// The MIT License (MIT) // Copyright (c) 2013 Danny Y., Rapptz // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef SOL_STACK_HPP #define SOL_STACK_HPP #include "reference.hpp" #include "tuple.hpp" #include #include #include namespace sol { template using EnableIf = typename std::enable_if::type; template using DisableIf = typename std::enable_if::type; namespace stack { namespace detail { template inline T get_unsigned(lua_State* L, std::true_type, int index = -1) { return lua_tounsigned(L, index); } template inline T get_unsigned(lua_State* L, std::false_type, int index = -1) { return lua_tointeger(L, index); } template inline T get_arithmetic(lua_State* L, std::false_type, int index = -1) { // T is a floating point return lua_tonumber(L, index); } template inline T get_arithmetic(lua_State* L, std::true_type, int index = -1) { // T is an integral return get_unsigned(L, std::is_unsigned{}, index); } template inline T get_helper(lua_State* L, std::true_type, int index = -1) { // T is a class type return T(L, index); } template inline T get_helper(lua_State* L, std::false_type, int index = -1) { // T is a fundamental type return get_arithmetic(L, std::is_integral{}, index); } template inline void push_unsigned(lua_State* L, T x, std::true_type) { lua_pushunsigned(L, x); } template inline void push_unsigned(lua_State* L, T x, std::false_type) { lua_pushinteger(L, x); } template inline void push_arithmetic(lua_State* L, T x, std::true_type) { // T is an integral type push_unsigned(L, x, std::is_unsigned{}); } template inline void push_arithmetic(lua_State* L, T x, std::false_type) { // T is an floating point type lua_pushnumber(L, x); } } // detail template inline T get(lua_State* L, int index = -1) { return detail::get_helper(L, std::is_class{}, index); } template<> inline bool get(lua_State* L, int index) { return lua_toboolean(L, index) != 0; } template<> inline std::string get(lua_State* L, int index) { std::string::size_type len; auto str = lua_tolstring(L, index, &len); return { str, len }; } template<> inline const char* get(lua_State* L, int index) { return lua_tostring(L, index); } template inline T pop(lua_State* L) { auto r = get(L); lua_pop(L, 1); return r; } template inline EnableIf> push(lua_State* L, T arithmetic) { detail::push_arithmetic(L, arithmetic, std::is_integral{}); } inline void push(lua_State*, reference& ref) { ref.push(); } inline void push(lua_State* L, bool boolean) { lua_pushboolean(L, boolean); } inline void push(lua_State* L, const nil_t&) { lua_pushnil(L); } inline void push( lua_State* L, lua_CFunction func ) { lua_pushcfunction( L, func ); } inline void push( lua_State* L, lua_CFunction func, int n ) { lua_pushcclosure( L, func, n ); } inline void push( lua_State* L, void* userdata ) { lua_pushlightuserdata( L, userdata ); } template inline void push(lua_State* L, const char (&str)[N]) { lua_pushlstring(L, str, N - 1); } inline void push(lua_State* L, const char* str) { lua_pushlstring(L, str, std::char_traits::length( str )); } inline void push(lua_State* L, const std::string& str) { lua_pushlstring(L, str.c_str(), str.size()); } template inline void push( lua_State* L, const std::array& data ) { for ( std::size_t i = 0; i < data.size( ); ++i ) { push( L, data[ i ] ); } } namespace detail { template inline void push(lua_State* L, indices, const T& tuplen) { using swallow = char[]; void(swallow{ '\0', (sol::stack::push(L, std::get(tuplen)), '\0')... }); } template auto ltr_pop(lua_State*, F&& f, types<>, Vs&&... vs) -> decltype(f(std::forward(vs)...)) { return f(std::forward(vs)...); } template auto ltr_pop(lua_State* L, F&& f, types, Vs&&... vs) -> decltype(ltr_pop(L, std::forward(f), types<>(), std::forward(vs)..., pop(L))) { return ltr_pop(L, std::forward(f), types<>(), std::forward(vs)..., pop(L)); } template auto ltr_pop(lua_State* L, F&& f, types, Vs&&... vs) -> decltype(ltr_pop(L, std::forward(f), types(), std::forward(vs)..., pop(L))) { return ltr_pop(L, std::forward(f), types(), std::forward(vs)..., pop(L)); } } // detail template inline void push(lua_State* L, const std::tuple& tuplen) { detail::push(L, build_indices(), tuplen); } template inline auto pop_call(lua_State* L, TFx&& fx, types) -> decltype(detail::ltr_pop(L, std::forward(fx), types())) { return detail::ltr_pop(L, std::forward(fx), types()); } template void push_args(lua_State* L, Args&&... args) { using swallow = char[]; void(swallow{ '\0', (stack::push(L, std::forward(args)), '\0')... }); } } // stack } // sol #endif // SOL_STACK_HPP