mirror of
https://github.com/donnemartin/data-science-ipython-notebooks.git
synced 2024-03-22 13:30:56 +08:00
Reorder sections in README
This commit is contained in:
parent
b2da6e6704
commit
07e6273279
30
README.md
30
README.md
|
@ -12,8 +12,8 @@
|
|||
|
||||
## Index
|
||||
|
||||
* [scikit-learn](#scikit-learn)
|
||||
* [kaggle-and-business-analyses](#kaggle-and-business-analyses)
|
||||
* [scikit-learn](#scikit-learn)
|
||||
* [deep-learning](#deep-learning)
|
||||
* [statistical-inference-scipy](#statistical-inference-scipy)
|
||||
* [pandas](#pandas)
|
||||
|
@ -31,6 +31,20 @@
|
|||
* [contact-info](#contact-info)
|
||||
* [license](#license)
|
||||
|
||||
<br/>
|
||||
<p align="center">
|
||||
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/kaggle.png">
|
||||
</p>
|
||||
|
||||
## kaggle-and-business-analyses
|
||||
|
||||
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses.
|
||||
|
||||
| Notebook | Description |
|
||||
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|
||||
| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predict survival on the Titanic. Learn data cleaning, exploratory data analysis, and machine learning. |
|
||||
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predict customer churn. Exercise logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Includes discussions of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
|
||||
|
||||
<br/>
|
||||
<p align="center">
|
||||
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/scikitlearn.png">
|
||||
|
@ -52,20 +66,6 @@ IPython Notebook(s) demonstrating scikit-learn functionality.
|
|||
| [gmm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-gmm.ipynb) | Implement Gaussian mixture models in scikit-learn. |
|
||||
| [validation](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-validation.ipynb) | Implement validation and model selection in scikit-learn. |
|
||||
|
||||
<br/>
|
||||
<p align="center">
|
||||
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/kaggle.png">
|
||||
</p>
|
||||
|
||||
## kaggle-and-business-analyses
|
||||
|
||||
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses.
|
||||
|
||||
| Notebook | Description |
|
||||
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|
||||
| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predict survival on the Titanic. Learn data cleaning, exploratory data analysis, and machine learning. |
|
||||
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predict customer churn. Exercise logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Includes discussions of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
|
||||
|
||||
<br/>
|
||||
<p align="center">
|
||||
<img src="http://i.imgur.com/ZhKXrKZ.png">
|
||||
|
|
Loading…
Reference in New Issue
Block a user