Added matplotlib IPython Notebook. Contains code to clean data, data will be plotted in the notebook and setting of global params.

This commit is contained in:
Donne Martin 2015-04-06 08:51:28 -04:00
parent 557b76f267
commit 21b19dd12f

139
matplotlib/matplotlib.ipynb Normal file
View File

@ -0,0 +1,139 @@
{
"metadata": {
"name": "",
"signature": "sha256:08003effc72ed7242f0098f883755ff31312100e58bf63705b8a1b8c45afc8a4"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# matplotlib"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* Setting Global Parameters\n",
"* Bar Plots, Histograms, subplot2grid\n",
"* Normalized Plots\n",
"* Scatter Plots, subplots\n",
"* Kernel Density Estimation Plots"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import pandas as pd\n",
"import numpy as np\n",
"import pylab as plt"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Prepare data to plot:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df_train = pd.read_csv('../data/titanic/train.csv')\n",
"\n",
"def clean_data(df):\n",
" \n",
" # Get the unique values of Sex\n",
" sexes = sort(df['Sex'].unique())\n",
" \n",
" # Generate a mapping of Sex from a string to a number representation \n",
" genders_mapping = dict(zip(sexes, range(0, len(sexes) + 1)))\n",
"\n",
" # Transform Sex from a string to a number representation\n",
" df['Sex_Val'] = df['Sex'].map(genders_mapping).astype(int)\n",
" \n",
" # Get the unique values of Embarked\n",
" embarked_locs = sort(df['Embarked'].unique())\n",
"\n",
" # Generate a mapping of Embarked from a string to a number representation \n",
" embarked_locs_mapping = dict(zip(embarked_locs, \n",
" range(0, len(embarked_locs) + 1)))\n",
" \n",
" # Transform Embarked from a string to dummy variables\n",
" df = pd.concat([df, pd.get_dummies(df['Embarked'], prefix='Embarked_Val')], axis=1)\n",
" \n",
" # Fill in missing values of Embarked\n",
" # Since the vast majority of passengers embarked in 'S': 3, \n",
" # we assign the missing values in Embarked to 'S':\n",
" if len(df[df['Embarked'].isnull()] > 0):\n",
" df.replace({'Embarked_Val' : \n",
" { embarked_locs_mapping[nan] : embarked_locs_mapping['S'] \n",
" }\n",
" }, \n",
" inplace=True)\n",
" \n",
" # Fill in missing values of Fare with the average Fare\n",
" if len(df[df['Fare'].isnull()] > 0):\n",
" avg_fare = df['Fare'].mean()\n",
" df.replace({ None: avg_fare }, inplace=True)\n",
" \n",
" # To keep Age in tact, make a copy of it called AgeFill \n",
" # that we will use to fill in the missing ages:\n",
" df['AgeFill'] = df['Age']\n",
"\n",
" # Determine the Age typical for each passenger class by Sex_Val. \n",
" # We'll use the median instead of the mean because the Age \n",
" # histogram seems to be right skewed.\n",
" df['AgeFill'] = df['AgeFill'] \\\n",
" .groupby([df['Sex_Val'], df['Pclass']]) \\\n",
" .apply(lambda x: x.fillna(x.median()))\n",
" \n",
" # Define a new feature FamilySize that is the sum of \n",
" # Parch (number of parents or children on board) and \n",
" # SibSp (number of siblings or spouses):\n",
" df['FamilySize'] = df['SibSp'] + df['Parch']\n",
" \n",
" return df\n",
"\n",
"df_train = clean_data(df_train)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 2
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setting Global Parameters"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Set the global default size of matplotlib figures\n",
"plt.rc('figure', figsize=(10, 5))"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 3
}
],
"metadata": {}
}
]
}