algorithm-in-python/parser/README.md
2020-05-13 10:45:51 +08:00

19 KiB
Raw Blame History

parser

先进行词法分析,然后进行语法分析,然后编写递归下降程序。可以将代码形成框架,词法分析每次只需要改变正则表达式部分即可,语法分析代码只需要实现语法对应的函数. 我这里列举了4个题目都可以这样解答。

Lisp 语法解析

题目

给定一个类似 Lisp 语句的表达式 expression求出其计算结果。

表达式语法如下所示:

  • 表达式可以为整数let 语法add 语法mult 语法,或赋值的变量。表达式的结果总是一个整数。
  • (整数可以是正整数、负整数、0)
  • let 语法表示为 (let v1 e1 v2 e2 ... vn en expr), 其中 let 语法总是以字符串 "let" 来表示接下来会跟随一个或多个交替变量或表达式也就是说第一个变量 v1 被分配为表达式 e1 的值第二个变量 v2 被分配为表达式 e2 的值以此类推最终 let 语法的值为 expr 表达式的值。
  • add 语法表示为 (add e1 e2)其中 add 语法总是以字符串 "add" 来表示,该语法总是有两个表达式 e1、e2, 该语法的最终结果是 e1 表达式的值与 e2 表达式的值之和。
  • mult 语法表示为 (mult e1 e2) 其中 mult 语法总是以字符串 "mult" 表示, 该语法总是有两个表达式 e1、e2该语法的最终结果是 e1 表达式的值与 e2 表达式的值之积。
  • 在该题目中,变量的命名以小写字符开始,之后跟随 0 个或多个小写字符或数字。为了方便,"add""let""mult" 会被定义为 "关键字",不会在表达式的变量命名中出现。
  • 最后,要说一下作用域的概念。计算变量名所对应的表达式时,在计算上下文中,首先检查最内层作用域(按括号计),然后按顺序依次检查外部作用域。我们将保证每一个测试的表达式都是合法的。有关作用域的更多详细信息,请参阅示例。
>>> (let x -2 y x y)
-2
>>> (mult 3 (add 2 3))
15
>>> (let x 2 (mult x 5))
10
>>> (let x 2 (mult x (let x 3 y 4 (add x y))))
14
>>> (let x 2 x 3 x)
3
>>> (let x 2 (add (let x 3 (let x 4 x)) x))
6
>>> (let a1 3 b2 (add a1 1) b2)
4

语法

S-> '(' expr ')'
expr -> [mult|add] item item | let {word item } item 
item -> num | word| S 

代码

import re
from collections import namedtuple
left = r'(?P<LEFT>\()'
right = r'(?P<RIGHT>\))'
word = r'(?P<WORD>[a-z][a-z0-9]*)'
num = r'(?P<NUM>(\-)?\d+)'
blank = r'(?P<BLANK>\s+)'
pt = re.compile('|'.join([left, right, word, num, blank]))

token = namedtuple('token', ['type', 'value'])


def genToken(s):
    scanner = pt.scanner(s)
    for i in iter(scanner.match, None):
        if i.lastgroup != 'BLANK':
            yield token(i.lastgroup, i.group(0))


class parser(object):
    '''grammar:
        S-> '(' expr ')'
        expr -> [mult|add] item item | let {word item } item 
        item -> num | word| S 
    '''

    def config(self,s):
        if s:
            self.token = [i for i in genToken(s)]
            self.lookahead = 0
            self.vars = []

    def parse(self, s):
        self.config(s)
        try:
            return self.S()
        except Exception as e:
            return e

    def match(self, curType):
        sym = self.token[self.lookahead]
        if sym.type == curType:
            self.lookahead += 1
            return sym.value
        self.errorinfo(f'Expected {curType}, got {sym.value}')

    def errorinfo(self, s, k=None):
        if k is None:
            k = self.lookahead
        pre = ' '.join([t.value for t in self.token[:k]])
        suf = ' '.join([t.value for t in self.token[k:]])
        print(pre+' '+suf)
        print(' '*(len(pre)+1)+'^'*len(self.token[k].value))
        raise Exception(s)

    def readVar(self, var):
        for dic in self.vars[::-1]:
            if var in dic:
                return dic[var]
        self.errorinfo(f"Undefined varible '{var}'", self.lookahead-1)

    def S(self):
        self.vars.append({})
        self.match('LEFT')
        ret = self.expr()
        self.match('RIGHT')
        self.vars.pop()
        return ret

    def expr(self):
        op = self.match('WORD')
        if op == 'let':
            while self.token[self.lookahead].type != 'RIGHT':
                if self.token[self.lookahead].type == 'WORD':
                    var = self.match('WORD')
                    if self.token[self.lookahead].type == 'RIGHT':
                        return self.readVar(var)
                    else:
                        self.vars[-1][var] = self.item()
                else:
                    return self.item()
        elif op in {'mult', 'add'}:
            a = self.item()
            b = self.item()
            if op == 'mult':
                return a*b
            elif op == 'add':
                return a+b
        else:
            self.errorinfo('Unknown keyword', self.lookahead-1)

    def item(self):
        if self.token[self.lookahead].type == 'WORD':
            return self.readVar(self.match('WORD'))
        elif self.token[self.lookahead].type == 'NUM':
            return int(self.match('NUM'))
        else:
            return self.S()


class Solution(object):
    def evaluate(self, expression: str) -> int:
        return parser().parse(expression)


if __name__ == "__main__":
    sol = Solution()

    exprs = ['(add -1 2)',
             '(let x -2 y x y)',
             '(mult 3 (add 2 3))',
             '(let x 2 (mult x 5))',
             '(let x 2 (mult x (let x 3 y 4 (add x y))))',
             '(let x 2 x 3 x)',
             '(let x 2 (add (let x 3 (let x 4 x)) x))',
             '(let a1 3 b2 (add a1 1) b2)',
             'add 1 2)',  # wrongs
             '(asd 1 2)',
             '(let a 1 b)',
             '(let a 1 b 2)'
             ]
    for e in exprs:
        print('>>>', e)
        print(sol.evaluate(e))

原子的数量

题目

给定一个化学式 formula作为字符串返回每种原子的数量。

原子总是以一个大写字母开始,接着跟随 0 个或任意个小写字母,表示原子的名字。

如果数量大于 1原子后会跟着数字表示原子的数量。如果数量等于 1 则不会跟数字。例如H2O 和 H2O2 是可行的,但 H1O2 这个表达是不可行的。

两个化学式连在一起是新的化学式。例如 H2O2He3Mg4 也是化学式。

一个括号中的化学式和数字(可选择性添加)也是化学式。例如 (H2O2) 和 (H2O2) 3 是化学式。

给定一个化学式,输出所有原子的数量。格式为:第一个(按字典序)原子的名子,跟着它的数量(如果数量大于 1然后是第二个原子的名字按字典序跟着它的数量如果数量大于 1以此类推。

>>> K4(ON(SO3)2)2
K4N2O14S4
>>> Mg(OH)2
H2MgO2

语法

S-> item | S item
item -> word | word num | '(' S ')' num 

代码

import re
from collections import namedtuple
left = r'(?P<LEFT>\()'
right = r'(?P<RIGHT>\))'
word = r'(?P<WORD>[A-Z][a-z]*)'
num = r'(?P<NUM>\d+)'
pt = re.compile('|'.join([left, right, word, num]))

token = namedtuple('token', ['type', 'value'])


def genToken(s):
    scanner = pt.scanner(s)
    for i in iter(scanner.match, None):
        yield token(i.lastgroup, i.group(0))


class parser:
    '''grammar:
        S-> item | S item
        item -> word | word num | '(' S ')' num 
    '''

    def match(self, curType):
        sym = self.token[self.lookahead]
        if sym.type == curType:
            self.lookahead += 1
            return sym.value
        raise Exception('Invalid input string')

    def parse(self, s):
        self.token = [i for i in genToken(s)]
        self.lookahead = 0
        return self.S()
    def S(self):
        dic = {}
        while self.lookahead < len(self.token) and self.token[self.lookahead].type != 'RIGHT':
            cur = self.item()
            for i in cur:
                if i in dic:
                    dic[i] += cur[i]
                else:
                    dic[i] = cur[i]
        return dic

    def item(self):
        if self.token[self.lookahead].type == 'WORD':
            ele = self.match('WORD')
            n = 1
            if self.lookahead < len(self.token) and self.token[self.lookahead].type == 'NUM':
                n = int(self.match('NUM'))
            return {ele: n}
        elif self.token[self.lookahead].type == 'LEFT':
            self.match('LEFT')
            dic = self.S()
            self.match('RIGHT')
            n = int(self.match("NUM"))
            for i in dic:
                dic[i] *= n
            return dic
        else:
            print(self.token[self.lookahead])
            raise Exception('invalid string')


class Solution(object):
    def countOfAtoms(self, formula):
        """
        :type formula: str
        :rtype: str
        """
        dic = parser().parse(formula)
        return ''.join(c+str(dic[c]) if dic[c] != 1 else c for c in sorted(dic.keys()))


if __name__ == "__main__":
    li = ["K4(ON(SO3)2)2","Mg(OH)2"]
    sol = Solution()
    for s in li:
        print('>>>',s)
        print(sol.countOfAtoms(s))

花括号展开2

题目

如果你熟悉 Shell 编程,那么一定了解过花括号展开,它可以用来生成任意字符串。

花括号展开的表达式可以看作一个由 花括号、逗号 和 小写英文字母 组成的字符串,定义下面几条语法规则:

如果只给出单一的元素 x那么表达式表示的字符串就只有 "x"。  例如,表达式 {a} 表示字符串 "a"。 而表达式 {ab} 就表示字符串 "ab"。 当两个或多个表达式并列,以逗号分隔时,我们取这些表达式中元素的并集。 例如,表达式 {a,b,c} 表示字符串 "a","b","c"。 而表达式 {a,b},{b,c} 也可以表示字符串 "a","b","c"。 要是两个或多个表达式相接,中间没有隔开时,我们从这些表达式中各取一个元素依次连接形成字符串。 例如,表达式 {a,b}{c,d} 表示字符串 "ac","ad","bc","bd"。 表达式之间允许嵌套,单一元素与表达式的连接也是允许的。

>>> {a,b}{c{d,e}}
['acd', 'ace', 'bcd', 'bce']
>>> {{a,z}, a{b,c}, {ab,z}}
['a', 'ab', 'ac', 'z']
>>> {a,b}c{d,e}f
['acdf', 'acef', 'bcdf', 'bcef']

语法

expr -> item | item ',' expr
item -> factor | factor item
factor -> WORD | '{' expr '}'

代码

import re
from collections import namedtuple

token = namedtuple('token', ['type', 'value'])


left = r'(?P<LEFT>\{)'
right = r'(?P<RIGHT>\})'
word = r'(?P<WORD>[a-z]+)'
comma = r'(?P<COMMA>\,)'
blank = r'(?P<BLANK>\s)'
pt = re.compile('|'.join([left, right, word, comma, blank]))


def genToken(s):
    scanner = pt.scanner(s)
    for i in iter(scanner.match, None):
        if i.lastgroup != 'BLANK':
            yield token(i.lastgroup, i.group(0))


class parser:
    '''gramar
        expr -> item | item ',' expr
        item -> factor | factor item
        factor -> WORD | '{' expr '}'
    '''

    def match(self, tp):
        # print(self.p.value)
        if tp == self.p.type:
            val = self.p.value
            try:
                self.p = next(self.gen)
            except StopIteration:
                self.p = None
            except Exception as e:
                print(e)
            return val
        else:
            raise Exception(f"[Error]: {tp} expected, got {self.p.type}")

    def parse(self, s):
        self.gen = genToken(s)
        self.p = next(self.gen)
        st = self.expr()
        return sorted(list(st))

    def expr(self):
        ret = self.item()
        while self.p and self.p.type == 'COMMA':
            self.match('COMMA')
            ret = ret.union(self.item())
        return ret

    def item(self):
        ret = self.factor()
        while self.p and self.p.type in ['WORD', 'LEFT']:
            sufs = self.factor()
            new = set()
            for pre in ret:
                for suf in sufs:
                    new.add(pre+suf)
            ret = new
        return ret

    def factor(self):
        if self.p.type == 'LEFT':
            self.match('LEFT')
            ret = self.expr()
            self.match('RIGHT')
            return ret
        return {self.match('WORD')}


class Solution:
    def braceExpansionII(self, expression):
        return parser().parse(expression)


if __name__ == '__main__':
    sol = Solution()
    li = ["{a,b}{c{d,e}}", "{{a,z}, a{b,c}, {ab,z}}", "{a,b}c{d,e}f"]
    for i in li:
        print('>>>', i)
        print(sol.braceExpansionII(i))

基本计算器4

题目

给定一个表达式 expression 如 expression = "e + 8 - a + 5" 和一个求值映射,如 {"e": 1}给定的形式为 evalvars = ["e"] 和 evalints = [1]),返回表示简化表达式的标记列表,例如 ["-1*a","14"]

表达式交替使用块和符号,每个块和符号之间有一个空格。 块要么是括号中的表达式,要么是变量,要么是非负整数。 块是括号中的表达式,变量或非负整数。 变量是一个由小写字母组成的字符串(不包括数字)。请注意,变量可以是多个字母,并注意变量从不具有像 "2x" 或 "-x" 这样的前导系数或一元运算符 。 表达式按通常顺序进行求值先是括号然后求乘法再计算加法和减法。例如expression = "1 + 2 * 3" 的答案是 ["7"]。

输出格式如下:

对于系数非零的每个自变量项,我们按字典排序的顺序将自变量写在一个项中。例如,我们永远不会写像 “bac” 这样的项,只写 “abc”。 项的次数等于被乘的自变量的数目,并计算重复项。(例如,"aabc" 的次数为 4。)。我们先写出答案的最大次数项,用字典顺序打破关系,此时忽略词的前导系数。 项的前导系数直接放在左边,用星号将它与变量分隔开 (如果存在的话)。前导系数 1 仍然要打印出来。 格式良好的一个示例答案是 ["-2aaa", "3aab", "3bb", "4a", "5*c", "-6"] 。 系数为 0 的项包括常数项不包括在内。例如“0” 的表达式输出为 []。

>>> ((a - b) * (b - c) + (c - a)) * ((a - b) + (b - c) * (c - a)) [] []
['-1*a*a*b*b', '2*a*a*b*c', '-1*a*a*c*c', '1*a*b*b*b', '-1*a*b*b*c', '-1*a*b*c*c', '1*a*c*c*c', '-1*b*b*b*c', '2*b*b*c*c', '-1*b*c*c*c', '2*a*a*b', '-2*a*a*c', '-2*a*b*b', '2*a*c*c', '1*b*b*b', '-1*b*b*c', '1*b*c*c', '-1*c*c*c', '-1*a*a', '1*a*b', '1*a*c', '-1*b*c']
>>> e + 8 - a + 5 ['e'] [1]
['-1*a', '14']

语法

expr -> expr {'+'|'-'} term | term
term -> term '*' item | item
item -> num | var | '(' expr ')'

代码

import re
from collections import namedtuple
left = r'(?P<LEFT>\()'
right = r'(?P<RIGHT>\))'
var = r'(?P<VAR>[a-z]+)'
num = r'(?P<NUM>\d+)'
add = r'(?P<ADD>\+)'
sub = r'(?P<SUB>\-)'
mul = r'(?P<MUL>\*)'
ws = r'(?P<WS> +)'
pt = re.compile('|'.join([left, right, var, ws, num, add, sub, mul]))

token = namedtuple('token', ['type', 'value'])


def genToken(s):
    scanner = pt.scanner(s)
    for i in iter(scanner.match, None):
        if i.lastgroup != 'WS':
            yield token(i.lastgroup, i.group(0))


class parser(object):
    '''grammar
        expr -> expr {'+'|'-'} term | term
        term -> term '*' item | item
        item -> num | var | '(' expr ')'
    '''

    def __init__(self, s, vars):
        self.token = [i for i in genToken(s)]
        self.lookahead = 0
        self.var = vars

    def parse(self):
        dic = self.term()
        # terminate symbol
        while self.lookahead < len(self.token) and not self.isType('RIGHT'):
            assert self.isType('SUB', 'ADD')
            sign = 1 if self.match() == '+' else -1
            var = self.term()
            for i in var:
                if i in dic:
                    dic[i] += var[i]*sign
                else:
                    dic[i] = var[i]*sign
        return dic

    def match(self, curType=None):
        sym = self.token[self.lookahead]
        # print(sym,curType)
        if curType is None or sym.type == curType:
            self.lookahead += 1
            return sym.value
        raise Exception('Invalid input string')

    def isType(self, *s):
        sym = self.token[self.lookahead]
        return any(sym.type == i for i in s)

    def term(self):
        li = []
        dic = self.item()
        while self.lookahead < len(self.token) and self.isType('MUL'):
            self.match()
            li.append(self.item())
        for d2 in li:
            newDic = {}
            for v1 in dic:
                for v2 in d2:
                    s = ''
                    if v1 == '':
                        s = v2
                    elif v2 == '':
                        s = v1
                    else:
                        s = '*'.join(sorted(v1.split('*')+v2.split('*')))
                    if s in newDic:
                        newDic[s] += dic[v1]*d2[v2]
                    else:
                        newDic[s] = dic[v1]*d2[v2]
            dic = newDic
        return dic

    def item(self):
        if self.isType('NUM'):
            return {'': int(self.match())}
        elif self.isType('VAR'):
            name = self.match()
            if name in self.var:
                return {'': self.var[name]}
            else:
                return {name: 1}
        elif self.isType('LEFT'):
            self.match()
            dic = self.parse()
            self.match('RIGHT')
            return dic
        else:
            print(self.token[self.lookahead])
            raise Exception('invalid string')


class Solution:
    def basicCalculatorIV(self, expression, evalvars, evalints):
        """
        :type expression: str
        :type evalvars: List[str]
        :type evalints: List[int]
        :rtype: List[str]
        """
        self.var = dict(zip(evalvars, evalints))
        dic = parser(expression, self.var).parse()
        n = dic.pop('') if '' in dic else 0
        ret = []
        li = sorted(dic, key=lambda s: (-s.count('*'), s))
        for i in li:
            if dic[i] != 0:
                s = str(dic[i])
                ret.append(s + ('*'+i) if i else s)
        if n != 0:
            ret.append(str(n))
        return ret


if __name__ == '__main__':
    sol = Solution()
    exprs = [
        "((a - b) * (b - c) + (c - a)) * ((a - b) + (b - c) * (c - a))", "e + 8 - a + 5"]
    names = [[], ["e"]]
    vars = [[], [1]]
    for i, j, k in zip(exprs, names, vars):
        print('>>>', i, j, k)
        print(sol.basicCalculatorIV(i, j, k))

更多