||||
def data(self,s):
|
||||
self.data = s
|
||||
'''
|
||||
def norm(self,n=0):
|
||||
'''the default is +oo norm'''
|
||||
absolute = abs(self.data)
|
||||
if n < 1 :return max(absolute)
|
||||
return (sum(absolute**n))**(1/n)
|
||||
def hasNorm(self):
|
||||
'''check norm's three necessary conditions:
|
||||
1. not neg
|
||||
2. homogenious (qici)
|
||||
3. triangle inequlity
|
||||
|
||||
there is much probably wrong
|
||||
'''
|
||||
bl = reduce(and_,[self.norm(i)>=0 for i in range(3)])
|
||||
if bl:
|
||||
n = randint(2,100)
|
||||
bl = reduce(and_,[n*(self.norm(i))==(n*self).norm(i) for i in range(3)])
|
||||
if bl:
|
||||
another = self*randint(2,10)-randint(1,100)
|
||||
return reduce(and_,[(another+self).norm(i)<=another.norm(i)+self.norm(i) for i in range(3)])
|
||||
return False
|
||||
|
||||
class vector(obj):
|
||||
def __init__(self,arr):
|
||||
''' arr: iterable'''
|
||||
self.data =np.array(arr)
|
||||
def innerProduct(self,x):
|
||||
return sum(self.data*x)
|
||||
def outerProduct(self,x):
|
||||
pass
|
||||
|
||||
|
||||
class matrix(obj):
|
||||
def __init__(self,s):
|
||||
'''s is a list of lists'''
|
||||
self.data=np.mat(s)
|
||||
self.T = None
|
||||
self. I = None
|
||||
'''
|
||||
@property
|
||||
def T(self):
|
||||
if self.T==None:self.T = self.data.T
|
||||
return self.T
|
||||
@T.setter
|
||||
def T(self,s):
|
||||
self.T = s
|
||||
@property
|
||||
def I(self):
|
||||
if self.I == None: self.I = self.data.I
|
||||
return self.I
|
||||
|
||||
@I.setter
|
||||
def I(self,s):
|
||||
self.I = s
|
||||
'''
|
||||
def E(self,n=None):
|
||||
if n is None: n = self.data.shape[0]
|
||||
return np.eye(n)
|
||||
|
||||
def norm(self,n=0):
|
||||
absolute = abs(self.data)
|
||||
if n < 1:
|
||||
# max of one row sum
|
||||
return max([sum(i) for i in absolute])
|
||||
if n==1:return self.norm1()
|
||||
elif n==2:return self.norm2()
|
||||
def norm1(self):
|
||||
''' max of sum of cols'''
|
||||
absolute = abs(self.data)
|
||||
return max(absolute.sum(axis=0))
|
||||
def norm2(self):
|
||||
''' max of sum of rows'''
|
||||
absolute = abs(self.data)
|
||||
return max(absolute.sum(axis=1))
|
||||
def norm_f(self):
|
||||
return sum((self.data**2).sum(axis=1))**0.5
|
||||
|
||||
if __name__ =='__main__':
|
||||
v1 = vector([1,-2,3,4])
|
||||
v2 = vector([0,2,0,5])
|
||||
m1 = matrix([v1,v2,v2,v1])
|
||||
print([v1.norm(i) for i in range(3)])
|
||||
|
@ -1,3 +1,15 @@
|
||||
''' mbinary
|
||||
#########################################################################
|
||||
# File : bTree.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-08-29 12:49
|
||||
# Description:
|
||||
#########################################################################
|
||||
'''
|
||||
|
||||
class node:
|
||||
def __init__(self,keys=None,isLeaf = True,children=None):
|
||||
if keys is None:keys=[]
|
||||
|
@ -1,3 +1,15 @@
|
||||
''' mbinary
|
||||
#########################################################################
|
||||
# File : redBlackTree.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-07-14 16:15
|
||||
# Description:
|
||||
#########################################################################
|
||||
'''
|
||||
|
||||
'''
|
||||
#########################################################################
|
||||
# File : redBlackTree.py
|
||||
|
@ -1,3 +1,29 @@
|
||||
---
|
||||
title: 『数据结构』Fibonacci-heap
|
||||
date: 2018-09-06 19:09
|
||||
categories: 数据结构与算法
|
||||
tags: [数据结构,斐波那契堆]
|
||||
keywords: 数据结构,斐波那契堆
|
||||
mathjax: true
|
||||
description:
|
||||
---
|
||||
|
||||
<!-- TOC -->
|
||||
|
||||
- [1. 结构](#1-结构)
|
||||
- [2. 势函数](#2-势函数)
|
||||
- [3. 最大度数](#3-最大度数)
|
||||
- [4. 操作](#4-操作)
|
||||
- [4.1. 创建一个斐波那契堆](#41-创建一个斐波那契堆)
|
||||
- [4.2. 插入一个结点](#42-插入一个结点)
|
||||
- [4.3. 寻找最小结点](#43-寻找最小结点)
|
||||
- [4.4. 合并两个斐波那契堆](#44-合并两个斐波那契堆)
|
||||
- [4.5. 抽取最小值](#45-抽取最小值)
|
||||
- [4.6. 关键字减值](#46-关键字减值)
|
||||
- [4.7. 删除结点](#47-删除结点)
|
||||
- [5. 最大度数的证明](#5-最大度数的证明)
|
||||
|
||||
<!-- /TOC -->
|
||||
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-22531846a72b0d83.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
@ -12,16 +38,15 @@
|
||||
|
||||
<a id="markdown-2-势函数" name="2-势函数"></a>
|
||||
# 2. 势函数
|
||||
下面用势函数来分析摊还代价, 如果你不明白, 可以看[摊还分析](https://www.jianshu.com/p/052fbe9d92a4)
|
||||
|
||||
$\Phi(H) = t(H) + 2m(h)$
|
||||
t 是根链表中树的数目,m(H) 表示被标记的结点数
|
||||
|
||||
最初没有结点
|
||||
<a id="markdown-3-最大度数" name="3-最大度数"></a>
|
||||
# 3. 最大度数
|
||||
$D(n)\leqslant \lfloor lgn \rfloor$
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-c9e0cd3be4e98c4b.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
||||
|
||||
|
||||
结点的最大度数(即孩子数)$D(n)\leqslant \lfloor lgn \rfloor$, 证明放在最后
|
||||
<a id="markdown-4-操作" name="4-操作"></a>
|
||||
# 4. 操作
|
||||
<a id="markdown-41-创建一个斐波那契堆" name="41-创建一个斐波那契堆"></a>
|
||||
@ -133,19 +158,13 @@ def cascading-cut(H,y):
|
||||
|
||||
<a id="markdown-47-删除结点" name="47-删除结点"></a>
|
||||
## 4.7. 删除结点
|
||||
```python
|
||||
decrease(H,nd, MIN)
|
||||
<!-- TOC -->
|
||||
extract-min(H)
|
||||
```
|
||||
|
||||
- [1. 结构](#1-结构)
|
||||
- [2. 势函数](#2-势函数)
|
||||
- [3. 最大度数](#3-最大度数)
|
||||
- [4. 操作](#4-操作)
|
||||
- [4.1. 创建一个斐波那契堆](#41-创建一个斐波那契堆)
|
||||
- [4.2. 插入一个结点](#42-插入一个结点)
|
||||
- [4.3. 寻找最小结点](#43-寻找最小结点)
|
||||
- [4.4. 合并两个斐波那契堆](#44-合并两个斐波那契堆)
|
||||
- [4.5. 抽取最小值](#45-抽取最小值)
|
||||
- [4.6. 关键字减值](#46-关键字减值)
|
||||
- [4.7. 删除结点](#47-删除结点)
|
||||
|
||||
<!-- /TOC -->
|
||||
<a id="markdown-5-最大度数的证明" name="5-最大度数的证明"></a>
|
||||
# 5. 最大度数的证明
|
||||
这也是`斐波那契`这个名字的由来,
|
||||
$D(n)\leqslant \lfloor lgn \rfloor$
|
||||
![](https://upload-images.jianshu.io/upload_images/7130568-c9e0cd3be4e98c4b.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
|
@ -1,3 +1,13 @@
|
||||
---
|
||||
title: 图算法
|
||||
date: 2018-09-06 19:10
|
||||
categories: 数据结构与算法
|
||||
tags: [图,算法]
|
||||
keywords: 图,算法
|
||||
mathjax: true
|
||||
description:
|
||||
---
|
||||
|
||||
<!-- TOC -->
|
||||
|
||||
- [1. 图](#1-图)
|
||||
@ -161,7 +171,7 @@ for edge as u,v in sorted(G.E):
|
||||
return edges
|
||||
```
|
||||
如果并查集的实现采用了 按秩合并与路径压缩技巧, 则 find 与 union 的时间接近常数
|
||||
所以时间复杂度在于排序边, 即 $O(ElgE)$, 而 $E<V^2$, 所以 $lgE = O(lgV)$, 时间复杂度为 $O(ElgV)$
|
||||
所以时间复杂度在于排序边, 即 $O(ElgE)$, 而 $ E\< V^2 $, 所以 $lgE = O(lgV)$, 时间复杂度为 $O(ElgV)$
|
||||
<a id="markdown-32-prim-算法" name="32-prim-算法"></a>
|
||||
## 3.2. Prim 算法
|
||||
用了 BFS, 类似 Dijkstra 算法
|
||||
@ -190,7 +200,7 @@ while not que.isempty():
|
||||
|
||||
<a id="markdown-4-单源最短路" name="4-单源最短路"></a>
|
||||
# 4. 单源最短路
|
||||
求一个结点到其他结点的最短路径, 可以用 Bellman-ford算法, 或者 Dijkstra算法.
|
||||
求一个结点到其他结点的最短路径, 可以用 Bellman-Ford算法, 或者 Dijkstra算法.
|
||||
定义两个结点u,v间的最短路
|
||||
$$
|
||||
\delta(u,v) = \begin{cases}
|
||||
@ -205,7 +215,7 @@ $$
|
||||
|
||||
<a id="markdown-41-负权重的边" name="41-负权重的边"></a>
|
||||
## 4.1. 负权重的边
|
||||
Dijkstra 算法不能处理, 只能用 Bellman-Ford 算法,
|
||||
Dijkstra 算法不能处理负权边, 只能用 Bellman-Ford 算法,
|
||||
而且如果有负值圈, 则没有最短路, bellman-ford算法也可以检测出来
|
||||
<a id="markdown-42-初始化" name="42-初始化"></a>
|
||||
## 4.2. 初始化
|
||||
@ -288,7 +298,7 @@ $$
|
||||
$$
|
||||
\delta(i,j) = l_{ij}^{(|V|-1)} = l_{ij}^{(|V|)} =l_{ij}^{(|V| + 1)}= ...
|
||||
$$
|
||||
所以客户处自底向上计算, 如下
|
||||
所以可以自底向上计算, 如下
|
||||
输入权值矩阵 $W(w_{ij})), L^{(m-1)}$,输出$ L^{(m)}$, 其中 $L^{(1)} = W$,
|
||||
```python
|
||||
n = L.rows
|
||||
@ -461,4 +471,4 @@ def ford-fulkerson(G,s,t):
|
||||
<a id="markdown-7-参考资料" name="7-参考资料"></a>
|
||||
# 7. 参考资料
|
||||
[^1]: 算法导论
|
||||
[^2]: 图论, 王树禾
|
||||
[^2]: 图论, 王树禾
|
Before Width: | Height: | Size: 117 KiB After Width: | Height: | Size: 117 KiB |
Before Width: | Height: | Size: 38 KiB After Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 104 KiB After Width: | Height: | Size: 104 KiB |
Before Width: | Height: | Size: 22 KiB After Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 29 KiB After Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 16 KiB After Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 23 KiB After Width: | Height: | Size: 23 KiB |
@ -1,3 +1,15 @@
|
||||
''' mbinary
|
||||
#########################################################################
|
||||
# File : lcs.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-08-25 12:00
|
||||
# Description:
|
||||
#########################################################################
|
||||
'''
|
||||
|
||||
def lcs(a,b):
|
||||
'''time: O(mn); space: O(mn)'''
|
||||
m,n= len(a),len(b)
|
16
dynamicProgramming/matrix-multiply.py
Normal file
@ -0,0 +1,16 @@
|
||||
''' mbinary
|
||||
#########################################################################
|
||||
# File : matrix-multiply.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-08-24 21:24
|
||||
# Description:
|
||||
#########################################################################
|
||||
'''
|
||||
|
||||
def adjustOrd(sizes):
|
||||
''' adjust the chain-multiply of matrix, sizes=[row1,row2,..,rown,coln]'''
|
||||
n = len(sizes)
|
||||
if n<3: return
|
@ -1,3 +1,15 @@
|
||||
''' mbinary
|
||||
#########################################################################
|
||||
# File : splitStripe.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-08-24 17:07
|
||||
# Description:
|
||||
#########################################################################
|
||||
'''
|
||||
|
||||
'''
|
||||
There is stripe which length is n,
|
||||
priceMap contains a map for different length of stripe and its price
|
44
math/isPrime.py
Normal file
@ -0,0 +1,44 @@
|
||||
''' mbinary
|
||||
#########################################################################
|
||||
# File : isPrime.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-19 21:34
|
||||
# Description:
|
||||
#########################################################################
|
||||
'''
|
||||
|
||||
# created by mbinary @2018-3-4
|
||||
# description: judge a num if it's a prime. It will be more efficient when judging many times
|
||||
|
||||
|
||||
primes = [2,3,5,7,11,13]
|
||||
def isPrime(x):
|
||||
global primes
|
||||
if x>primes[-1]:
|
||||
return genPrime(x)
|
||||
return twoDivideFind(x,primes)
|
||||
|
||||
def genPrime(x):
|
||||
global primes
|
||||
while x>primes[-1]:
|
||||
left = primes[-1]
|
||||
right = (left+1)**2
|
||||
lst = []
|
||||
for i in range(left,right):
|
||||
for j in primes:
|
||||
if i%j==0:break
|
||||
else:lst.append(i)
|
||||
primes+=lst
|
||||
else:return twoDivideFind(x,lst)
|
||||
|
||||
def twoDivideFind(x,primes):
|
||||
a,b = 0, len(primes)
|
||||
while a<=b:
|
||||
mid = (a+b)//2
|
||||
if primes[mid]<x:a=mid+1
|
||||
elif primes[mid]>x: b= mid-1
|
||||
else:return True
|
||||
return False
|
50
math/num_weight.py
Normal file
@ -0,0 +1,50 @@
|
||||
''' mbinary
|
||||
#########################################################################
|
||||
# File : num_weight.py
|
||||
# Author: mbinary
|
||||
# Mail: zhuheqin1@gmail.com
|
||||
# Blog: https://mbinary.coding.me
|
||||
# Github: https://github.com/mbinary
|
||||
# Created Time: 2018-05-19 21:36
|
||||
# Description:
|
||||
#########################################################################
|
||||
'''
|
||||
|
||||
def covert(s,basefrom=10,baseto=2):
|
||||
return d2n(n2d(s,basefrom),baseto)
|
||||
def n2d(s,base=16):
|
||||
''' num of base_n(n<36) to decimal'''
|
||||
dic = {chr(i+ord('0')):i for i in range(10)}
|
||||
s=s.upper()
|
||||
if base>10:
|
||||
dic.update({chr(i+ord('A')):i+10 for i in range(26)})
|
||||
#if base in [16,8,2] :
|
||||
# p=max(map(s.find,'OBX'))
|
||||
# s=s[p+1:] #remove prefix of hex or bin or oct
|
||||
rst=0
|
||||
for i in s:
|
||||
rst=dic[i]+rst*base
|
||||
return rst
|
||||
|
||||
def d2n(n,base=16):
|
||||
''' num of base_n(n<36) to decimal'''
|
||||
dic = {i:chr(i+ord('0')) for i in range(10)}
|
||||
if base>10:
|
||||
dic.update({i+10:chr(i+ord('A')) for i in range(26)})
|
||||
rst=[]
|
||||
while n!=0:
|
||||
i=int(n/base)
|
||||
rst.append(dic[n-i*base])
|
||||
n=i
|
||||
return ''.join(rst[::-1])
|
||||
|
||||
|
||||
|
||||
'''
|
||||
>>> n2d(str(d2n(4001)))
|
||||
4001
|
||||
>>> d2n(n2d(str(4001)),2)
|
||||
'100000000000001'
|
||||
>>> covert('4001',16,2)
|
||||
'100000000000001'
|
||||
'''
|