diff --git a/README.md b/README.md index 0671707..680c4cf 100644 --- a/README.md +++ b/README.md @@ -7,27 +7,23 @@ Continually updated IPython Data Science Notebooks geared towards processing big IPython Notebooks used in [kaggle](https://www.kaggle.com/) competitions. -* [titanic](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/kaggle/titanic.ipynb): Predicts survival on the Titanic. Demonstrates data cleaning, exploratory data analysis, and machine learning. +| Notebook | Description | +|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------| +| [titanic](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/kaggle/titanic.ipynb) | Predicts survival on the Titanic. Demonstrates data cleaning, exploratory data analysis, and machine learning. | ## aws IPython Notebooks demonstrating Amazon Web Services functionality. -* [aws commands index](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb) - -* [s3cmd](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#s3cmd): Interacts with S3 through the command line. - -* [s3-parallel-put](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#s3-parallel-put): Uploads multiple files to S3 in parallel. - -* [s3distcp](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#s3distcp): Combines smaller files and aggregates them together by taking in a pattern and target file. S3DistCp can also be used to transfer large volumes of data from S3 to your Hadoop cluster. - -* [mrjob](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#mrjob): Supports MapReduce jobs in Python 2.5+ and runs them locally or on Hadoop clusters. - -* [redshift](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#redshift): Acts as a fast data warehouse built on top of technology from massive parallel processing (MPP). - -* [kinesis](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#kinesis): Streams data in real time with the ability to process thousands of data streams per second. - -* [lambda](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#lambda): Runs code in response to events, automatically managing compute resources. +| Notebook | Description | +|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| +| [s3cmd](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#s3cmd) | Interacts with S3 through the command line. | +| [s3-parallel-put](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#s3-parallel-put) | Uploads multiple files to S3 in parallel. | +| [s3distcp](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#s3distcp) | Combines smaller files and aggregates them together by taking in a pattern and target file.,S3DistCp can also be used to transfer large volumes of data from S3 to your Hadoop cluster. | +| [mrjob](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#mrjob) | Supports MapReduce jobs in Python 2.5+ and runs them locally or on Hadoop clusters. | +| [redshift](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#redshift) | Acts as a fast data warehouse built on top of technology from massive parallel processing (MPP). | +| [kinesis](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#kinesis) | Streams data in real time with the ability to process thousands of data streams per second. | +| [lambda](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#lambda) | Runs code in response to events, automatically managing compute resources. | ## spark