mirror of
https://github.com/donnemartin/data-science-ipython-notebooks.git
synced 2024-03-22 13:30:56 +08:00
Converted notebook links and descriptions to tables for readability.
This commit is contained in:
parent
2cbff15b57
commit
8063018571
28
README.md
28
README.md
|
@ -7,27 +7,23 @@ Continually updated IPython Data Science Notebooks geared towards processing big
|
||||||
|
|
||||||
IPython Notebooks used in [kaggle](https://www.kaggle.com/) competitions.
|
IPython Notebooks used in [kaggle](https://www.kaggle.com/) competitions.
|
||||||
|
|
||||||
* [titanic](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/kaggle/titanic.ipynb): Predicts survival on the Titanic. Demonstrates data cleaning, exploratory data analysis, and machine learning.
|
| Notebook | Description |
|
||||||
|
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|
||||||
|
| [titanic](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/kaggle/titanic.ipynb) | Predicts survival on the Titanic. Demonstrates data cleaning, exploratory data analysis, and machine learning. |
|
||||||
|
|
||||||
## aws
|
## aws
|
||||||
|
|
||||||
IPython Notebooks demonstrating Amazon Web Services functionality.
|
IPython Notebooks demonstrating Amazon Web Services functionality.
|
||||||
|
|
||||||
* [aws commands index](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb)
|
| Notebook | Description |
|
||||||
|
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
* [s3cmd](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#s3cmd): Interacts with S3 through the command line.
|
| [s3cmd](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#s3cmd) | Interacts with S3 through the command line. |
|
||||||
|
| [s3-parallel-put](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#s3-parallel-put) | Uploads multiple files to S3 in parallel. |
|
||||||
* [s3-parallel-put](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#s3-parallel-put): Uploads multiple files to S3 in parallel.
|
| [s3distcp](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#s3distcp) | Combines smaller files and aggregates them together by taking in a pattern and target file.,S3DistCp can also be used to transfer large volumes of data from S3 to your Hadoop cluster. |
|
||||||
|
| [mrjob](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#mrjob) | Supports MapReduce jobs in Python 2.5+ and runs them locally or on Hadoop clusters. |
|
||||||
* [s3distcp](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#s3distcp): Combines smaller files and aggregates them together by taking in a pattern and target file. S3DistCp can also be used to transfer large volumes of data from S3 to your Hadoop cluster.
|
| [redshift](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#redshift) | Acts as a fast data warehouse built on top of technology from massive parallel processing (MPP). |
|
||||||
|
| [kinesis](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#kinesis) | Streams data in real time with the ability to process thousands of data streams per second. |
|
||||||
* [mrjob](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#mrjob): Supports MapReduce jobs in Python 2.5+ and runs them locally or on Hadoop clusters.
|
| [lambda](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#lambda) | Runs code in response to events, automatically managing compute resources. |
|
||||||
|
|
||||||
* [redshift](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#redshift): Acts as a fast data warehouse built on top of technology from massive parallel processing (MPP).
|
|
||||||
|
|
||||||
* [kinesis](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#kinesis): Streams data in real time with the ability to process thousands of data streams per second.
|
|
||||||
|
|
||||||
* [lambda](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#lambda): Runs code in response to events, automatically managing compute resources.
|
|
||||||
|
|
||||||
## spark
|
## spark
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user