mirror of
https://github.com/heqin-zhu/algorithm.git
synced 2024-03-22 13:30:46 +08:00
119 lines
3.3 KiB
Python
119 lines
3.3 KiB
Python
''' mbinary
|
|
#########################################################################
|
|
# File : linear_equation.py
|
|
# Author: mbinary
|
|
# Mail: zhuheqin1@gmail.com
|
|
# Blog: https://mbinary.xyz
|
|
# Github: https://github.com/mbinary
|
|
# Created Time: 2018-10-02 21:14
|
|
# Description:
|
|
#########################################################################
|
|
'''
|
|
|
|
#coding: utf-8
|
|
'''************************************************************************
|
|
> File Name: doolittle.py
|
|
> Author: mbinary
|
|
> Mail: zhuheqin1@gmail.com
|
|
> Blog: https://mbinary.xyz
|
|
> Created Time: 2018-04-20 08:32
|
|
************************************************************************'''
|
|
|
|
import numpy as np
|
|
def getLU(A):
|
|
'''doolittle : A = LU,
|
|
L is in down-triangle form,
|
|
U is in up-triangle form
|
|
'''
|
|
m,n = A.shape
|
|
if m!=n:raise Exception("this matrix is not inversable")
|
|
|
|
L = np.zeros([m,m])
|
|
U = np.zeros([m,m])
|
|
L = np.matrix(L)
|
|
U = np. matrix(U)
|
|
U[0] = A[0]
|
|
L[:,0] = A[:,0] / A[0,0]
|
|
for i in range(1,m):
|
|
for j in range(i,m):
|
|
U[i,j]= A[i,j] - sum(L[i,k]*U[k,j] for k in range(i))
|
|
L[j,i] = (A[j,i] - sum(L[j,k]*U[k,i] for k in range(i)))/U[i,i]
|
|
print(L)
|
|
print(U)
|
|
return L,U
|
|
|
|
|
|
def gauss_prior_elimination(A):
|
|
'''using guass elimination,get up_trianglge form of A'''
|
|
m,n = A.shape
|
|
if m!=n:raise Exception("[Error]: matrix is not inversable")
|
|
B = np.matrix(A,dtype=float) # necessary,otherwise when the dtype of A is int, then it will be wrong
|
|
for i in range(m-1):
|
|
col = abs(B[i:,i]) # note using abs value, return a matrix in (m-i)x1 form
|
|
mx = col.max()
|
|
if mx==0: raise Exception("[Error]: matrix is not inversable")
|
|
pos = i+col.argmax()
|
|
if pos != i : B[[pos,i],:] = B[[i,pos],:] # note how to swap cols/rows
|
|
B[i,:] = 1/mx*B[i,:]
|
|
for j in range(i+1,m):
|
|
#print(B)
|
|
B[j,:] -= B[j,i] * B[i,:]
|
|
print(B)
|
|
return B
|
|
|
|
def solveDown(A,b):
|
|
'''A is a matrix in down-triangle form'''
|
|
sol = np.zeros(b.shape)
|
|
for i in range(b.shape[0]):
|
|
sol[i,0] = (b[i,0]-sum(A[i,j]*sol[j,0] for j in range(i)))/A[i,i]
|
|
return sol
|
|
|
|
def solveUp(A,b):
|
|
'''A is a matrix in up-triangle form'''
|
|
sol = np.zeros(b.shape)
|
|
n = b.shape[0]
|
|
for i in range(n-1,-1,-1):
|
|
sol[i,0] = (b[i,0]-sum(A[i,j]*sol[j,0] for j in range(n-1,i,-1)))/A[i,i]
|
|
return sol
|
|
def doolittle(A,b):
|
|
L,U = getLU(A)
|
|
y = solveDown(L,b)
|
|
x = solveUp(U,y)
|
|
print(y)
|
|
print(x)
|
|
return x
|
|
def ldlt(A,b):
|
|
L,U = getLU(A)
|
|
D = np.diag(np.diag(U))
|
|
print(D,"D")
|
|
z = np.linalg.solve(L,b)
|
|
print(z,"z")
|
|
y = np.linalg.solve(D,z)
|
|
print(y,"y")
|
|
x = np.linalg.solve(L.T,y)
|
|
print(x,"x")
|
|
return x
|
|
if __name__ == '__main__':
|
|
A = np.matrix([[10,5,0,0],
|
|
[2,2,1,0],
|
|
[0,10,0,5],
|
|
[0,0,2,1]])
|
|
b = np.matrix([[5],[3],[27],[6]])
|
|
gauss_prior_elimination(A)
|
|
|
|
'''ldlt
|
|
A = np.matrix([[-6,3,2],
|
|
[3,5,1],
|
|
[2,1,6]])
|
|
b = np.matrix([[-4],[11],[-8]])
|
|
ldlt(A,b)
|
|
'''
|
|
'''
|
|
A = np.matrix([[2,1,1],
|
|
[1,3,2],
|
|
[1,2,2]])
|
|
b = np.matrix([[4],[6],[5]])
|
|
doolittle(A,b)
|
|
'''
|
|
|