sandboxed-api/sandboxed_api/sandbox2/forkserver.cc
Wiktor Garbacz 2f64d3d925 stack_trace: pass fd to sandboxee's memory instead of using process_vm_readv
Libunwind sandbox no longer needs to join sandboxee's userns.
This cleans up a lot of special handling for the libunwind sandbox.

PiperOrigin-RevId: 503140778
Change-Id: I020ea3adda05ae6ff74137b668a5fa7509c138f8
2023-01-19 05:44:50 -08:00

639 lines
22 KiB
C++

// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Implementation of the sandbox2::ForkServer class.
#include "sandboxed_api/sandbox2/forkserver.h"
#include <asm/types.h>
#include <fcntl.h>
#include <sched.h>
#include <sys/prctl.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/un.h>
#include <sys/wait.h>
#include <syscall.h>
#include <unistd.h>
#include <cerrno>
#include <csignal>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <memory>
#include <string>
#include "absl/container/flat_hash_map.h"
#include "absl/container/flat_hash_set.h"
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/match.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_join.h"
#include "absl/strings/str_split.h"
#include "libcap/include/sys/capability.h"
#include "sandboxed_api/sandbox2/client.h"
#include "sandboxed_api/sandbox2/comms.h"
#include "sandboxed_api/sandbox2/fork_client.h"
#include "sandboxed_api/sandbox2/forkserver.pb.h"
#include "sandboxed_api/sandbox2/namespace.h"
#include "sandboxed_api/sandbox2/policy.h"
#include "sandboxed_api/sandbox2/sanitizer.h"
#include "sandboxed_api/sandbox2/syscall.h"
#include "sandboxed_api/sandbox2/unwind/unwind.h"
#include "sandboxed_api/sandbox2/util.h"
#include "sandboxed_api/sandbox2/util/bpf_helper.h"
#include "sandboxed_api/util/fileops.h"
#include "sandboxed_api/util/raw_logging.h"
#include "sandboxed_api/util/strerror.h"
namespace {
using ::sapi::StrError;
// "Moves" FDs in move_fds from current to target FD number while keeping FDs
// in keep_fds open - potentially moving them to another FD number as well in
// case of colisions.
// Ignores invalid (-1) fds.
void MoveFDs(std::initializer_list<std::pair<int*, int>> move_fds,
std::initializer_list<int*> keep_fds) {
absl::flat_hash_map<int, int*> fd_map;
for (int* fd : keep_fds) {
if (*fd != -1) {
fd_map.emplace(*fd, fd);
}
}
for (auto [old_fd, new_fd] : move_fds) {
if (*old_fd != -1) {
fd_map.emplace(*old_fd, old_fd);
}
}
for (auto [old_fd, new_fd] : move_fds) {
if (*old_fd == -1 || *old_fd == new_fd) {
continue;
}
// Make sure we won't override another fd
auto it = fd_map.find(new_fd);
if (it != fd_map.end()) {
int fd = dup(new_fd);
SAPI_RAW_CHECK(fd != -1, "Duplicating an FD failed.");
*it->second = fd;
fd_map.emplace(fd, it->second);
fd_map.erase(it);
}
if (dup2(*old_fd, new_fd) == -1) {
SAPI_RAW_PLOG(FATAL, "Moving temporary to proper FD failed.");
}
close(*old_fd);
fd_map.erase(*old_fd);
*old_fd = new_fd;
}
}
void RunInitProcess(const absl::flat_hash_set<int>& open_fds) {
if (prctl(PR_SET_NAME, "S2-INIT-PROC", 0, 0, 0) != 0) {
SAPI_RAW_PLOG(WARNING, "prctl(PR_SET_NAME, 'S2-INIT-PROC')");
}
// Close all open fds (equals to CloseAllFDsExcept but does not require /proc
// to be available).
for (const auto& fd : open_fds) {
close(fd);
}
// Apply seccomp.
struct sock_filter code[] = {
LOAD_ARCH,
JNE32(sandbox2::Syscall::GetHostAuditArch(), DENY),
LOAD_SYSCALL_NR,
#ifdef __NR_waitpid
SYSCALL(__NR_waitpid, ALLOW),
#endif
SYSCALL(__NR_wait4, ALLOW),
SYSCALL(__NR_exit, ALLOW),
SYSCALL(__NR_exit_group, ALLOW),
DENY,
};
struct sock_fprog prog {};
prog.len = ABSL_ARRAYSIZE(code);
prog.filter = code;
SAPI_RAW_CHECK(prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) == 0,
"Denying new privs");
SAPI_RAW_CHECK(prctl(PR_SET_KEEPCAPS, 0) == 0, "Dropping caps");
SAPI_RAW_CHECK(
syscall(__NR_seccomp, SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC,
reinterpret_cast<uintptr_t>(&prog)) == 0,
"Enabling seccomp filter");
pid_t pid;
int status = 0;
// Reap children.
while (true) {
// Wait until we don't have any children anymore.
// We cannot watch for the child pid as ptrace steals our waitpid
// notifications. (See man ptrace / man waitpid).
pid = TEMP_FAILURE_RETRY(waitpid(-1, &status, __WALL));
if (pid < 0) {
if (errno == ECHILD) {
_exit(0);
}
_exit(1);
}
}
}
absl::Status SendPid(int signaling_fd) {
// Send our PID (the actual sandboxee process) via SCM_CREDENTIALS.
// The ancillary message will be attached to the message as SO_PASSCRED is set
// on the socket.
char dummy = ' ';
if (TEMP_FAILURE_RETRY(send(signaling_fd, &dummy, 1, 0)) != 1) {
return absl::ErrnoToStatus(errno, "Sending PID: send()");
}
return absl::OkStatus();
}
absl::StatusOr<pid_t> ReceivePid(int signaling_fd) {
union {
struct cmsghdr cmh;
char ctrl[CMSG_SPACE(sizeof(struct ucred))];
} ucred_msg{};
struct msghdr msgh {};
struct iovec iov {};
msgh.msg_iov = &iov;
msgh.msg_iovlen = 1;
msgh.msg_control = ucred_msg.ctrl;
msgh.msg_controllen = sizeof(ucred_msg);
char dummy;
iov.iov_base = &dummy;
iov.iov_len = sizeof(char);
if (TEMP_FAILURE_RETRY(recvmsg(signaling_fd, &msgh, MSG_WAITALL)) != 1) {
return absl::ErrnoToStatus(errno, "Receiving pid failed: recvmsg");
}
struct cmsghdr* cmsgp = CMSG_FIRSTHDR(&msgh);
if (cmsgp->cmsg_len != CMSG_LEN(sizeof(struct ucred)) ||
cmsgp->cmsg_level != SOL_SOCKET || cmsgp->cmsg_type != SCM_CREDENTIALS) {
return absl::InternalError("Receiving pid failed");
}
auto* ucredp = reinterpret_cast<struct ucred*>(CMSG_DATA(cmsgp));
return ucredp->pid;
}
absl::StatusOr<std::string> GetRootMountId(const std::string& proc_id) {
std::ifstream mounts(absl::StrCat("/proc/", proc_id, "/mountinfo"));
if (!mounts.good()) {
return absl::InternalError("Failed to open mountinfo");
}
std::string line;
while (std::getline(mounts, line)) {
std::vector<absl::string_view> parts =
absl::StrSplit(line, absl::MaxSplits(' ', 4));
if (parts.size() >= 4 && parts[3] == "/") {
return std::string(parts[0]);
}
}
return absl::NotFoundError("Root entry not found in mountinfo");
}
bool IsLikelyChrooted() {
absl::StatusOr<std::string> self_root_id = GetRootMountId("self");
if (!self_root_id.ok()) {
return absl::IsNotFound(self_root_id.status());
}
absl::StatusOr<std::string> init_root_id = GetRootMountId("1");
if (!init_root_id.ok()) {
return false;
}
return *self_root_id != *init_root_id;
}
} // namespace
namespace sandbox2 {
namespace file_util = ::sapi::file_util;
void ForkServer::PrepareExecveArgs(const ForkRequest& request,
std::vector<std::string>* args,
std::vector<std::string>* envp) {
// Prepare arguments for execve.
for (const auto& arg : request.args()) {
args->push_back(arg);
}
// Prepare environment variables for execve.
for (const auto& env : request.envs()) {
envp->push_back(env);
}
// The child process should not start any fork-servers.
envp->push_back(absl::StrCat(kForkServerDisableEnv, "=1"));
constexpr char kSapiVlogLevel[] = "SAPI_VLOG_LEVEL";
char* sapi_vlog = getenv(kSapiVlogLevel);
if (sapi_vlog && strlen(sapi_vlog) > 0) {
envp->push_back(absl::StrCat(kSapiVlogLevel, "=", sapi_vlog));
}
SAPI_RAW_VLOG(1, "Will execute args:['%s'], environment:['%s']",
absl::StrJoin(*args, "', '").c_str(),
absl::StrJoin(*envp, "', '").c_str());
}
void ForkServer::LaunchChild(const ForkRequest& request, int execve_fd,
int client_fd, uid_t uid, gid_t gid,
int signaling_fd, bool avoid_pivot_root) const {
SAPI_RAW_CHECK(request.mode() != FORKSERVER_FORK_UNSPECIFIED,
"Forkserver mode is unspecified");
bool will_execve = (request.mode() == FORKSERVER_FORK_EXECVE ||
request.mode() == FORKSERVER_FORK_EXECVE_SANDBOX);
// Prepare the arguments before sandboxing (if needed), as doing it after
// sandoxing can cause syscall violations (e.g. related to memory management).
std::vector<std::string> args;
std::vector<std::string> envs;
if (will_execve) {
PrepareExecveArgs(request, &args, &envs);
}
MoveFDs({{&execve_fd, Comms::kSandbox2TargetExecFD},
{&client_fd, Comms::kSandbox2ClientCommsFD}},
{&signaling_fd});
SanitizeEnvironment();
absl::StatusOr<absl::flat_hash_set<int>> open_fds = sanitizer::GetListOfFDs();
if (!open_fds.ok()) {
SAPI_RAW_LOG(WARNING, "Could not get list of current open FDs: %s",
std::string(open_fds.status().message()).c_str());
open_fds = absl::flat_hash_set<int>();
}
InitializeNamespaces(request, uid, gid, avoid_pivot_root);
auto caps = cap_init();
for (auto cap : request.capabilities()) {
SAPI_RAW_CHECK(cap_set_flag(caps, CAP_PERMITTED, 1, &cap, CAP_SET) == 0,
absl::StrCat("setting capability ", cap).c_str());
SAPI_RAW_CHECK(cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap, CAP_SET) == 0,
absl::StrCat("setting capability ", cap).c_str());
SAPI_RAW_CHECK(cap_set_flag(caps, CAP_INHERITABLE, 1, &cap, CAP_SET) == 0,
absl::StrCat("setting capability ", cap).c_str());
}
SAPI_RAW_CHECK(cap_set_proc(caps) == 0, "while dropping capabilities");
cap_free(caps);
// A custom init process is only needed if a new PID NS is created.
if (request.clone_flags() & CLONE_NEWPID) {
// Spawn a child process
pid_t child = fork();
if (child < 0) {
SAPI_RAW_PLOG(FATAL, "Could not spawn init process");
}
if (child != 0) {
RunInitProcess(*open_fds);
}
// Send sandboxee pid
auto status = SendPid(signaling_fd);
SAPI_RAW_CHECK(status.ok(),
absl::StrCat("sending pid: ", status.message()).c_str());
}
if (request.mode() == FORKSERVER_FORK_EXECVE_SANDBOX ||
request.mode() == FORKSERVER_FORK_JOIN_SANDBOX_UNWIND) {
// Sandboxing can be enabled either here - just before execve, or somewhere
// inside the executed binary (e.g. after basic structures have been
// initialized, and resources acquired). In the latter case, it's up to the
// sandboxed binary to establish proper Comms channel (using
// Comms::kSandbox2ClientCommsFD) and call sandbox2::Client::SandboxMeHere()
// Create a Comms object here and not above, as we know we will execve and
// therefore not call the Comms destructor, which would otherwise close the
// comms file descriptor, which we do not want for the general case.
Comms client_comms(Comms::kDefaultConnection);
Client c(&client_comms);
// The following client calls are basically SandboxMeHere. We split it so
// that we can set up the envp after we received the file descriptors but
// before we enable the syscall filter.
std::vector<int> preserved_fds;
if (request.mode() == FORKSERVER_FORK_EXECVE_SANDBOX) {
preserved_fds.push_back(execve_fd);
}
c.PrepareEnvironment(&preserved_fds);
if (request.mode() == FORKSERVER_FORK_EXECVE_SANDBOX) {
execve_fd = preserved_fds[0];
}
if (client_comms.GetConnectionFD() != Comms::kSandbox2ClientCommsFD) {
envs.push_back(absl::StrCat(Comms::kSandbox2CommsFDEnvVar, "=",
client_comms.GetConnectionFD()));
}
envs.push_back(c.GetFdMapEnvVar());
// Convert args and envs before enabling sandbox (it'll allocate which might
// be blocked).
util::CharPtrArray argv = util::CharPtrArray::FromStringVector(args);
util::CharPtrArray envp = util::CharPtrArray::FromStringVector(envs);
c.EnableSandbox();
if (request.mode() == FORKSERVER_FORK_JOIN_SANDBOX_UNWIND) {
exit(RunLibUnwindAndSymbolizer(&client_comms) ? EXIT_SUCCESS
: EXIT_FAILURE);
} else {
ExecuteProcess(execve_fd, argv.data(), envp.data());
}
abort();
}
if (will_execve) {
ExecuteProcess(execve_fd, util::CharPtrArray::FromStringVector(args).data(),
util::CharPtrArray::FromStringVector(envs).data());
abort();
}
}
pid_t ForkServer::ServeRequest() {
ForkRequest fork_request;
if (!comms_->RecvProtoBuf(&fork_request)) {
if (comms_->IsTerminated()) {
SAPI_RAW_VLOG(1, "ForkServer Comms closed. Exiting");
exit(0);
}
SAPI_RAW_LOG(FATAL, "Failed to receive ForkServer request");
}
int comms_fd;
SAPI_RAW_CHECK(comms_->RecvFD(&comms_fd), "Failed to receive Comms FD");
SAPI_RAW_CHECK(fork_request.mode() != FORKSERVER_FORK_UNSPECIFIED,
"Forkserver mode is unspecified");
int exec_fd = -1;
if (fork_request.mode() == FORKSERVER_FORK_EXECVE ||
fork_request.mode() == FORKSERVER_FORK_EXECVE_SANDBOX) {
SAPI_RAW_CHECK(comms_->RecvFD(&exec_fd), "Failed to receive Exec FD");
}
// Make the kernel notify us with SIGCHLD when the process terminates.
// We use sigaction(SIGCHLD, flags=SA_NOCLDWAIT) in combination with
// this to make sure the zombie process is reaped immediately.
int clone_flags = fork_request.clone_flags() | SIGCHLD;
// Store uid and gid since they will change if CLONE_NEWUSER is set.
uid_t uid = getuid();
uid_t gid = getgid();
int socketpair_fds[2];
SAPI_RAW_PCHECK(
socketpair(AF_UNIX, SOCK_STREAM | SOCK_CLOEXEC, 0, socketpair_fds) == 0,
"creating signaling socketpair");
for (int i = 0; i < 2; i++) {
int val = 1;
SAPI_RAW_PCHECK(setsockopt(socketpair_fds[i], SOL_SOCKET, SO_PASSCRED, &val,
sizeof(val)) == 0,
"setsockopt failed");
}
file_util::fileops::FDCloser fd_closer0{socketpair_fds[0]};
file_util::fileops::FDCloser fd_closer1{socketpair_fds[1]};
// Note: init_pid will be overwritten with the actual init pid if the init
// process was started or stays at 0 if that is not needed - no pidns.
pid_t init_pid = 0;
pid_t sandboxee_pid = -1;
bool avoid_pivot_root = clone_flags & (CLONE_NEWUSER | CLONE_NEWNS);
if (avoid_pivot_root) {
// Create initial namespaces only when they're first needed.
// This allows sandbox2 to be still used without any namespaces support
if (initial_mntns_fd_ == -1) {
CreateInitialNamespaces();
}
// We first just fork a child, which will join the initial namespaces
// Note: Not a regular fork() as one really needs to be single-threaded to
// setns and this is not the case with TSAN.
pid_t pid = util::ForkWithFlags(SIGCHLD);
SAPI_RAW_PCHECK(pid != -1, "fork failed");
if (pid == 0) {
SAPI_RAW_PCHECK(setns(initial_userns_fd_, CLONE_NEWUSER) != -1,
"joining initial user namespace");
SAPI_RAW_PCHECK(setns(initial_mntns_fd_, CLONE_NEWNS) != -1,
"joining initial mnt namespace");
close(initial_userns_fd_);
close(initial_mntns_fd_);
// Do not create new userns it will be unshared later
sandboxee_pid =
util::ForkWithFlags((clone_flags & ~CLONE_NEWUSER) | CLONE_PARENT);
if (sandboxee_pid == -1) {
SAPI_RAW_LOG(ERROR, "util::ForkWithFlags(%x)", clone_flags);
}
if (sandboxee_pid != 0) {
_exit(0);
}
// Send sandboxee pid
absl::Status status = SendPid(fd_closer1.get());
SAPI_RAW_CHECK(status.ok(),
absl::StrCat("sending pid: ", status.message()).c_str());
} else if (auto pid_or = ReceivePid(fd_closer0.get()); !pid_or.ok()) {
SAPI_RAW_LOG(ERROR, "receiving pid: %s",
std::string(pid_or.status().message()).c_str());
} else {
sandboxee_pid = pid_or.value();
}
} else {
sandboxee_pid = util::ForkWithFlags(clone_flags);
if (sandboxee_pid == -1) {
SAPI_RAW_LOG(ERROR, "util::ForkWithFlags(%x)", clone_flags);
}
if (sandboxee_pid == 0) {
close(initial_userns_fd_);
close(initial_mntns_fd_);
}
}
// Child.
if (sandboxee_pid == 0) {
LaunchChild(fork_request, exec_fd, comms_fd, uid, gid, fd_closer1.get(),
avoid_pivot_root);
return sandboxee_pid;
}
fd_closer1.Close();
if (fork_request.clone_flags() & CLONE_NEWPID) {
// The pid of the init process is equal to the child process that we've
// previously forked.
init_pid = sandboxee_pid;
sandboxee_pid = -1;
// And the actual sandboxee is forked from the init process, so we need to
// receive the actual PID.
if (auto pid_or = ReceivePid(fd_closer0.get()); !pid_or.ok()) {
SAPI_RAW_LOG(ERROR, "%s", std::string(pid_or.status().message()).c_str());
kill(init_pid, SIGKILL);
init_pid = -1;
} else {
sandboxee_pid = pid_or.value();
}
}
// Parent.
close(comms_fd);
if (exec_fd >= 0) {
close(exec_fd);
}
SAPI_RAW_CHECK(comms_->SendInt32(init_pid),
absl::StrCat("Failed to send init PID: ", init_pid).c_str());
SAPI_RAW_CHECK(
comms_->SendInt32(sandboxee_pid),
absl::StrCat("Failed to send sandboxee PID: ", sandboxee_pid).c_str());
return sandboxee_pid;
}
bool ForkServer::Initialize() {
// All processes spawned by the fork'd/execute'd process will see this process
// as /sbin/init. Therefore it will receive (and ignore) their final status
// (see the next comment as well). PR_SET_CHILD_SUBREAPER is available since
// kernel version 3.4, so don't panic if it fails.
if (prctl(PR_SET_CHILD_SUBREAPER, 1, 0, 0, 0) == -1) {
SAPI_RAW_VLOG(3, "prctl(PR_SET_CHILD_SUBREAPER, 1): %s [%d]",
StrError(errno).c_str(), errno);
}
// Don't convert terminated child processes into zombies. It's up to the
// sandbox (Monitor) to track them and receive/report their final status.
struct sigaction sa;
sa.sa_handler = SIG_DFL;
sa.sa_flags = SA_NOCLDWAIT;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGCHLD, &sa, nullptr) == -1) {
SAPI_RAW_PLOG(ERROR, "sigaction(SIGCHLD, flags=SA_NOCLDWAIT)");
return false;
}
return true;
}
void ForkServer::CreateInitialNamespaces() {
// Spawn a new process to create initial user and mount namespaces to be used
// as a base for each namespaced sandboxee.
// Store uid and gid to create mappings after CLONE_NEWUSER
uid_t uid = getuid();
gid_t gid = getgid();
// Socket to synchronize so that we open ns fds before process dies
int fds[2];
SAPI_RAW_PCHECK(socketpair(AF_UNIX, SOCK_STREAM, 0, fds) != -1,
"creating socket");
pid_t pid = util::ForkWithFlags(CLONE_NEWUSER | CLONE_NEWNS | SIGCHLD);
if (pid == -1 && errno == EPERM && IsLikelyChrooted()) {
SAPI_RAW_LOG(FATAL,
"failed to fork initial namespaces process: parent process is "
"likely chrooted");
}
SAPI_RAW_PCHECK(pid != -1, "failed to fork initial namespaces process");
char unused = '\0';
if (pid == 0) {
close(fds[1]);
Namespace::InitializeInitialNamespaces(uid, gid);
SAPI_RAW_PCHECK(TEMP_FAILURE_RETRY(write(fds[0], &unused, 1)) == 1,
"synchronizing initial namespaces creation");
SAPI_RAW_PCHECK(TEMP_FAILURE_RETRY(read(fds[0], &unused, 1)) == 1,
"synchronizing initial namespaces creation");
_exit(0);
}
close(fds[0]);
initial_userns_fd_ = open(absl::StrCat("/proc/", pid, "/ns/user").c_str(),
O_RDONLY | O_CLOEXEC);
SAPI_RAW_PCHECK(initial_userns_fd_ != -1, "getting initial userns fd");
initial_mntns_fd_ = open(absl::StrCat("/proc/", pid, "/ns/mnt").c_str(),
O_RDONLY | O_CLOEXEC);
SAPI_RAW_PCHECK(initial_mntns_fd_ != -1, "getting initial mntns fd");
SAPI_RAW_PCHECK(TEMP_FAILURE_RETRY(read(fds[1], &unused, 1)) == 1,
"synchronizing initial namespaces creation");
SAPI_RAW_PCHECK(TEMP_FAILURE_RETRY(write(fds[1], &unused, 1)) == 1,
"synchronizing initial namespaces creation");
close(fds[1]);
}
void ForkServer::SanitizeEnvironment() {
// Mark all file descriptors, except the standard ones (needed
// for proper sandboxed process operations), as close-on-exec.
absl::Status status = sanitizer::SanitizeCurrentProcess(
{STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO,
Comms::kSandbox2ClientCommsFD},
/* close_fds = */ false);
SAPI_RAW_CHECK(
status.ok(),
absl::StrCat("while sanitizing process: ", status.message()).c_str());
}
void ForkServer::ExecuteProcess(int execve_fd, const char* const* argv,
const char* const* envp) {
// Do not add any code before execve(), as it's subject to seccomp policies.
// Indicate that it's a special execve(), by setting 4th, 5th and 6th syscall
// argument to magic values.
util::Syscall(
__NR_execveat, static_cast<uintptr_t>(execve_fd),
reinterpret_cast<uintptr_t>(""), reinterpret_cast<uintptr_t>(argv),
reinterpret_cast<uintptr_t>(envp), static_cast<uintptr_t>(AT_EMPTY_PATH),
reinterpret_cast<uintptr_t>(internal::kExecveMagic));
int saved_errno = errno;
SAPI_RAW_PLOG(ERROR, "sandbox2::ForkServer: execveat failed");
if (saved_errno == ENOSYS) {
SAPI_RAW_LOG(ERROR,
"sandbox2::ForkServer: This is likely caused by running"
" sandbox2 on too old a kernel."
);
} else if (saved_errno == ENOENT && execve_fd >= 0) {
// Since we know the file exists, it must be that the file is dynamically
// linked and the ELF interpreter is what's actually missing.
SAPI_RAW_LOG(ERROR,
"sandbox2::ForkServer: This is likely caused by running"
" dynamically-linked sandboxee without calling"
" .AddLibrariesForBinary() on the policy builder.");
}
util::Syscall(__NR_exit_group, EXIT_FAILURE);
}
void ForkServer::InitializeNamespaces(const ForkRequest& request, uid_t uid,
gid_t gid, bool avoid_pivot_root) {
if (!request.has_mount_tree()) {
return;
}
Namespace::InitializeNamespaces(
uid, gid, request.clone_flags(), Mounts(request.mount_tree()),
request.hostname(), avoid_pivot_root, request.allow_mount_propagation());
}
} // namespace sandbox2