mirror of
https://github.com/donnemartin/interactive-coding-challenges.git
synced 2024-03-22 13:11:13 +08:00
Add max profit challenge
This commit is contained in:
parent
f2587dc29b
commit
d28febfded
0
online_judges/max_profit/__init__.py
Normal file
0
online_judges/max_profit/__init__.py
Normal file
175
online_judges/max_profit/max_profit_challenge.ipynb
Normal file
175
online_judges/max_profit/max_profit_challenge.ipynb
Normal file
|
@ -0,0 +1,175 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Challenge Notebook"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Problem: Given a list of stock prices, find the max profit from 1 buy and 1 sell.\n",
|
||||
"\n",
|
||||
"See the [LeetCode](https://leetcode.com/problems/) problem page.\n",
|
||||
"\n",
|
||||
"* [Constraints](#Constraints)\n",
|
||||
"* [Test Cases](#Test-Cases)\n",
|
||||
"* [Algorithm](#Algorithm)\n",
|
||||
"* [Code](#Code)\n",
|
||||
"* [Unit Test](#Unit-Test)\n",
|
||||
"* [Solution Notebook](#Solution-Notebook)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Constraints\n",
|
||||
"\n",
|
||||
"* Are all prices positive ints?\n",
|
||||
" * Yes\n",
|
||||
"* Is the output an int?\n",
|
||||
" * Yes\n",
|
||||
"* If profit is negative, do we return the smallest negative loss?\n",
|
||||
" * Yes\n",
|
||||
"* If there are less than two prices, what do we return?\n",
|
||||
" * Exception\n",
|
||||
"* Can we assume the inputs are valid?\n",
|
||||
" * No\n",
|
||||
"* Can we assume this fits memory?\n",
|
||||
" * Yes"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Test Cases\n",
|
||||
"\n",
|
||||
"* None -> TypeError\n",
|
||||
"* Zero or one price -> ValueError\n",
|
||||
"* No profit\n",
|
||||
" * [8, 5, 3, 2, 1] -> -1\n",
|
||||
"* General case\n",
|
||||
" * [5, 3, 7, 4, 2, 6, 9] -> 7"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Algorithm\n",
|
||||
"\n",
|
||||
"Refer to the [Solution Notebook](). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Code"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class Solution(object):\n",
|
||||
"\n",
|
||||
" def find_max_profit(self, prices):\n",
|
||||
" # TODO: Implement me\n",
|
||||
" pass"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Unit Test"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**The following unit test is expected to fail until you solve the challenge.**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# %load test_max_profit.py\n",
|
||||
"from nose.tools import assert_equal, assert_raises\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TestMaxProfit(object):\n",
|
||||
"\n",
|
||||
" def test_max_profit(self):\n",
|
||||
" solution = Solution()\n",
|
||||
" assert_raises(TypeError, solution.find_max_profit, None)\n",
|
||||
" assert_raises(ValueError, solution.find_max_profit, [])\n",
|
||||
" assert_equal(solution.find_max_profit([8, 5, 3, 2, 1]), -1)\n",
|
||||
" assert_equal(solution.find_max_profit([5, 3, 7, 4, 2, 6, 9]), 7)\n",
|
||||
" print('Success: test_max_profit')\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def main():\n",
|
||||
" test = TestMaxProfit()\n",
|
||||
" test.test_max_profit()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"if __name__ == '__main__':\n",
|
||||
" main()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Solution Notebook\n",
|
||||
"\n",
|
||||
"Review the [Solution Notebook]() for a discussion on algorithms and code solutions."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.5.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
207
online_judges/max_profit/max_profit_solution.ipynb
Normal file
207
online_judges/max_profit/max_profit_solution.ipynb
Normal file
|
@ -0,0 +1,207 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Solution Notebook"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Problem: Given a list of stock prices, find the max profit from 1 buy and 1 sell.\n",
|
||||
"\n",
|
||||
"* [Constraints](#Constraints)\n",
|
||||
"* [Test Cases](#Test-Cases)\n",
|
||||
"* [Algorithm](#Algorithm)\n",
|
||||
"* [Code](#Code)\n",
|
||||
"* [Unit Test](#Unit-Test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Constraints\n",
|
||||
"\n",
|
||||
"* Are all prices positive ints?\n",
|
||||
" * Yes\n",
|
||||
"* Is the output an int?\n",
|
||||
" * Yes\n",
|
||||
"* If profit is negative, do we return the smallest negative loss?\n",
|
||||
" * Yes\n",
|
||||
"* If there are less than two prices, what do we return?\n",
|
||||
" * Exception\n",
|
||||
"* Can we assume the inputs are valid?\n",
|
||||
" * No\n",
|
||||
"* Can we assume this fits memory?\n",
|
||||
" * Yes"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Test Cases\n",
|
||||
"\n",
|
||||
"* None -> TypeError\n",
|
||||
"* Zero or one price -> ValueError\n",
|
||||
"* No profit\n",
|
||||
" * [8, 5, 3, 2, 1] -> -1\n",
|
||||
"* General case\n",
|
||||
" * [5, 3, 7, 4, 2, 6, 9] -> 7"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Algorithm\n",
|
||||
"\n",
|
||||
"We'll use a greedy approach and iterate through the prices once.\n",
|
||||
"\n",
|
||||
"* Loop through the prices\n",
|
||||
" * Update current profit (price = min_price)\n",
|
||||
" * Update the min price\n",
|
||||
" * Update the max profit\n",
|
||||
"* Return max profit\n",
|
||||
"\n",
|
||||
"Complexity:\n",
|
||||
"* Time: O(n)\n",
|
||||
"* Space: O(1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Code"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class Solution(object):\n",
|
||||
"\n",
|
||||
" def find_max_profit(self, prices):\n",
|
||||
" if prices is None:\n",
|
||||
" raise TypeError('prices cannot be None')\n",
|
||||
" if len(prices) < 2:\n",
|
||||
" raise ValueError('prices must have at least two values')\n",
|
||||
" min_price = prices[0]\n",
|
||||
" max_profit = -sys.maxsize\n",
|
||||
" for index, price in enumerate(prices):\n",
|
||||
" if index == 0:\n",
|
||||
" continue\n",
|
||||
" profit = price - min_price\n",
|
||||
" min_price = min(price, min_price)\n",
|
||||
" max_profit = max(profit, max_profit)\n",
|
||||
" return max_profit"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Unit Test"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Overwriting test_max_profit.py\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%writefile test_max_profit.py\n",
|
||||
"from nose.tools import assert_equal, assert_raises\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TestMaxProfit(object):\n",
|
||||
"\n",
|
||||
" def test_max_profit(self):\n",
|
||||
" solution = Solution()\n",
|
||||
" assert_raises(TypeError, solution.find_max_profit, None)\n",
|
||||
" assert_raises(ValueError, solution.find_max_profit, [])\n",
|
||||
" assert_equal(solution.find_max_profit([8, 5, 3, 2, 1]), -1)\n",
|
||||
" assert_equal(solution.find_max_profit([5, 3, 7, 4, 2, 6, 9]), 7)\n",
|
||||
" print('Success: test_max_profit')\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def main():\n",
|
||||
" test = TestMaxProfit()\n",
|
||||
" test.test_max_profit()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"if __name__ == '__main__':\n",
|
||||
" main()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Success: test_max_profit\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%run -i test_max_profit.py"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.5.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
21
online_judges/max_profit/test_max_profit.py
Normal file
21
online_judges/max_profit/test_max_profit.py
Normal file
|
@ -0,0 +1,21 @@
|
|||
from nose.tools import assert_equal, assert_raises
|
||||
|
||||
|
||||
class TestMaxProfit(object):
|
||||
|
||||
def test_max_profit(self):
|
||||
solution = Solution()
|
||||
assert_raises(TypeError, solution.find_max_profit, None)
|
||||
assert_raises(ValueError, solution.find_max_profit, [])
|
||||
assert_equal(solution.find_max_profit([8, 5, 3, 2, 1]), -1)
|
||||
assert_equal(solution.find_max_profit([5, 3, 7, 4, 2, 6, 9]), 7)
|
||||
print('Success: test_max_profit')
|
||||
|
||||
|
||||
def main():
|
||||
test = TestMaxProfit()
|
||||
test.test_max_profit()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue
Block a user