diff --git a/README.md b/README.md index dadb05f..a2c1285 100644 --- a/README.md +++ b/README.md @@ -12,8 +12,8 @@ ## Index -* [scikit-learn](#scikit-learn) * [kaggle-and-business-analyses](#kaggle-and-business-analyses) +* [scikit-learn](#scikit-learn) * [deep-learning](#deep-learning) * [statistical-inference-scipy](#statistical-inference-scipy) * [pandas](#pandas) @@ -31,6 +31,20 @@ * [contact-info](#contact-info) * [license](#license) +
+

+ +

+ +## kaggle-and-business-analyses + +IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses. + +| Notebook | Description | +|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------| +| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predict survival on the Titanic. Learn data cleaning, exploratory data analysis, and machine learning. | +| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predict customer churn. Exercise logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Includes discussions of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.| +

@@ -52,20 +66,6 @@ IPython Notebook(s) demonstrating scikit-learn functionality. | [gmm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-gmm.ipynb) | Implement Gaussian mixture models in scikit-learn. | | [validation](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-validation.ipynb) | Implement validation and model selection in scikit-learn. | -
-

- -

- -## kaggle-and-business-analyses - -IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses. - -| Notebook | Description | -|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------| -| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predict survival on the Titanic. Learn data cleaning, exploratory data analysis, and machine learning. | -| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predict customer churn. Exercise logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Includes discussions of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.| -