sol2/test_functions.cpp

447 lines
14 KiB
C++
Raw Normal View History

#define SOL_CHECK_ARGUMENTS
#include <catch.hpp>
#include <sol.hpp>
#include <iostream>
std::function<int()> makefn() {
auto fx = []() -> int {
return 0x1456789;
};
return fx;
}
void takefn(std::function<int()> purr) {
if (purr() != 0x1456789)
throw 0;
}
struct A {
int a = 0xA; int bark() { return 1; }
};
std::tuple<int, int> bark(int num_value, A* a) {
return std::tuple<int, int>(num_value * 2, a->bark());
}
void test_free_func(std::function<void()> f) {
f();
}
void test_free_func2(std::function<int(int)> f, int arg1) {
int val = f(arg1);
if(val != arg1)
throw sol::error("failed function call!");
}
int overloaded(int x) {
std::cout << x << std::endl;
return 3;
}
int overloaded(int x, int y) {
std::cout << x << " " << y << std::endl;
return 7;
}
int overloaded(int x, int y, int z) {
std::cout << x << " " << y << " " << z << std::endl;
return 11;
}
int non_overloaded(int x, int y, int z) {
std::cout << x << " " << y << " " << z << std::endl;
return 13;
}
TEST_CASE("functions/overload-resolution", "Check if overloaded function resolution templates compile/work") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.set_function("non_overloaded", non_overloaded);
REQUIRE_NOTHROW(lua.script("x = non_overloaded(1, 2, 3)\nprint(x)"));
/*
// Cannot reasonably support: clang++ refuses to try enough
// deductions to make this work
lua.set_function<int>("overloaded", overloaded);
REQUIRE_NOTHROW(lua.script("print(overloaded(1))"));
lua.set_function<int, int>("overloaded", overloaded);
REQUIRE_NOTHROW(lua.script("print(overloaded(1, 2))"));
lua.set_function<int, int, int>("overloaded", overloaded);
REQUIRE_NOTHROW(lua.script("print(overloaded(1, 2, 3))"));
*/
lua.set_function("overloaded", sol::resolve<int(int)>(overloaded));
REQUIRE_NOTHROW(lua.script("print(overloaded(1))"));
lua.set_function("overloaded", sol::resolve<int(int, int)>(overloaded));
REQUIRE_NOTHROW(lua.script("print(overloaded(1, 2))"));
lua.set_function("overloaded", sol::resolve<int(int, int, int)>(overloaded));
REQUIRE_NOTHROW(lua.script("print(overloaded(1, 2, 3))"));
}
TEST_CASE("functions/return-order-and-multi-get", "Check if return order is in the same reading order specified in Lua") {
const static std::tuple<int, int, int> triple = std::make_tuple(10, 11, 12);
const static std::tuple<int, float> paired = std::make_tuple(10, 10.f);
sol::state lua;
lua.set_function("f", [] {
return std::make_tuple(10, 11, 12);
} );
int a = 0;
lua.set_function( "h", []() {
return std::make_tuple( 10, 10.0f );
} );
lua.script("function g() return 10, 11, 12 end\nx,y,z = g()");
auto tcpp = lua.get<sol::function>("f").call<int, int, int>();
auto tlua = lua.get<sol::function>( "g" ).call<int, int, int>();
auto tcpp2 = lua.get<sol::function>( "h" ).call<int, float>();
auto tluaget = lua.get<int, int, int>( "x", "y", "z" );
REQUIRE(tcpp == triple);
REQUIRE(tlua == triple);
REQUIRE(tluaget == triple);
REQUIRE(tcpp2 == paired);
}
TEST_CASE("functions/deducing-return-order-and-multi-get", "Check if return order is in the same reading order specified in Lua, with regular deducing calls") {
const static std::tuple<int, int, int> triple = std::make_tuple(10, 11, 12);
sol::state lua;
lua.set_function( "f_string", []() { return "this is a string!"; } );
sol::function f_string = lua[ "f_string" ];
// Make sure there are no overload collisions / compiler errors for automatic string conversions
std::string f_string_result = f_string();
REQUIRE(f_string_result == "this is a string!");
f_string_result = f_string();
REQUIRE(f_string_result == "this is a string!");
lua.set_function("f", [] {
return std::make_tuple(10, 11, 12);
});
lua.script("function g() return 10, 11, 12 end\nx,y,z = g()");
std::tuple<int, int, int> tcpp = lua.get<sol::function>("f")();
std::tuple<int, int, int> tlua = lua.get<sol::function>("g")();
std::tuple<int, int, int> tluaget = lua.get<int, int, int>("x", "y", "z");
std::cout << "cpp: " << std::get<0>(tcpp) << ',' << std::get<1>(tcpp) << ',' << std::get<2>(tcpp) << std::endl;
std::cout << "lua: " << std::get<0>(tlua) << ',' << std::get<1>(tlua) << ',' << std::get<2>(tlua) << std::endl;
std::cout << "lua xyz: " << lua.get<int>("x") << ',' << lua.get<int>("y") << ',' << lua.get<int>("z") << std::endl;
REQUIRE(tcpp == triple);
REQUIRE(tlua == triple);
REQUIRE(tluaget == triple);
}
TEST_CASE("functions/pair-and-tuple-and-proxy-tests", "Check if sol::reference and sol::proxy can be passed to functions as arguments") {
sol::state lua;
lua.new_usertype<A>("A",
"bark", &A::bark);
lua.script(R"( function f (num_value, a)
return num_value * 2, a:bark()
end
nested = { variables = { no = { problem = 10 } } } )");
lua.set_function("g", bark);
sol::function cpp_bark = lua["g"];
sol::function lua_bark = lua["f"];
sol::reference lua_variable_x = lua["nested"]["variables"]["no"]["problem"];
A cpp_variable_y;
std::tuple<int, int> ab = cpp_bark(lua_variable_x, cpp_variable_y);
std::pair<int, int> cd = lua_bark(lua["nested"]["variables"]["no"]["problem"], cpp_variable_y);
static const std::tuple<int, int> abdesired( 20, 1 );
static const std::pair<int, int> cddesired = { 20, 1 };
REQUIRE(ab == abdesired);
REQUIRE(cd == cddesired);
}
TEST_CASE("functions/sol::function-to-std::function", "check if conversion to std::function works properly and calls with correct arguments") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.set_function("testFunc", test_free_func);
lua.set_function("testFunc2", test_free_func2);
lua.script(
"testFunc(function() print(\"hello std::function\") end)"
);
lua.script(
"function m(a)\n"
" print(\"hello std::function with arg \", a)\n"
" return a\n"
"end\n"
"\n"
"testFunc2(m, 1)"
);
}
TEST_CASE("functions/returning-functions-from-C++-and-gettin-in-lua", "check to see if returning a functor and getting a functor from lua is possible") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.set_function("makefn", makefn);
lua.set_function("takefn", takefn);
lua.script("afx = makefn()\n"
"print(afx())\n"
"takefn(afx)\n");
}
TEST_CASE( "functions/function_result-protected_function_result", "Function result should be the beefy return type for sol::function that allows for error checking and error handlers" ) {
sol::state lua;
lua.open_libraries( sol::lib::base, sol::lib::debug );
static const char unhandlederrormessage[] = "true error message";
static const char handlederrormessage[] = "doodle";
// Some function; just using a lambda to be cheap
auto doomfx = []() {
std::cout << "doomfx called" << std::endl;
throw std::runtime_error( unhandlederrormessage );
};
auto luadoomfx = [&lua]() {
std::cout << "luadoomfx called" << std::endl;
// Does not bypass error function, will call it
luaL_error( lua.lua_state(), unhandlederrormessage );
};
lua.set_function("doom", doomfx);
lua.set_function("luadoom", luadoomfx);
auto cpphandlerfx = []( std::string x ) {
std::cout << "c++ handler called with: " << x << std::endl;
return handlederrormessage;
};
lua.set_function( "cpphandler", cpphandlerfx );
lua.script(
std::string( "function luahandler ( message )" )
+ " print('lua handler called with: ' .. message)"
+ " return '" + handlederrormessage + "'"
+ "end"
);
auto nontrampolinefx = [](lua_State*) -> int { throw "x";};
lua_CFunction c_nontrampolinefx = nontrampolinefx;
lua.set("nontrampoline", c_nontrampolinefx);
sol::protected_function doom = lua[ "doom" ];
sol::protected_function luadoom = lua["luadoom"];
sol::protected_function nontrampoline = lua["nontrampoline"];
sol::function luahandler = lua["luahandler"];
sol::function cpphandler = lua[ "cpphandler" ];
doom.error_handler = luahandler;
luadoom.error_handler = cpphandler;
nontrampoline.error_handler = cpphandler;
{
sol::protected_function_result result = doom();
REQUIRE(!result.valid());
std::string errorstring = result;
REQUIRE(errorstring == handlederrormessage);
}
{
sol::protected_function_result result = luadoom();
REQUIRE(!result.valid());
std::string errorstring = result;
REQUIRE(errorstring == handlederrormessage);
}
{
sol::protected_function_result result = nontrampoline();
REQUIRE(!result.valid());
std::string errorstring = result;
REQUIRE(errorstring == handlederrormessage);
}
}
TEST_CASE("functions/destructor-tests", "Show that proper copies / destruction happens") {
static int created = 0;
static int destroyed = 0;
static void* last_call = nullptr;
static void* static_call = reinterpret_cast<void*>(0x01);
typedef void(* fptr)();
struct x {
x() {++created;}
x(const x&) {++created;}
x(x&&) {++created;}
x& operator=(const x&) {return *this;}
x& operator=(x&&) {return *this;}
void func() {last_call = static_cast<void*>(this);};
~x () {++destroyed;}
};
struct y {
y() {++created;}
y(const x&) {++created;}
y(x&&) {++created;}
y& operator=(const x&) {return *this;}
y& operator=(x&&) {return *this;}
static void func() {last_call = static_call;};
void operator()() {func();}
operator fptr () { return func; }
~y () {++destroyed;}
};
// stateful functors/member functions should always copy unless specified
{
created = 0;
destroyed = 0;
last_call = nullptr;
{
sol::state lua;
x x1;
lua.set_function("x1copy", &x::func, x1);
lua.script("x1copy()");
REQUIRE(created == 2);
REQUIRE(destroyed == 0);
REQUIRE_FALSE(last_call == &x1);
lua.set_function("x1ref", &x::func, std::ref(x1));
lua.script("x1ref()");
REQUIRE(created == 2);
REQUIRE(destroyed == 0);
REQUIRE(last_call == &x1);
}
REQUIRE(created == 2);
REQUIRE(destroyed == 2);
}
// things convertible to a static function should _never_ be forced to make copies
// therefore, pass through untouched
{
created = 0;
destroyed = 0;
last_call = nullptr;
{
sol::state lua;
y y1;
lua.set_function("y1copy", y1);
lua.script("y1copy()");
REQUIRE(created == 1);
REQUIRE(destroyed == 0);
REQUIRE(last_call == static_call);
last_call = nullptr;
lua.set_function("y1ref", std::ref(y1));
lua.script("y1ref()");
REQUIRE(created == 1);
REQUIRE(destroyed == 0);
REQUIRE(last_call == static_call);
}
REQUIRE(created == 1);
REQUIRE(destroyed == 1);
}
}
TEST_CASE("functions/all-kinds", "Register all kinds of functions, make sure they all compile and work") {
sol::state lua;
struct test_1 {
int a = 0xA;
virtual int bark() {
return a;
}
int bark_mem() {
return a;
}
static std::tuple<int, int> x_bark(int num_value, test_1* a) {
return std::tuple<int, int>(num_value * 2, a->a);
}
};
struct test_2 {
int a = 0xC;
int bark() {
return 20;
}
};
auto a = []() { return 500; };
auto b = [&]() { return 501; };
auto c = [&]() { return 502; };
auto d = []() { return 503; };
lua.new_usertype<test_1>("test_1",
"bark", sol::c_call<decltype(&test_1::bark_mem), &test_1::bark_mem>
);
lua.new_usertype<test_2>("test_2",
"bark", sol::c_call<decltype(&test_2::bark), &test_2::bark>
);
test_2 t2;
lua.set_function("a", a);
lua.set_function("b", b);
lua.set_function("c", std::ref(c));
lua.set_function("d", std::ref(d));
lua.set_function("f", &test_1::bark);
lua.set_function("g", test_1::x_bark);
lua.set_function("h", sol::c_call<decltype(&test_1::bark_mem), &test_1::bark_mem>);
lua.set_function("i", &test_2::bark, test_2());
lua.set_function("j", &test_2::a, test_2());
lua.set_function("k", &test_2::a);
lua.set_function("l", sol::c_call<decltype(&test_1::a), &test_1::a>);
lua.set_function("m", &test_2::a, &t2);
lua.script(R"(
o1 = test_1.new()
o2 = test_2.new()
ob = o1:bark()
A = a()
B = b()
C = c()
D = d()
F = f(o1)
G0, G1 = g(2, o1)
H = h(o1)
I = i(o1)
I = i(o1)
J0 = j()
j(24)
J1 = j()
K0 = k(o2)
k(o2, 1024)
K1 = k(o2)
L0 = l(o1)
l(o1, 678)
L1 = l(o1)
M0 = m()
m(256)
M1 = m()
)");
int ob, A, B, C, D, F, G0, G1, H, I, J0, J1, K0, K1, L0, L1, M0, M1;
std::tie( ob, A, B, C, D, F, G0, G1, H, I, J0, J1, K0, K1, L0, L1, M0, M1 )
= lua.get<int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, int>(
"ob", "A", "B", "C", "D", "F", "G0", "G1", "H", "I", "J0", "J1", "K0", "K1", "L0", "L1", "M0", "M1"
);
REQUIRE(ob == 0xA);
REQUIRE( A == 500 );
REQUIRE( B == 501 );
REQUIRE( C == 502 );
REQUIRE( D == 503 );
REQUIRE( F == 0xA );
REQUIRE( G0 == 4 );
REQUIRE( G1 == 0xA );
REQUIRE( H == 0xA );
REQUIRE( I == 20 );
REQUIRE( J0 == 0xC );
REQUIRE( J1 == 24 );
REQUIRE( K0 == 0xC );
REQUIRE( K1 == 1024 );
REQUIRE( L0 == 0xA );
REQUIRE( L1 == 678 );
REQUIRE( M0 == 0xC );
REQUIRE( M1 == 256 );
}