mirror of
https://github.com/donnemartin/data-science-ipython-notebooks.git
synced 2024-03-22 13:30:56 +08:00
Add TensorFlow multilayer perceptrons notebook.
This commit is contained in:
parent
46bf758a40
commit
b424fe0ab2
|
@ -100,6 +100,7 @@ IPython Notebook(s) demonstrating deep learning functionality.
|
|||
| [tsf-nn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/2_basic_classifiers/nearest_neighbor.ipynb) | Implement nearest neighboars in TensorFlow. |
|
||||
| [tsf-alex](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/3_neural_networks/alexnet.ipynb) | Implement AlexNet in TensorFlow. |
|
||||
| [tsf-cnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/3_neural_networks/convolutional_network.ipynb) | Implement convolutional neural networks in TensorFlow. |
|
||||
| [tsf-mlp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/3_neural_networks/multilayer_perceptron.ipynb) | Implement multilayer perceptrons in TensorFlow. |
|
||||
|
||||
### tensor-flow-exercises
|
||||
|
||||
|
|
|
@ -0,0 +1,253 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Multilayer Perceptron in TensorFlow\n",
|
||||
"\n",
|
||||
"Credits: Forked from [TensorFlow-Examples](https://github.com/aymericdamien/TensorFlow-Examples) by Aymeric Damien\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"Refer to the [setup instructions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/Setup_TensorFlow.md)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Extracting /tmp/data/train-images-idx3-ubyte.gz\n",
|
||||
"Extracting /tmp/data/train-labels-idx1-ubyte.gz\n",
|
||||
"Extracting /tmp/data/t10k-images-idx3-ubyte.gz\n",
|
||||
"Extracting /tmp/data/t10k-labels-idx1-ubyte.gz\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Import MINST data\n",
|
||||
"import input_data\n",
|
||||
"mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import tensorflow as tf"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Parameters\n",
|
||||
"learning_rate = 0.001\n",
|
||||
"training_epochs = 15\n",
|
||||
"batch_size = 100\n",
|
||||
"display_step = 1"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Network Parameters\n",
|
||||
"n_hidden_1 = 256 # 1st layer num features\n",
|
||||
"n_hidden_2 = 256 # 2nd layer num features\n",
|
||||
"n_input = 784 # MNIST data input (img shape: 28*28)\n",
|
||||
"n_classes = 10 # MNIST total classes (0-9 digits)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# tf Graph input\n",
|
||||
"x = tf.placeholder(\"float\", [None, n_input])\n",
|
||||
"y = tf.placeholder(\"float\", [None, n_classes])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create model\n",
|
||||
"def multilayer_perceptron(_X, _weights, _biases):\n",
|
||||
" #Hidden layer with RELU activation\n",
|
||||
" layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1'])) \n",
|
||||
" #Hidden layer with RELU activation\n",
|
||||
" layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, _weights['h2']), _biases['b2'])) \n",
|
||||
" return tf.matmul(layer_2, weights['out']) + biases['out']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Store layers weight & bias\n",
|
||||
"weights = {\n",
|
||||
" 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),\n",
|
||||
" 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),\n",
|
||||
" 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))\n",
|
||||
"}\n",
|
||||
"biases = {\n",
|
||||
" 'b1': tf.Variable(tf.random_normal([n_hidden_1])),\n",
|
||||
" 'b2': tf.Variable(tf.random_normal([n_hidden_2])),\n",
|
||||
" 'out': tf.Variable(tf.random_normal([n_classes]))\n",
|
||||
"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Construct model\n",
|
||||
"pred = multilayer_perceptron(x, weights, biases)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Define loss and optimizer\n",
|
||||
"# Softmax loss\n",
|
||||
"cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) \n",
|
||||
"# Adam Optimizer\n",
|
||||
"optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Initializing the variables\n",
|
||||
"init = tf.initialize_all_variables()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Epoch: 0001 cost= 160.113980416\n",
|
||||
"Epoch: 0002 cost= 38.665780694\n",
|
||||
"Epoch: 0003 cost= 24.118004577\n",
|
||||
"Epoch: 0004 cost= 16.440921303\n",
|
||||
"Epoch: 0005 cost= 11.689460141\n",
|
||||
"Epoch: 0006 cost= 8.469423468\n",
|
||||
"Epoch: 0007 cost= 6.223237230\n",
|
||||
"Epoch: 0008 cost= 4.560174118\n",
|
||||
"Epoch: 0009 cost= 3.250516910\n",
|
||||
"Epoch: 0010 cost= 2.359658795\n",
|
||||
"Epoch: 0011 cost= 1.694081847\n",
|
||||
"Epoch: 0012 cost= 1.167997509\n",
|
||||
"Epoch: 0013 cost= 0.872986831\n",
|
||||
"Epoch: 0014 cost= 0.630616366\n",
|
||||
"Epoch: 0015 cost= 0.487381571\n",
|
||||
"Optimization Finished!\n",
|
||||
"Accuracy: 0.9462\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Launch the graph\n",
|
||||
"with tf.Session() as sess:\n",
|
||||
" sess.run(init)\n",
|
||||
"\n",
|
||||
" # Training cycle\n",
|
||||
" for epoch in range(training_epochs):\n",
|
||||
" avg_cost = 0.\n",
|
||||
" total_batch = int(mnist.train.num_examples/batch_size)\n",
|
||||
" # Loop over all batches\n",
|
||||
" for i in range(total_batch):\n",
|
||||
" batch_xs, batch_ys = mnist.train.next_batch(batch_size)\n",
|
||||
" # Fit training using batch data\n",
|
||||
" sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})\n",
|
||||
" # Compute average loss\n",
|
||||
" avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch\n",
|
||||
" # Display logs per epoch step\n",
|
||||
" if epoch % display_step == 0:\n",
|
||||
" print \"Epoch:\", '%04d' % (epoch+1), \"cost=\", \"{:.9f}\".format(avg_cost)\n",
|
||||
"\n",
|
||||
" print \"Optimization Finished!\"\n",
|
||||
"\n",
|
||||
" # Test model\n",
|
||||
" correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))\n",
|
||||
" # Calculate accuracy\n",
|
||||
" accuracy = tf.reduce_mean(tf.cast(correct_prediction, \"float\"))\n",
|
||||
" print \"Accuracy:\", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.4.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
Loading…
Reference in New Issue
Block a user