algorithm-in-python/math/numericalAnalysis/interplotion.py
2019-01-31 12:09:46 +08:00

85 lines
2.4 KiB
Python

''' mbinary
#########################################################################
# File : interplotion.py
# Author: mbinary
# Mail: zhuheqin1@gmail.com
# Blog: https://mbinary.xyz
# Github: https://github.com/mbinary
# Created Time: 2018-10-02 21:14
# Description:
#########################################################################
'''
#########################################################################
# File : interplotion.py
# Author: mbinary
# Mail: zhuheqin1@gmail.com
# Blog: https://mbinary.xyz
# Github: https://github.com/mbinary
# Created Time: 2018-05-18 09:29
# Description: 插值计算,有牛顿插值,拉格朗日插值,以及通过插值得到的多项式估计新的函数值
#########################################################################
import sympy
from collections import namedtuple
from functools import reduce
from operator import mul
X = sympy.Symbol ('x')
point = namedtuple('point',['x','y'])
class interplotion:
def __init__(self,points):
self.points = [point(x,y) for x,y in points]
self.xs= [i for i,j in points]
self.poly,self.rem = self.newton(self.points,0,len(self.points)-1)
def newton(self,li,a,b):
'''li:[(x,f(x))...]'''
qs = [li[0].y]
def quoDiff(begin,end):
if begin == end:return li[begin].y
q = (quoDiff(begin+1,end)-quoDiff(begin,end-1))/(li[end].x-li[begin].x)
if begin == a:qs.append(q)
return q
quoDiff(a,b)
poly ,base = 0, 1
for i,q in enumerate(qs):
poly += q*base
base*= X-li[i].x
return poly, base*qs[-1]
def lagrange(self,points=None):
xs = None
if points is None:
xs = self.xs
points = self.points
else: xs =[x for x,y in points]
product = reduce(mul,[X-x for x in xs],1)
poly = 0
for x,y in points:
tmp = product/(X-x)
coef = y/(tmp.subs(X,x))
poly+= coef *tmp
return poly
def predict(self,val,poly = None):
if poly is None:poly = self.poly
return poly.subs(X,val) # note the func subs
if __name__ == '__main__':
f = interplotion([(81,9),(100,10),(121,11)])
p = f.lagrange()
print(p.subs(X,105))
print(p)
intor = interplotion([(0,11),(0.02,9),(0.04,7),(0.06,10)])
p = intor.lagrange()
print(p)
res = intor.predict(0.08)
print(res)