mirror of
https://github.com/donnemartin/data-science-ipython-notebooks.git
synced 2024-03-22 13:30:56 +08:00
195 lines
14 KiB
Markdown
195 lines
14 KiB
Markdown
<p align="center">
|
|
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/coversmall.png">
|
|
</p>
|
|
|
|
# ipython-data-notebooks
|
|
Continually updated IPython Data Science Notebooks: Spark, Hadoop MapReduce, HDFS, AWS, Kaggle, scikit-learn, matplotlib, pandas, NumPy, SciPy, Python, and various command lines.
|
|
|
|
<br/>
|
|
<p align="center">
|
|
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/spark.png">
|
|
</p>
|
|
|
|
## spark
|
|
|
|
IPython Notebook(s) demonstrating spark and HDFS functionality.
|
|
|
|
| Notebook | Description |
|
|
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|
|
| [spark](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/spark/spark.ipynb) | In-memory cluster computing framework, up to 100 times faster for certain applications and is well suited for machine learning algorithms. |
|
|
| [hdfs](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/spark/hdfs.ipynb) | Reliably stores very large files across machines in a large cluster. |
|
|
|
|
<br/>
|
|
<p align="center">
|
|
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/mrjob.png">
|
|
</p>
|
|
|
|
## mapreduce-python
|
|
|
|
IPython Notebook(s) demonstrating Hadoop MapReduce with mrjob functionality.
|
|
|
|
| Notebook | Description |
|
|
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|
|
| [mapreduce-python](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/mapreduce/mapreduce-python.ipynb) | Supports MapReduce jobs in Python with [mrjob](https://github.com/Yelp/mrjob), running them locally or on Hadoop clusters. |
|
|
|
|
<br/>
|
|
<p align="center">
|
|
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/aws.png">
|
|
</p>
|
|
|
|
## aws
|
|
|
|
IPython Notebook(s) demonstrating Amazon Web Services (AWS) and AWS tools functionality.
|
|
|
|
| Notebook | Description |
|
|
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
| [s3cmd](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#s3cmd) | Interacts with S3 through the command line. |
|
|
| [s3distcp](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#s3distcp) | Combines smaller files and aggregates them together by taking in a pattern and target file. S3DistCp can also be used to transfer large volumes of data from S3 to your Hadoop cluster. |
|
|
| [s3-parallel-put](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#s3-parallel-put) | Uploads multiple files to S3 in parallel. |
|
|
| [redshift](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#redshift) | Acts as a fast data warehouse built on top of technology from massive parallel processing (MPP). |
|
|
| [kinesis](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#kinesis) | Streams data in real time with the ability to process thousands of data streams per second. |
|
|
| [lambda](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#lambda) | Runs code in response to events, automatically managing compute resources. |
|
|
|
|
<br/>
|
|
<p align="center">
|
|
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/kaggle.png">
|
|
</p>
|
|
|
|
## kaggle
|
|
|
|
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions.
|
|
|
|
| Notebook | Description |
|
|
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|
|
| [titanic](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/kaggle/titanic.ipynb) | Predicts survival on the Titanic. Demonstrates data cleaning, exploratory data analysis, and machine learning. |
|
|
|
|
<br/>
|
|
<p align="center">
|
|
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/scikitlearn.png">
|
|
</p>
|
|
|
|
## scikit-learn
|
|
|
|
IPython Notebook(s) demonstrating scikit-learn functionality.
|
|
|
|
| Notebook | Description |
|
|
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
| [scikit-learn-intro](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb) | Intro notebook to scikit-learn. Scikit-learn adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. |
|
|
| [scikit-learn-intro](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb#K-Nearest-Neighbors-Classifier) | K-Nearest Neighbors. |
|
|
| [scikit-learn-linear-reg](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/scikit-learn/scikit-learn-linear-reg.ipynb) | Linear regression. |
|
|
| [scikit-learn-svm](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/scikit-learn/scikit-learn-svm.ipynb) | Support vector machine classifier, with and without kernels. |
|
|
|
|
<br/>
|
|
<p align="center">
|
|
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/matplotlib.png">
|
|
</p>
|
|
|
|
## matplotlib
|
|
|
|
IPython Notebook(s) demonstrating matplotlib functionality.
|
|
|
|
| Notebook | Description |
|
|
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
| [matplotlib](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/matplotlib/matplotlib.ipynb) | Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. |
|
|
|
|
<br/>
|
|
<p align="center">
|
|
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/pandas.png">
|
|
</p>
|
|
|
|
## pandas
|
|
|
|
IPython Notebook(s) demonstrating pandas functionality.
|
|
|
|
| Notebook | Description |
|
|
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
| [pandas](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/pandas/pandas.ipynb) | Software library written for data manipulation and analysis in Python. Offers data structures and operations for manipulating numerical tables and time series. |
|
|
| [pandas io](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/pandas/pandas_io.ipynb) | Input and output operations. |
|
|
| [pandas cleaning](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/pandas/pandas_clean.ipynb) | Data wrangling operations. |
|
|
|
|
<br/>
|
|
<p align="center">
|
|
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/numpy.png">
|
|
</p>
|
|
|
|
## numpy
|
|
|
|
IPython Notebook(s) demonstrating NumPy functionality.
|
|
|
|
| Notebook | Description |
|
|
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
| [numpy](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/numpy/numpy.ipynb) | Adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. |
|
|
|
|
<br/>
|
|
<p align="center">
|
|
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/scipy.png">
|
|
</p>
|
|
|
|
## scipy
|
|
|
|
[Coming Soon] IPython Notebook(s) demonstrating SciPy functionality.
|
|
|
|
<br/>
|
|
<p align="center">
|
|
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/python.png">
|
|
</p>
|
|
|
|
## python-data
|
|
|
|
IPython Notebook(s) demonstrating Python functionality geared towards data analysis.
|
|
|
|
| Notebook | Description |
|
|
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|
|
| [data structures](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-data/structs.ipynb) | Tuples, lists, dicts, sets. |
|
|
| [data structure utilities](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-data/structs_utils.ipynb) | Slice, range, xrange, bisect, sort, sorted, reversed, enumerate, zip, list comprehensions. |
|
|
| [functions](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-data/functions.ipynb) | Functions as objects, lambda functions, closures, *args, **kwargs currying, generators, generator expressions, itertools. |
|
|
| [datetime](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-data/datetime.ipynb) | Datetime, strftime, strptime, timedelta. |
|
|
| [logging](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-data/logs.ipynb) | Logging with RotatingFileHandler and TimedRotatingFileHandler. |
|
|
| [pdb](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-data/pdb.ipynb) | Interactive source code debugger. |
|
|
| [unit tests](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-data/unit_tests.ipynb) | Nose unit tests. |
|
|
|
|
<br/>
|
|
<p align="center">
|
|
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/commands.png">
|
|
</p>
|
|
|
|
## commands
|
|
|
|
IPython Notebook(s) demonstrating various command lines for Linux, Git, etc.
|
|
|
|
| Notebook | Description |
|
|
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
| [linux](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/commands/linux.ipynb) | Unix-like and mostly POSIX-compliant computer operating system. Disk usage, splitting files, grep, sed, curl, viewing running processes, terminal syntax highlighting, and Vim.|
|
|
| [anaconda](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/commands/misc.ipynb#anaconda) | Distribution of the Python programming language for large-scale data processing, predictive analytics, and scientific computing, that aims to simplify package management and deployment. |
|
|
| [ipython notebook](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/commands/misc.ipynb#ipython-notebook) | Web-based interactive computational environment where you can combine code execution, text, mathematics, plots and rich media into a single document. |
|
|
| [git](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/commands/misc.ipynb#git) | Distributed revision control system with an emphasis on speed, data integrity, and support for distributed, non-linear workflows. |
|
|
| [ruby](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/commands/misc.ipynb#ruby) | Used to interact with the AWS command line and for Jekyll, a blog framework that can be hosted on GitHub Pages. |
|
|
| [jekyll](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/commands/misc.ipynb#jekyll) | Simple, blog-aware, static site generator for personal, project, or organization sites. Renders Markdown or Textile and Liquid templates, and produces a complete, static website ready to be served by Apache HTTP Server, Nginx or another web server. |
|
|
|
|
## credits
|
|
|
|
* [Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython](http://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1449319793) by Wes McKinney
|
|
* [Programming Collective Intelligence: Building Smart Web 2.0 Applications](http://www.amazon.com/Programming-Collective-Intelligence-Building-Applications/dp/0596529325/) by Toby Segaran
|
|
* [Building Machine Learning Systems with Python](http://www.amazon.com/Building-Machine-Learning-Systems-Python/dp/1782161406) by Willi Richert, Luis Pedro Coelho
|
|
* [PyCon 2015 Scikit-learn Tutorial](https://github.com/jakevdp/sklearn_pycon2015) by Jake VanderPlas
|
|
* [Parallel Machine Learning with scikit-learn and IPython](https://github.com/ogrisel/parallel_ml_tutorial) by Olivier Grisel
|
|
* [Think Stats](http://www.amazon.com/Think-Stats-Allen-B-Downey/dp/1449307116) by Allen Downey
|
|
* [Spark Docs](https://spark.apache.org/docs/latest/)
|
|
* [AWS Docs](http://aws.amazon.com/documentation/)
|
|
|
|
## license
|
|
|
|
Copyright 2014 Donne Martin
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|