mirror of
https://github.com/heqin-zhu/algorithm.git
synced 2024-03-22 13:30:46 +08:00
29 lines
1.1 KiB
Haskell
29 lines
1.1 KiB
Haskell
{-''' mbinary
|
|
#######################################################################
|
|
# File : fibonacci.hs
|
|
# Author: mbinary
|
|
# Mail: zhuheqin1@gmail.com
|
|
# Blog: https://mbinary.github.io
|
|
# Github: https://github.com/mbinary
|
|
# Created Time: 2019-02-03 19:42
|
|
# Description: matrix pow and fast pow:
|
|
calculate big number fibonacci item. for negative item, use f(n) = f(n+2)-f(n+1)
|
|
#######################################################################
|
|
-}
|
|
module Fibonacci where
|
|
|
|
fib :: Integer -> Integer
|
|
fib n = let p = if n>0 then n-2 else 2-n
|
|
mat = if n>0 then [1,1,1,0] else [0,1,1,-1]
|
|
m = matrix_pow mat p
|
|
in m!!0+m!!1
|
|
|
|
|
|
matrix_pow mat n = if n<=0 then [1,0,0,1]
|
|
else let v = if (mod n 2==0) then [1,0,0,1] else mat
|
|
m2 = matrix_mul mat mat
|
|
remain = matrix_pow m2 (div n 2)
|
|
in matrix_mul v remain
|
|
|
|
matrix_mul a b = [ a!!0 * b!!0 +a!!1 * b!!2,a!!0 * b!!1 +a!!1 * b!!3,a!!2 * b!!0 +a!!3 * b!!2, a!!2 * b!!1+a!!3 * b!!3]
|