mirror of
https://github.com/donnemartin/interactive-coding-challenges.git
synced 2024-03-22 13:11:13 +08:00
176 lines
4.1 KiB
Python
176 lines
4.1 KiB
Python
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Challenge Notebook"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Problem: Given a list of stock prices, find the max profit from 1 buy and 1 sell.\n",
|
|
"\n",
|
|
"See the [LeetCode](https://leetcode.com/problems/) problem page.\n",
|
|
"\n",
|
|
"* [Constraints](#Constraints)\n",
|
|
"* [Test Cases](#Test-Cases)\n",
|
|
"* [Algorithm](#Algorithm)\n",
|
|
"* [Code](#Code)\n",
|
|
"* [Unit Test](#Unit-Test)\n",
|
|
"* [Solution Notebook](#Solution-Notebook)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Constraints\n",
|
|
"\n",
|
|
"* Are all prices positive ints?\n",
|
|
" * Yes\n",
|
|
"* Is the output an int?\n",
|
|
" * Yes\n",
|
|
"* If profit is negative, do we return the smallest negative loss?\n",
|
|
" * Yes\n",
|
|
"* If there are less than two prices, what do we return?\n",
|
|
" * Exception\n",
|
|
"* Can we assume the inputs are valid?\n",
|
|
" * No\n",
|
|
"* Can we assume this fits memory?\n",
|
|
" * Yes"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Test Cases\n",
|
|
"\n",
|
|
"* None -> TypeError\n",
|
|
"* Zero or one price -> ValueError\n",
|
|
"* No profit\n",
|
|
" * [8, 5, 3, 2, 1] -> -1\n",
|
|
"* General case\n",
|
|
" * [5, 3, 7, 4, 2, 6, 9] -> 7"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Algorithm\n",
|
|
"\n",
|
|
"Refer to the [Solution Notebook](). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Code"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"class Solution(object):\n",
|
|
"\n",
|
|
" def find_max_profit(self, prices):\n",
|
|
" # TODO: Implement me\n",
|
|
" pass"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Unit Test"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"**The following unit test is expected to fail until you solve the challenge.**"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# %load test_max_profit.py\n",
|
|
"from nose.tools import assert_equal, assert_raises\n",
|
|
"\n",
|
|
"\n",
|
|
"class TestMaxProfit(object):\n",
|
|
"\n",
|
|
" def test_max_profit(self):\n",
|
|
" solution = Solution()\n",
|
|
" assert_raises(TypeError, solution.find_max_profit, None)\n",
|
|
" assert_raises(ValueError, solution.find_max_profit, [])\n",
|
|
" assert_equal(solution.find_max_profit([8, 5, 3, 2, 1]), -1)\n",
|
|
" assert_equal(solution.find_max_profit([5, 3, 7, 4, 2, 6, 9]), 7)\n",
|
|
" print('Success: test_max_profit')\n",
|
|
"\n",
|
|
"\n",
|
|
"def main():\n",
|
|
" test = TestMaxProfit()\n",
|
|
" test.test_max_profit()\n",
|
|
"\n",
|
|
"\n",
|
|
"if __name__ == '__main__':\n",
|
|
" main()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Solution Notebook\n",
|
|
"\n",
|
|
"Review the [Solution Notebook]() for a discussion on algorithms and code solutions."
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.5.0"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 0
|
|
}
|