diff --git a/README.md b/README.md
index dadb05f..a2c1285 100644
--- a/README.md
+++ b/README.md
@@ -12,8 +12,8 @@
## Index
-* [scikit-learn](#scikit-learn)
* [kaggle-and-business-analyses](#kaggle-and-business-analyses)
+* [scikit-learn](#scikit-learn)
* [deep-learning](#deep-learning)
* [statistical-inference-scipy](#statistical-inference-scipy)
* [pandas](#pandas)
@@ -31,6 +31,20 @@
* [contact-info](#contact-info)
* [license](#license)
+
+
+ +
+ +## kaggle-and-business-analyses + +IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses. + +| Notebook | Description | +|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------| +| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predict survival on the Titanic. Learn data cleaning, exploratory data analysis, and machine learning. | +| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predict customer churn. Exercise logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Includes discussions of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.| +
@@ -52,20 +66,6 @@ IPython Notebook(s) demonstrating scikit-learn functionality.
| [gmm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-gmm.ipynb) | Implement Gaussian mixture models in scikit-learn. |
| [validation](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-validation.ipynb) | Implement validation and model selection in scikit-learn. |
-
-
- -
- -## kaggle-and-business-analyses - -IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses. - -| Notebook | Description | -|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------| -| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predict survival on the Titanic. Learn data cleaning, exploratory data analysis, and machine learning. | -| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predict customer churn. Exercise logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Includes discussions of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.| -