Add TensorFlow convolutional neural networks notebook.

This commit is contained in:
Donne Martin 2015-12-28 07:55:37 -05:00
parent 6a98b3235f
commit 46bf758a40
2 changed files with 322 additions and 0 deletions

View File

@ -99,6 +99,7 @@ IPython Notebook(s) demonstrating deep learning functionality.
| [tsf-logistic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/2_basic_classifiers/logistic_regression.ipynb) | Implement logistic regression in TensorFlow. |
| [tsf-nn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/2_basic_classifiers/nearest_neighbor.ipynb) | Implement nearest neighboars in TensorFlow. |
| [tsf-alex](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/3_neural_networks/alexnet.ipynb) | Implement AlexNet in TensorFlow. |
| [tsf-cnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/3_neural_networks/convolutional_network.ipynb) | Implement convolutional neural networks in TensorFlow. |
### tensor-flow-exercises

View File

@ -0,0 +1,321 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Convolutional Neural Network in TensorFlow\n",
"\n",
"Credits: Forked from [TensorFlow-Examples](https://github.com/aymericdamien/TensorFlow-Examples) by Aymeric Damien\n",
"\n",
"## Setup\n",
"\n",
"Refer to the [setup instructions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/Setup_TensorFlow.md)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Extracting /tmp/data/train-images-idx3-ubyte.gz\n",
"Extracting /tmp/data/train-labels-idx1-ubyte.gz\n",
"Extracting /tmp/data/t10k-images-idx3-ubyte.gz\n",
"Extracting /tmp/data/t10k-labels-idx1-ubyte.gz\n"
]
}
],
"source": [
"# Import MINST data\n",
"import input_data\n",
"mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import tensorflow as tf"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Parameters\n",
"learning_rate = 0.001\n",
"training_iters = 100000\n",
"batch_size = 128\n",
"display_step = 20"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Network Parameters\n",
"n_input = 784 # MNIST data input (img shape: 28*28)\n",
"n_classes = 10 # MNIST total classes (0-9 digits)\n",
"dropout = 0.75 # Dropout, probability to keep units"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# tf Graph input\n",
"x = tf.placeholder(tf.types.float32, [None, n_input])\n",
"y = tf.placeholder(tf.types.float32, [None, n_classes])\n",
"keep_prob = tf.placeholder(tf.types.float32) #dropout (keep probability)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Create model\n",
"def conv2d(img, w, b):\n",
" return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(img, w, strides=[1, 1, 1, 1], \n",
" padding='SAME'),b))\n",
"\n",
"def max_pool(img, k):\n",
" return tf.nn.max_pool(img, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME')\n",
"\n",
"def conv_net(_X, _weights, _biases, _dropout):\n",
" # Reshape input picture\n",
" _X = tf.reshape(_X, shape=[-1, 28, 28, 1])\n",
"\n",
" # Convolution Layer\n",
" conv1 = conv2d(_X, _weights['wc1'], _biases['bc1'])\n",
" # Max Pooling (down-sampling)\n",
" conv1 = max_pool(conv1, k=2)\n",
" # Apply Dropout\n",
" conv1 = tf.nn.dropout(conv1, _dropout)\n",
"\n",
" # Convolution Layer\n",
" conv2 = conv2d(conv1, _weights['wc2'], _biases['bc2'])\n",
" # Max Pooling (down-sampling)\n",
" conv2 = max_pool(conv2, k=2)\n",
" # Apply Dropout\n",
" conv2 = tf.nn.dropout(conv2, _dropout)\n",
"\n",
" # Fully connected layer\n",
" # Reshape conv2 output to fit dense layer input\n",
" dense1 = tf.reshape(conv2, [-1, _weights['wd1'].get_shape().as_list()[0]]) \n",
" # Relu activation\n",
" dense1 = tf.nn.relu(tf.add(tf.matmul(dense1, _weights['wd1']), _biases['bd1']))\n",
" # Apply Dropout\n",
" dense1 = tf.nn.dropout(dense1, _dropout) # Apply Dropout\n",
"\n",
" # Output, class prediction\n",
" out = tf.add(tf.matmul(dense1, _weights['out']), _biases['out'])\n",
" return out"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Store layers weight & bias\n",
"weights = {\n",
" # 5x5 conv, 1 input, 32 outputs\n",
" 'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])), \n",
" # 5x5 conv, 32 inputs, 64 outputs\n",
" 'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])), \n",
" # fully connected, 7*7*64 inputs, 1024 outputs\n",
" 'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])), \n",
" # 1024 inputs, 10 outputs (class prediction)\n",
" 'out': tf.Variable(tf.random_normal([1024, n_classes])) \n",
"}\n",
"\n",
"biases = {\n",
" 'bc1': tf.Variable(tf.random_normal([32])),\n",
" 'bc2': tf.Variable(tf.random_normal([64])),\n",
" 'bd1': tf.Variable(tf.random_normal([1024])),\n",
" 'out': tf.Variable(tf.random_normal([n_classes]))\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Construct model\n",
"pred = conv_net(x, weights, biases, keep_prob)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Define loss and optimizer\n",
"cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))\n",
"optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Evaluate model\n",
"correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))\n",
"accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.types.float32))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Initializing the variables\n",
"init = tf.initialize_all_variables()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Iter 2560, Minibatch Loss= 26046.011719, Training Accuracy= 0.21094\n",
"Iter 5120, Minibatch Loss= 10456.769531, Training Accuracy= 0.52344\n",
"Iter 7680, Minibatch Loss= 6273.207520, Training Accuracy= 0.71875\n",
"Iter 10240, Minibatch Loss= 6276.231445, Training Accuracy= 0.64062\n",
"Iter 12800, Minibatch Loss= 4188.221680, Training Accuracy= 0.77344\n",
"Iter 15360, Minibatch Loss= 2717.077637, Training Accuracy= 0.80469\n",
"Iter 17920, Minibatch Loss= 4057.120361, Training Accuracy= 0.81250\n",
"Iter 20480, Minibatch Loss= 1696.550415, Training Accuracy= 0.87500\n",
"Iter 23040, Minibatch Loss= 2525.317627, Training Accuracy= 0.85938\n",
"Iter 25600, Minibatch Loss= 2341.906738, Training Accuracy= 0.87500\n",
"Iter 28160, Minibatch Loss= 4200.535156, Training Accuracy= 0.79688\n",
"Iter 30720, Minibatch Loss= 1888.964355, Training Accuracy= 0.89062\n",
"Iter 33280, Minibatch Loss= 2167.645996, Training Accuracy= 0.84375\n",
"Iter 35840, Minibatch Loss= 1932.107544, Training Accuracy= 0.89844\n",
"Iter 38400, Minibatch Loss= 1562.430054, Training Accuracy= 0.90625\n",
"Iter 40960, Minibatch Loss= 1676.755249, Training Accuracy= 0.84375\n",
"Iter 43520, Minibatch Loss= 1003.626099, Training Accuracy= 0.93750\n",
"Iter 46080, Minibatch Loss= 1176.615479, Training Accuracy= 0.86719\n",
"Iter 48640, Minibatch Loss= 1260.592651, Training Accuracy= 0.88281\n",
"Iter 51200, Minibatch Loss= 1399.667969, Training Accuracy= 0.86719\n",
"Iter 53760, Minibatch Loss= 1259.961426, Training Accuracy= 0.89844\n",
"Iter 56320, Minibatch Loss= 1415.800781, Training Accuracy= 0.89062\n",
"Iter 58880, Minibatch Loss= 1835.365967, Training Accuracy= 0.85156\n",
"Iter 61440, Minibatch Loss= 1395.168823, Training Accuracy= 0.90625\n",
"Iter 64000, Minibatch Loss= 973.283569, Training Accuracy= 0.88281\n",
"Iter 66560, Minibatch Loss= 818.093811, Training Accuracy= 0.92969\n",
"Iter 69120, Minibatch Loss= 1178.744263, Training Accuracy= 0.92188\n",
"Iter 71680, Minibatch Loss= 845.889709, Training Accuracy= 0.89844\n",
"Iter 74240, Minibatch Loss= 1259.505615, Training Accuracy= 0.90625\n",
"Iter 76800, Minibatch Loss= 738.037109, Training Accuracy= 0.89844\n",
"Iter 79360, Minibatch Loss= 862.499146, Training Accuracy= 0.93750\n",
"Iter 81920, Minibatch Loss= 739.704041, Training Accuracy= 0.90625\n",
"Iter 84480, Minibatch Loss= 652.880310, Training Accuracy= 0.95312\n",
"Iter 87040, Minibatch Loss= 635.464600, Training Accuracy= 0.92969\n",
"Iter 89600, Minibatch Loss= 933.166626, Training Accuracy= 0.90625\n",
"Iter 92160, Minibatch Loss= 213.874893, Training Accuracy= 0.96094\n",
"Iter 94720, Minibatch Loss= 609.575684, Training Accuracy= 0.91406\n",
"Iter 97280, Minibatch Loss= 560.208008, Training Accuracy= 0.93750\n",
"Iter 99840, Minibatch Loss= 963.577148, Training Accuracy= 0.90625\n",
"Optimization Finished!\n",
"Testing Accuracy: 0.960938\n"
]
}
],
"source": [
"# Launch the graph\n",
"with tf.Session() as sess:\n",
" sess.run(init)\n",
" step = 1\n",
" # Keep training until reach max iterations\n",
" while step * batch_size < training_iters:\n",
" batch_xs, batch_ys = mnist.train.next_batch(batch_size)\n",
" # Fit training using batch data\n",
" sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})\n",
" if step % display_step == 0:\n",
" # Calculate batch accuracy\n",
" acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})\n",
" # Calculate batch loss\n",
" loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})\n",
" print \"Iter \" + str(step*batch_size) + \", Minibatch Loss= \" + \\\n",
" \"{:.6f}\".format(loss) + \", Training Accuracy= \" + \"{:.5f}\".format(acc)\n",
" step += 1\n",
" print \"Optimization Finished!\"\n",
" # Calculate accuracy for 256 mnist test images\n",
" print \"Testing Accuracy:\", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], \n",
" y: mnist.test.labels[:256], \n",
" keep_prob: 1.})"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}