mirror of
https://github.com/donnemartin/data-science-ipython-notebooks.git
synced 2024-03-22 13:30:56 +08:00
Reorder sections in README
This commit is contained in:
parent
b2da6e6704
commit
07e6273279
30
README.md
30
README.md
|
@ -12,8 +12,8 @@
|
||||||
|
|
||||||
## Index
|
## Index
|
||||||
|
|
||||||
* [scikit-learn](#scikit-learn)
|
|
||||||
* [kaggle-and-business-analyses](#kaggle-and-business-analyses)
|
* [kaggle-and-business-analyses](#kaggle-and-business-analyses)
|
||||||
|
* [scikit-learn](#scikit-learn)
|
||||||
* [deep-learning](#deep-learning)
|
* [deep-learning](#deep-learning)
|
||||||
* [statistical-inference-scipy](#statistical-inference-scipy)
|
* [statistical-inference-scipy](#statistical-inference-scipy)
|
||||||
* [pandas](#pandas)
|
* [pandas](#pandas)
|
||||||
|
@ -31,6 +31,20 @@
|
||||||
* [contact-info](#contact-info)
|
* [contact-info](#contact-info)
|
||||||
* [license](#license)
|
* [license](#license)
|
||||||
|
|
||||||
|
<br/>
|
||||||
|
<p align="center">
|
||||||
|
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/kaggle.png">
|
||||||
|
</p>
|
||||||
|
|
||||||
|
## kaggle-and-business-analyses
|
||||||
|
|
||||||
|
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses.
|
||||||
|
|
||||||
|
| Notebook | Description |
|
||||||
|
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|
||||||
|
| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predict survival on the Titanic. Learn data cleaning, exploratory data analysis, and machine learning. |
|
||||||
|
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predict customer churn. Exercise logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Includes discussions of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
|
||||||
|
|
||||||
<br/>
|
<br/>
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/scikitlearn.png">
|
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/scikitlearn.png">
|
||||||
|
@ -52,20 +66,6 @@ IPython Notebook(s) demonstrating scikit-learn functionality.
|
||||||
| [gmm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-gmm.ipynb) | Implement Gaussian mixture models in scikit-learn. |
|
| [gmm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-gmm.ipynb) | Implement Gaussian mixture models in scikit-learn. |
|
||||||
| [validation](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-validation.ipynb) | Implement validation and model selection in scikit-learn. |
|
| [validation](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-validation.ipynb) | Implement validation and model selection in scikit-learn. |
|
||||||
|
|
||||||
<br/>
|
|
||||||
<p align="center">
|
|
||||||
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/kaggle.png">
|
|
||||||
</p>
|
|
||||||
|
|
||||||
## kaggle-and-business-analyses
|
|
||||||
|
|
||||||
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses.
|
|
||||||
|
|
||||||
| Notebook | Description |
|
|
||||||
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|
|
||||||
| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predict survival on the Titanic. Learn data cleaning, exploratory data analysis, and machine learning. |
|
|
||||||
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predict customer churn. Exercise logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Includes discussions of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
|
|
||||||
|
|
||||||
<br/>
|
<br/>
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<img src="http://i.imgur.com/ZhKXrKZ.png">
|
<img src="http://i.imgur.com/ZhKXrKZ.png">
|
||||||
|
|
Loading…
Reference in New Issue
Block a user