sol2/sol/function.hpp

414 lines
16 KiB
C++
Raw Normal View History

// The MIT License (MIT)
// Copyright (c) 2013-2016 Rapptz and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_FUNCTION_HPP
#define SOL_FUNCTION_HPP
#include "reference.hpp"
#include "tuple.hpp"
#include "stack.hpp"
#include "function_types.hpp"
#include "usertype_traits.hpp"
#include "resolve.hpp"
#include "function_result.hpp"
#include <cstdint>
#include <functional>
#include <memory>
namespace sol {
class function : public reference {
private:
void luacall( std::ptrdiff_t argcount, std::ptrdiff_t resultcount ) const {
lua_callk( lua_state( ), static_cast<int>( argcount ), static_cast<int>( resultcount ), 0, nullptr );
}
template<std::size_t... I, typename... Ret>
auto invoke( types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n ) const {
luacall( n, sizeof...( Ret ) );
int stacksize = lua_gettop( lua_state( ) );
int firstreturn = std::max(1, stacksize - static_cast<int>(sizeof...(Ret)) + 1);
auto r = stack::get<std::tuple<Ret...>>( lua_state( ), firstreturn );
lua_pop(lua_state(), static_cast<int>(sizeof...(Ret)));
return r;
}
template<std::size_t I, typename Ret>
Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n ) const {
luacall( n, 1 );
return stack::pop<Ret>( lua_state( ) );
}
template <std::size_t I>
void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) const {
luacall( n, 0 );
}
function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n ) const {
int stacksize = lua_gettop( lua_state( ) );
int firstreturn = std::max( 1, stacksize - static_cast<int>( n ) );
luacall(n, LUA_MULTRET);
int poststacksize = lua_gettop( lua_state( ) );
int returncount = poststacksize - (firstreturn - 1);
return function_result( lua_state( ), firstreturn, returncount );
}
public:
function( ) = default;
function( lua_State* L, int index = -1 ) : reference( L, index ) {
type_assert( L, index, type::function );
}
function( const function& ) = default;
function& operator=( const function& ) = default;
function( function&& ) = default;
function& operator=( function&& ) = default;
template<typename... Args>
function_result operator()( Args&&... args ) const {
return call<>( std::forward<Args>( args )... );
}
template<typename... Ret, typename... Args>
decltype(auto) operator()( types<Ret...>, Args&&... args ) const {
return call<Ret...>( std::forward<Args>( args )... );
}
template<typename... Ret, typename... Args>
decltype(auto) call( Args&&... args ) const {
push( );
int pushcount = stack::push_args( lua_state( ), std::forward<Args>( args )... );
return invoke( types<Ret...>( ), std::index_sequence_for<Ret...>(), pushcount );
}
};
class protected_function : public reference {
private:
static reference& handler_storage() {
static sol::reference h;
return h;
}
public:
static const reference& get_default_handler () {
return handler_storage();
}
static void set_default_handler( reference& ref ) {
handler_storage() = ref;
}
private:
struct handler {
const reference& target;
int stackindex;
handler(const reference& target) : target(target), stackindex(0) {
if (target.valid()) {
stackindex = lua_gettop(target.lua_state()) + 1;
target.push();
}
}
~handler() {
if (stackindex > 0) {
lua_remove(target.lua_state(), stackindex);
}
}
};
int luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount, handler& h) const {
return lua_pcallk(lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount), h.stackindex, 0, nullptr);
}
template<std::size_t... I, typename... Ret>
auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n, handler& h) const {
luacall(n, sizeof...(Ret), h);
int stacksize = lua_gettop(lua_state());
int firstreturn = std::max(0, stacksize - static_cast<int>(sizeof...(Ret)) + 1);
auto r = stack::get<std::tuple<Ret...>>(lua_state(), firstreturn);
lua_pop(lua_state(), static_cast<int>(sizeof...(Ret)));
return r;
}
template<std::size_t I, typename Ret>
Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n, handler& h) const {
luacall(n, 1, h);
return stack::pop<Ret>(lua_state());
}
template <std::size_t I>
void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n, handler& h) const {
luacall(n, 0, h);
}
protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n, handler& h) const {
bool handlerpushed = error_handler.valid();
int stacksize = lua_gettop(lua_state());
int firstreturn = std::max(1, stacksize - static_cast<int>(n) - 1);
int returncount = 0;
call_error code = call_error::ok;
try {
code = static_cast<call_error>(luacall(n, LUA_MULTRET, h));
int poststacksize = lua_gettop(lua_state());
returncount = poststacksize - firstreturn;
}
// Handle C++ errors thrown from C++ functions bound inside of lua
catch (const std::exception& error) {
h.stackindex = 0;
stack::push(lua_state(), error.what());
firstreturn = lua_gettop(lua_state());
return protected_function_result(lua_state(), firstreturn, 0, 1, call_error::runtime);
}
catch (...) {
throw;
}
return protected_function_result(lua_state(), firstreturn + ( handlerpushed ? 0 : 1 ), returncount, returncount, code);
}
public:
sol::reference error_handler;
protected_function() = default;
protected_function(lua_State* L, int index = -1): reference(L, index), error_handler(get_default_handler()) {
type_assert(L, index, type::function);
}
protected_function(const protected_function&) = default;
protected_function& operator=(const protected_function&) = default;
protected_function( protected_function&& ) = default;
protected_function& operator=( protected_function&& ) = default;
template<typename... Args>
protected_function_result operator()(Args&&... args) const {
return call<>(std::forward<Args>(args)...);
}
template<typename... Ret, typename... Args>
decltype(auto) operator()(types<Ret...>, Args&&... args) const {
return call<Ret...>(std::forward<Args>(args)...);
}
template<typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) const {
handler h(error_handler);
push();
int pushcount = stack::push_args(lua_state(), std::forward<Args>(args)...);
return invoke(types<Ret...>(), std::index_sequence_for<Ret...>(), pushcount, h);
}
};
namespace stack {
template<typename... Sigs>
struct pusher<function_sig<Sigs...>> {
template<typename R, typename... Args, typename Fx, typename = std::result_of_t<Fx(Args...)>>
static void set_memfx(types<R(Args...)> t, lua_State* L, Fx&& fx) {
typedef std::decay_t<Unwrapped<Unqualified<Fx>>> raw_fx_t;
typedef R(* fx_ptr_t)(Args...);
typedef std::is_convertible<raw_fx_t, fx_ptr_t> is_convertible;
set_isconvertible_fx(is_convertible(), t, L, std::forward<Fx>(fx));
}
template<typename Fx>
static void set_memfx(types<>, lua_State* L, Fx&& fx) {
typedef Unwrapped<Unqualified<Fx>> fx_t;
set(L, &fx_t::operator(), std::forward<Fx>(fx));
}
template<typename... Args, typename R>
static void set(lua_State* L, R fxptr(Args...)){
set_fx(std::false_type(), L, fxptr);
}
template<typename Sig>
static void set(lua_State* L, Sig* fxptr){
set_fx(std::false_type(), L, fxptr);
}
template<typename... Args, typename R, typename C, typename T>
static void set(lua_State* L, R (C::*memfxptr)(Args...), T&& obj) {
typedef Bool<is_specialization_of<Unqualified<T>, std::reference_wrapper>::value || std::is_pointer<T>::value> is_reference;
set_reference_fx(is_reference(), L, memfxptr, std::forward<T>(obj));
}
template<typename Sig, typename C, typename T>
static void set(lua_State* L, Sig C::* memfxptr, T&& obj) {
typedef Bool<is_specialization_of<Unqualified<T>, std::reference_wrapper>::value || std::is_pointer<T>::value> is_reference;
set_reference_fx(is_reference(), L, memfxptr, std::forward<T>(obj));
}
template<typename... Sig, typename Fx>
static void set(lua_State* L, Fx&& fx) {
set_memfx(types<Sig...>(), L, std::forward<Fx>(fx));
}
template<typename Fx, typename R, typename... Args>
static void set_isconvertible_fx(std::true_type, types<R(Args...)>, lua_State* L, Fx&& fx) {
typedef R(* fx_ptr_t)(Args...);
fx_ptr_t fxptr = unwrap(std::forward<Fx>(fx));
set(L, fxptr);
}
template<typename Fx, typename R, typename... Args>
static void set_isconvertible_fx(std::false_type, types<R(Args...)>, lua_State* L, Fx&& fx) {
typedef Unwrapped<std::decay_t<Fx>> fx_t;
std::unique_ptr<base_function> sptr(new functor_function<fx_t>(std::forward<Fx>(fx)));
set_fx<Fx>(L, std::move(sptr));
}
template<typename Fx, typename T>
static void set_reference_fx(std::true_type, lua_State* L, Fx&& fx, T&& obj) {
set_fx(std::true_type(), L, std::forward<Fx>(fx), std::forward<T>(obj));
}
template<typename Fx, typename T>
static void set_reference_fx(std::false_type, lua_State* L, Fx&& fx, T&& obj) {
typedef std::remove_pointer_t<std::decay_t<Fx>> clean_fx;
std::unique_ptr<base_function> sptr(new member_function<clean_fx, Unqualified<T>>(std::forward<T>(obj), std::forward<Fx>(fx)));
return set_fx<Fx>(L, std::move(sptr));
}
template<typename Fx, typename T>
static void set_fx(std::true_type, lua_State* L, Fx&& fx, T&& obj) {
// Layout:
// idx 1...n: verbatim data of member function pointer
// idx n + 1: is the object's void pointer
// We don't need to store the size, because the other side is templated
// with the same member function pointer type
typedef std::decay_t<Fx> dFx;
typedef Unqualified<Fx> uFx;
dFx memfxptr(std::forward<Fx>(fx));
auto userptr = ptr(obj);
void* userobjdata = static_cast<void*>(userptr);
lua_CFunction freefunc = &static_member_function<std::decay_t<decltype(*userptr)>, uFx>::call;
int upvalues = stack::stack_detail::push_as_upvalues(L, memfxptr);
upvalues += stack::push(L, userobjdata);
stack::push(L, freefunc, upvalues);
}
template<typename Fx>
static void set_fx(std::false_type, lua_State* L, Fx&& fx) {
std::decay_t<Fx> target(std::forward<Fx>(fx));
lua_CFunction freefunc = &static_function<Fx>::call;
int upvalues = stack::stack_detail::push_as_upvalues(L, target);
stack::push(L, freefunc, upvalues);
}
template<typename Fx>
static void set_fx(lua_State* L, std::unique_ptr<base_function> luafunc) {
const static auto& metakey = u8"sol.ƒ.♲.🗑.(/¯◡ ‿ ◡)/¯ ~ ┻━┻ (ノ◕ヮ◕)ノ*:・゚✧";
const static char* metatablename = &metakey[0];
base_function* target = luafunc.release();
void* userdata = reinterpret_cast<void*>(target);
lua_CFunction freefunc = detail::call;
int metapushed = luaL_newmetatable(L, metatablename);
if(metapushed == 1) {
lua_pushstring(L, "__gc");
stack::push(L, detail::gc);
lua_settable(L, -3);
lua_pop(L, 1);
}
stack::stack_detail::push_userdata<void*>(L, metatablename, userdata);
stack::push(L, freefunc, 1);
}
template<typename... Args>
static int push(lua_State* L, Args&&... args) {
// Set will always place one thing (function) on the stack
set(L, std::forward<Args>(args)...);
return 1;
}
};
template<typename T, typename... Args>
struct pusher<sol::detail::function_packer<T, Args...>> {
template <std::size_t... I, typename FP>
static int push_func(std::index_sequence<I...>, lua_State* L, FP&& fp) {
return stack::push<T>(L, std::get<I>(fp)...);
}
template <typename FP>
static int push(lua_State* L, FP&& fp) {
return push_func(std::index_sequence_for<Args...>(), L, std::forward<FP>(fp));
}
};
template<typename Signature>
struct pusher<std::function<Signature>> {
static int push(lua_State* L, std::function<Signature> fx) {
return pusher<function_sig<>>{}.push(L, std::move(fx));
}
};
template<typename... Functions>
struct pusher<overload_set<Functions...>> {
template<std::size_t... I, typename Set>
static int push(std::index_sequence<I...>, lua_State* L, Set&& set) {
pusher<function_sig<>>{}.set_fx<Set>(L, std::make_unique<overloaded_function<Functions...>>(std::get<I>(set)...));
return 1;
}
template<typename Set>
static int push(lua_State* L, Set&& set) {
return push(std::index_sequence_for<Functions...>(), L, std::forward<Set>(set));
}
};
template<typename Signature>
struct getter<std::function<Signature>> {
2014-05-31 11:35:26 +08:00
typedef function_traits<Signature> fx_t;
typedef typename fx_t::args_type args_types;
typedef tuple_types<typename fx_t::return_type> return_types;
template<typename... Args, typename... Ret>
static std::function<Signature> get_std_func(types<Args...>, types<Ret...>, lua_State* L, int index = -1) {
sol::function f(L, index);
auto fx = [f, L, index](Args&&... args) -> return_type_t<Ret...> {
return f.call<Ret...>(std::forward<Args>(args)...);
};
return std::move(fx);
}
template<typename... FxArgs>
static std::function<Signature> get_std_func(types<FxArgs...>, types<void>, lua_State* L, int index = -1) {
sol::function f(L, index);
2014-08-11 08:49:34 +08:00
auto fx = [f, L, index](FxArgs&&... args) -> void {
f(std::forward<FxArgs>(args)...);
};
return std::move(fx);
}
template<typename... FxArgs>
static std::function<Signature> get_std_func(types<FxArgs...> t, types<>, lua_State* L, int index = -1) {
return get_std_func(std::move(t), types<void>(), L, index);
}
static std::function<Signature> get(lua_State* L, int index) {
return get_std_func(args_types(), return_types(), L, index);
}
};
} // stack
} // sol
#endif // SOL_FUNCTION_HPP