sol2/sol/stack.hpp
ThePhD 49c73c4725 Heavy optimizations to stateless and lvalue member functions allow us to make many of the general use cases of lambdas and member function pointers work out.
This will be useful. The next fix has tobe in table.hpp in the std::false_type ... specialization of the private `set_fx` function.
2013-12-08 23:05:03 -05:00

214 lines
6.6 KiB
C++

// The MIT License (MIT)
// Copyright (c) 2013 Danny Y., Rapptz
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_STACK_HPP
#define SOL_STACK_HPP
#include "reference.hpp"
#include "tuple.hpp"
#include <utility>
#include <type_traits>
#include <array>
namespace sol {
template<typename T, typename R = void>
using EnableIf = typename std::enable_if<T::value, R>::type;
template<typename T, typename R = void>
using DisableIf = typename std::enable_if<!T::value, R>::type;
namespace stack {
namespace detail {
template<typename T>
inline T get_unsigned(lua_State* L, std::true_type, int index = -1) {
return lua_tounsigned(L, index);
}
template<typename T>
inline T get_unsigned(lua_State* L, std::false_type, int index = -1) {
return lua_tointeger(L, index);
}
template<typename T>
inline T get_arithmetic(lua_State* L, std::false_type, int index = -1) {
// T is a floating point
return lua_tonumber(L, index);
}
template<typename T>
inline T get_arithmetic(lua_State* L, std::true_type, int index = -1) {
// T is an integral
return get_unsigned<T>(L, std::is_unsigned<T>{}, index);
}
template<typename T>
inline T get_helper(lua_State* L, std::true_type, int index = -1) {
// T is a class type
return T(L, index);
}
template<typename T>
inline T get_helper(lua_State* L, std::false_type, int index = -1) {
// T is a fundamental type
return get_arithmetic<T>(L, std::is_integral<T>{}, index);
}
template<typename T>
inline void push_unsigned(lua_State* L, T x, std::true_type) {
lua_pushunsigned(L, x);
}
template<typename T>
inline void push_unsigned(lua_State* L, T x, std::false_type) {
lua_pushinteger(L, x);
}
template<typename T>
inline void push_arithmetic(lua_State* L, T x, std::true_type) {
// T is an integral type
push_unsigned(L, x, std::is_unsigned<T>{});
}
template<typename T>
inline void push_arithmetic(lua_State* L, T x, std::false_type) {
// T is an floating point type
lua_pushnumber(L, x);
}
} // detail
template<typename T>
inline T get(lua_State* L, int index = -1) {
return detail::get_helper<T>(L, std::is_class<T>{}, index);
}
template<>
inline bool get<bool>(lua_State* L, int index) {
return lua_toboolean(L, index) != 0;
}
template<>
inline std::string get<std::string>(lua_State* L, int index) {
std::string::size_type len;
auto str = lua_tolstring(L, index, &len);
return { str, len };
}
template<>
inline const char* get<const char*>(lua_State* L, int index) {
return lua_tostring(L, index);
}
template<typename T>
inline T pop(lua_State* L) {
auto r = get<T>(L);
lua_pop(L, 1);
return r;
}
template<typename T>
inline EnableIf<std::is_arithmetic<T>> push(lua_State* L, T arithmetic) {
detail::push_arithmetic(L, arithmetic, std::is_integral<T>{});
}
inline void push(lua_State*, reference& ref) {
ref.push();
}
inline void push(lua_State* L, bool boolean) {
lua_pushboolean(L, boolean);
}
inline void push(lua_State* L, const nil_t&) {
lua_pushnil(L);
}
inline void push( lua_State* L, lua_CFunction func ) {
lua_pushcfunction( L, func );
}
inline void push( lua_State* L, lua_CFunction func, int n ) {
lua_pushcclosure( L, func, n );
}
inline void push( lua_State* L, void* userdata ) {
lua_pushlightuserdata( L, userdata );
}
template<size_t N>
inline void push(lua_State* L, const char (&str)[N]) {
lua_pushlstring(L, str, N - 1);
}
inline void push(lua_State* L, const char* str) {
lua_pushlstring(L, str, std::char_traits<char>::length( str ));
}
inline void push(lua_State* L, const std::string& str) {
lua_pushlstring(L, str.c_str(), str.size());
}
template<typename T, size_t N>
inline void push( lua_State* L, const std::array<T, N>& data ) {
for ( std::size_t i = 0; i < data.size( ); ++i ) {
push( L, data[ i ] );
}
}
namespace detail {
template<typename T, std::size_t... I>
inline void push(lua_State* L, indices<I...>, const T& tuplen) {
using swallow = char[];
void(swallow{ '\0', (sol::stack::push(L, std::get<I>(tuplen)), '\0')... });
}
template<typename F, typename... Vs>
auto ltr_pop(lua_State*, F&& f, types<>, Vs&&... vs) -> decltype(f(std::forward<Vs>(vs)...)) {
return f(std::forward<Vs>(vs)...);
}
template<typename F, typename Head, typename... Vs>
auto ltr_pop(lua_State* L, F&& f, types<Head>, Vs&&... vs) -> decltype(ltr_pop(L, std::forward<F>(f), types<>(), std::forward<Vs>(vs)..., pop<Head>(L))) {
return ltr_pop(L, std::forward<F>(f), types<>(), std::forward<Vs>(vs)..., pop<Head>(L));
}
template<typename F, typename Head, typename... Tail, typename... Vs>
auto ltr_pop(lua_State* L, F&& f, types<Head, Tail...>, Vs&&... vs) -> decltype(ltr_pop(L, std::forward<F>(f), types<Tail...>(), std::forward<Vs>(vs)..., pop<Head>(L))) {
return ltr_pop(L, std::forward<F>(f), types<Tail...>(), std::forward<Vs>(vs)..., pop<Head>(L));
}
} // detail
template<typename... Args>
inline void push(lua_State* L, const std::tuple<Args...>& tuplen) {
detail::push(L, build_indices<sizeof...(Args)>(), tuplen);
}
template<typename... Args, typename TFx>
inline auto pop_call(lua_State* L, TFx&& fx, types<Args...>) -> decltype(detail::ltr_pop(L, std::forward<TFx>(fx), types<Args...>())) {
return detail::ltr_pop(L, std::forward<TFx>(fx), types<Args...>());
}
template<typename... Args>
void push_args(lua_State* L, Args&&... args) {
using swallow = char[];
void(swallow{ '\0', (stack::push(L, std::forward<Args>(args)), '\0')... });
}
} // stack
} // sol
#endif // SOL_STACK_HPP