CS-Notes/notes/剑指 offer 题解.md
2018-02-27 15:03:36 +08:00

46 KiB
Raw Blame History

第二章 面试需要的基础知识

2. 实现 Singleton

单例模式

3. 数组中重复的数字

题目描述

在一个长度为 n 的数组里的所有数字都在 0 到 n-1 的范围内。数组中某些数字是重复的,但不知道有几个数字是重复的。也不知道每个数字重复几次。请找出数组中任意一个重复的数字。例如,如果输入长度为 7 的数组 {2, 3, 1, 0, 2, 5, 3},那么对应的输出是第一个重复的数字 2。

解题思路

这种数组元素在 [0, n-1] 范围内的问题,可以将值为 i 的元素放到第 i 个位置上。

public boolean duplicate(int numbers[], int length, int[] duplication) {
    if(numbers == null || length <= 0) return false;
    for (int i = 0; i < length; i++) {
        while (numbers[i] != i && numbers[i] != numbers[numbers[i]]) {
            swap(numbers, i, numbers[i]);
        }
        if (numbers[i] != i && numbers[i] == numbers[numbers[i]]) {
            duplication[0] = numbers[i];
            return true;
        }
    }
    return false;
}

private void swap(int[] numbers, int i, int j) {
    int t = numbers[i];
    numbers[i] = numbers[j];
    numbers[j] = t;
}

4. 二维数组中的查找

题目描述

在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。

解题思路

从右上角开始查找。因为矩阵中的一个数,它左边的数都比它来的小,下边的数都比它来的大。因此,从右上角开始查找,就可以根据 target 和当前元素的大小关系来改变行和列的下标,从而缩小查找区间。

public boolean Find(int target, int [][] array) {
    if (array == null || array.length == 0 || array[0].length == 0) return false;
    int m = array.length, n = array[0].length;
    int row = 0, col = n - 1;
    while (row < m && col >= 0) {
        if (target == array[row][col]) return true;
        else if (target < array[row][col]) col--;
        else row++;
    }
    return false;
}

5. 替换空格

题目描述

请实现一个函数,将一个字符串中的空格替换成“%20”。例如当字符串为 We Are Happy. 则经过替换之后的字符串为 We%20Are%20Happy。

题目要求

以 O(1) 的空间复杂度和 O(n) 的空间复杂度来求解。

解题思路

从后向前改变字符串。

public String replaceSpace(StringBuffer str) {
    int n = str.length();
    for (int i = 0; i < n; i++) {
        if (str.charAt(i) == ' ') str.append("  "); // 尾部填充两个
    }

    int idxOfOriginal = n - 1;
    int idxOfNew = str.length() - 1;
    while (idxOfOriginal >= 0 && idxOfNew > idxOfOriginal) {
        if (str.charAt(idxOfOriginal) == ' ') {
            str.setCharAt(idxOfNew--, '0');
            str.setCharAt(idxOfNew--, '2');
            str.setCharAt(idxOfNew--, '%');
        } else {
            str.setCharAt(idxOfNew--, str.charAt(idxOfOriginal));
        }
        idxOfOriginal--;
    }
    return str.toString();
}

6. 从尾到头打印链表

正向遍历然后调用 Collections.reverse()。

public ArrayList<Integer> printListFromTailToHead(ListNode listNode) {
    ArrayList<Integer> ret = new ArrayList<>();
    while (listNode != null) {
        ret.add(listNode.val);
        listNode = listNode.next;
    }
    Collections.reverse(ret);
    return ret;
}

使用 Stack

public ArrayList<Integer> printListFromTailToHead(ListNode listNode) {
    Stack<Integer> stack = new Stack<>();
    while (listNode != null) {
        stack.add(listNode.val);
        listNode = listNode.next;
    }
    ArrayList<Integer> ret = new ArrayList<>();
    while (!stack.isEmpty()) {
        ret.add(stack.pop());
    }
    return ret;
}

递归

public ArrayList<Integer> printListFromTailToHead(ListNode listNode) {
    ArrayList<Integer> ret = new ArrayList<>();
    if(listNode != null) {
        ret.addAll(printListFromTailToHead(listNode.next));
        ret.add(listNode.val);
    }
    return ret;
}

不使用库函数,并且不使用递归的迭代实现,利用链表的头插法为逆序的特性。

public ArrayList<Integer> printListFromTailToHead(ListNode listNode) {
    ListNode head = new ListNode(-1); // 头结点
    ListNode cur = listNode;
    while (cur != null) {
        ListNode next = cur.next;
        cur.next = head.next;
        head.next = cur;
        cur = next;
    }
    ArrayList<Integer> ret = new ArrayList<>();
    head = head.next;
    while (head != null) {
        ret.add(head.val);
        head = head.next;
    }
    return ret;
}

7. 重建二叉树

题目描述

根据二叉树的前序遍历和中序遍历的结果,重建出该二叉树。

public TreeNode reConstructBinaryTree(int[] pre, int[] in) {
    return reConstructBinaryTree(pre, 0, pre.length - 1, in, 0, in.length - 1);
}
private TreeNode reConstructBinaryTree(int[] pre, int preL, int preR, int[] in, int inL, int inR) {
    if(preL > preR || inL > inR) return null;
    TreeNode root = new TreeNode(pre[preL]);
    if (preL != preR) {
        int idx = inL;
        while (idx <= inR && in[idx] != root.val) idx++;
        int leftTreeLen = idx - inL;
        root.left = reConstructBinaryTree(pre, preL + 1, preL + leftTreeLen, in, inL, inL + leftTreeLen - 1);
        root.right = reConstructBinaryTree(pre, preL + leftTreeLen + 1, preR, in, inL + leftTreeLen + 1, inR);
    }
    return root;
}

8. 二叉树的下一个结点

题目描述

给定一个二叉树和其中的一个结点,请找出中序遍历顺序的下一个结点并且返回。注意,树中的结点不仅包含左右子结点,同时包含指向父结点的指针。

public TreeLinkNode GetNext(TreeLinkNode pNode) {
    if (pNode == null) return null;
    if (pNode.right != null) {
        pNode = pNode.right;
        while (pNode.left != null) pNode = pNode.left;
        return pNode;
    } else {
        TreeLinkNode parent = pNode.next;
        while (parent != null) {
            if (parent.left == pNode) return parent;
            pNode = pNode.next;
            parent = pNode.next;
        }
    }
    return null;
}

9. 用两个栈实现队列

Stack<Integer> stack1 = new Stack<Integer>();
Stack<Integer> stack2 = new Stack<Integer>();

public void push(int node) {
    stack1.push(node);
}

public int pop() {
    if (stack2.isEmpty()) {
        while (!stack1.isEmpty()) {
            stack2.push(stack1.pop());
        }
    }
    return stack2.pop();
}

10.1 斐波那契数列

private int[] fib = new int[40];

public Solution() {
    fib[1] = 1;
    fib[2] = 2;
    for (int i = 2; i < fib.length; i++) {
        fib[i] = fib[i - 1] + fib[i - 2];
    }
}

public int Fibonacci(int n) {
    return fib[n];
}

10.2 跳台阶

public int JumpFloor(int target) {
    if (target == 1) return 1;
    int[] dp = new int[target];
    dp[0] = 1;
    dp[1] = 2;
    for (int i = 2; i < dp.length; i++) {
        dp[i] = dp[i - 1] + dp[i - 2];
    }
    return dp[target - 1];
}

10.3 变态跳台阶

public int JumpFloorII(int target) {
    int[] dp = new int[target];
    Arrays.fill(dp, 1);
    for (int i = 1; i < target; i++) {
        for (int j = 0; j < i; j++) {
            dp[i] += dp[j];
        }
    }
    return dp[target - 1];
}

10.4 矩形覆盖

题目描述

我们可以用 2*1 的小矩形横着或者竖着去覆盖更大的矩形。请问用 n 个 2*1 的小矩形无重叠地覆盖一个 2*n 的大矩形,总共有多少种方法?

public int RectCover(int target) {
    if (target <= 2) return target;
    return RectCover(target - 1) + RectCover(target - 2);
}

11. 旋转数组的最小数字

题目描述

把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非递减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组 {3, 4, 5, 1, 2} 为 {1, 2, 3, 4, 5} 的一个旋转,该数组的最小值为 1。 NOTE给出的所有元素都大于 0若数组大小为 0请返回 0。

public int minNumberInRotateArray(int[] array) {
    if (array.length == 0) return 0;
    for (int i = 0; i < array.length - 1; i++) {
        if (array[i] > array[i + 1]) return array[i + 1];
    }
    return 0;
}

12. 矩阵中的路径

题目描述

请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。 例如 a b c e s f c s a d e e 矩阵中包含一条字符串 "bcced" 的路径,但是矩阵中不包含 "abcb" 路径,因为字符串的第一个字符 b 占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子。

private int[][] next = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}};

public boolean hasPath(char[] matrix, int rows, int cols, char[] str) {
    if (rows == 0 || cols == 0) return false;
    char[][] m = new char[rows][cols];
    for (int i = 0, idx = 0; i < rows; i++) {
        for (int j = 0; j < cols; j++) {
            m[i][j] = matrix[idx++];
        }
    }

    for (int i = 0; i < rows; i++) {
        for (int j = 0; j < cols; j++) {
            if (backtracking(m, rows, cols, str, new boolean[rows][cols], 0, i, j)) return true;
        }
    }
    return false;
}

private boolean backtracking(char[][] m, int rows, int cols, char[] str, boolean[][] used, int path, int r, int c) {
    if (path == str.length) return true;
    if (r < 0 || r >= rows || c < 0 || c >= cols) return false;
    if (m[r][c] != str[path]) return false;
    if (used[r][c]) return false;
    used[r][c] = true;
    for (int i = 0; i < next.length; i++) {
        if (backtracking(m, rows, cols, str, used, path + 1, r + next[i][0], c + next[i][1])) return true;
    }
    used[r][c] = false;
    return false;
}

13. 机器人的运动范围

题目描述

地上有一个 m 行和 n 列的方格。一个机器人从坐标 0, 0 的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于 k 的格子。 例如,当 k 为 18 时机器人能够进入方格35, 37因为 3+5+3+7 = 18。但是它不能进入方格35, 38因为 3+5+3+8 = 19。请问该机器人能够达到多少个格子

private int cnt = 0;
private int[][] next = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}};
private int[][] digitSum;

public int movingCount(int threshold, int rows, int cols) {
    initDigitSum(rows, cols);
    dfs(new boolean[rows][cols], threshold, rows, cols, 0, 0);
    return cnt;
}

private void dfs(boolean[][] visited, int threshold, int rows, int cols, int r, int c) {
    if (r < 0 || r >= rows || c < 0 || c >= cols) return;
    if (visited[r][c]) return;
    visited[r][c] = true;
    if (this.digitSum[r][c] > threshold) return;
    this.cnt++;
    for (int i = 0; i < this.next.length; i++) {
        dfs(visited, threshold, rows, cols, r + next[i][0], c + next[i][1]);
    }
}

private void initDigitSum(int rows, int cols) {
    int[] digitSumOne = new int[Math.max(rows, cols)];
    for (int i = 0; i < digitSumOne.length; i++) {
        int n = i;
        while (n > 0) {
            digitSumOne[i] += n % 10;
            n /= 10;
        }
    }
    this.digitSum = new int[rows][cols];
    for (int i = 0; i < rows; i++) {
        for (int j = 0; j < cols; j++) {
            this.digitSum[i][j] = digitSumOne[i] + digitSumOne[j];
        }
    }
}

14. 剪绳子

题目描述

把一根绳子剪成多段,并且使得每段的长度乘积最大。

解题思路

尽可能多得剪长度为 3 的绳子,并且不允许有长度为 1 的绳子出现,如果出现了,就从已经切好长度为 3 的绳子中拿出一段与长度为 1 的绳子重新组合,把它们切成两段长度为 2 的绳子。

int maxProductAfterCuttin(int length) {
    if (length < 2) return 0;
    if (length == 2) return 1;
    if (length == 3) return 2;
    int timesOf3 = length / 3;
    if (length - timesOf3 * 3 == 1) timesOf3--;
    int timesOf2 = (length - timesOf3 * 3) / 2;
    return (int) (Math.pow(3, timesOf3)) * (int) (Math.pow(2, timesOf2));
}

15. 二进制中 1 的个数

public int NumberOf1(int n) {
    return Integer.bitCount(n);
}

n&(n-1) 该位运算是去除 n 的位级表示中最低的那一位。例如对于二进制表示 10110100减去 1 得到 10110011这两个数相与得到 10110000。

public int NumberOf1(int n) {
    int cnt = 0;
    while (n != 0) {
        cnt++;
        n &= (n - 1);
    }
    return cnt;
}

第三章 高质量的代码

16. 数值的整数次方

public double Power(double base, int exponent) {
    if (exponent == 0) return 1;
    if (exponent == 1) return base;
    boolean isNegative = false;
    if (exponent < 0) {
        exponent = -exponent;
        isNegative = true;
    }
    double pow = Power(base * base, exponent / 2);
    if (exponent % 2 != 0) pow = pow * base;
    return isNegative ? 1 / pow : pow;
}

18. 删除链表中重复的结点

public ListNode deleteDuplication(ListNode pHead) {
    if (pHead == null) return null;
    if (pHead.next == null) return pHead;
    if (pHead.val == pHead.next.val) {
        ListNode next = pHead.next;
        while (next != null && pHead.val == next.val) {
            next = next.next;
        }
        return deleteDuplication(next);
    } else {
        pHead.next = deleteDuplication(pHead.next);
        return pHead;
    }
}

19. 正则表达式匹配

题目描述

请实现一个函数用来匹配包括 '.' 和 '*' 的正则表达式。模式中的字符 '.' 表示任意一个字符,而 '*' 表示它前面的字符可以出现任意次(包含 0 次)。 在本题中,匹配是指字符串的所有字符匹配整个模式。例如,字符串 "aaa" 与模式 "a.a" 和 "ab*ac*a" 匹配,但是与 "aa.a" 和 "ab*a" 均不匹配

public boolean match(char[] str, char[] pattern) {
    int n = str.length, m = pattern.length;
    boolean[][] dp = new boolean[n + 1][m + 1];
    dp[0][0] = true;
    for (int i = 1; i <= m; i++) {
        if (pattern[i - 1] == '*') dp[0][i] = dp[0][i - 2];
    }
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            if (str[i - 1] == pattern[j - 1] || pattern[j - 1] == '.') dp[i][j] = dp[i - 1][j - 1];
            else if (pattern[j - 1] == '*') {
                if (pattern[j - 2] != str[i - 1] && pattern[j - 2] != '.') dp[i][j] = dp[i][j - 2];
                else dp[i][j] = dp[i][j - 1] || dp[i][j - 2] || dp[i - 1][j];
            }
        }
    }
    return dp[n][m];
}

20. 表示数值的字符串

题目描述

请实现一个函数用来判断字符串是否表示数值(包括整数和小数)。例如,字符串 "+100","5e2","-123","3.1416" 和 "-1E-16" 都表示数值。 但是 "12e","1a3.14","1.2.3","+-5" 和 "12e+4.3" 都不是。

public boolean isNumeric(char[] str) {
    String string = String.valueOf(str);
    return string.matches("[\\+-]?[0-9]*(\\.[0-9]*)?([eE][\\+-]?[0-9]+)?");
}

21. 调整数组顺序使奇数位于偶数前面

时间复杂度 : O(n2) 空间复杂度 : O(1)

public void reOrderArray(int[] array) {
    int n = array.length;
    for (int i = 0; i < n; i++) {
        if (array[i] % 2 == 0) {
            int nextOddIdx = i + 1;
            while (nextOddIdx < n && array[nextOddIdx] % 2 == 0) nextOddIdx++;
            if (nextOddIdx == n) break;
            int nextOddVal = array[nextOddIdx];
            for (int j = nextOddIdx; j > i; j--) {
                array[j] = array[j - 1];
            }
            array[i] = nextOddVal;
        }
    }
}

时间复杂度 : O(n) 空间复杂度 : O(n)

public void reOrderArray(int[] array) {
    int oddCnt = 0;
    for (int num : array) if (num % 2 == 1) oddCnt++;
    int[] copy = array.clone();
    int i = 0, j = oddCnt;
    for (int num : copy) {
        if (num % 2 == 1) array[i++] = num;
        else array[j++] = num;
    }
}

22. 链表中倒数第 k 个结点

public ListNode FindKthToTail(ListNode head, int k) {
    if (head == null) return null;
    ListNode fast, slow;
    fast = slow = head;
    while (fast != null && k-- > 0) fast = fast.next;
    if (k > 0) return null;
    while (fast != null) {
        fast = fast.next;
        slow = slow.next;
    }
    return slow;
}

23. 链表中环的入口结点

public ListNode EntryNodeOfLoop(ListNode pHead) {
    if (pHead == null) return null;
    ListNode slow = pHead, fast = pHead;
    while (fast != null && fast.next != null) {
        fast = fast.next.next;
        slow = slow.next;
        if (slow == fast) {
            fast = pHead;
            while (slow != fast) {
                slow = slow.next;
                fast = fast.next;
            }
            return slow;
        }
    }
    return null;
}

24. 反转链表

public ListNode ReverseList(ListNode head) {
    ListNode newList = new ListNode(-1);
    while (head != null) {
        ListNode next = head.next;
        head.next = newList.next;
        newList.next = head;
        head = next;
    }
    return newList.next;
}

25. 合并两个排序的链表

public ListNode Merge(ListNode list1, ListNode list2) {
    ListNode head = new ListNode(-1);
    ListNode cur = head;
    while (list1 != null && list2 != null) {
        if (list1.val < list2.val) {
            cur.next = list1;
            list1 = list1.next;
        } else {
            cur.next = list2;
            list2 = list2.next;
        }
        cur = cur.next;
    }
    if (list1 != null) cur.next = list1;
    if (list2 != null) cur.next = list2;
    return head.next;
}

26. 树的子结构

public boolean HasSubtree(TreeNode root1, TreeNode root2) {
    if (root1 == null || root2 == null) return false;
    return isSubtree(root1, root2) || HasSubtree(root1.left, root2) || HasSubtree(root1.right, root2);
}

private boolean isSubtree(TreeNode root1, TreeNode root2) {
    if (root1 == null && root2 == null) return true;
    if (root1 == null) return false;
    if (root2 == null) return true;
    if (root1.val != root2.val) return false;
    return isSubtree(root1.left, root2.left) && isSubtree(root1.right, root2.right);
}

第四章 解决面试题的思路

27. 二叉树的镜像

public void Mirror(TreeNode root) {
    if (root == null) return;
    TreeNode t = root.left;
    root.left = root.right;
    root.right = t;
    Mirror(root.left);
    Mirror(root.right);
}

28.1 对称的二叉树

boolean isSymmetrical(TreeNode pRoot) {
    if (pRoot == null) return true;
    return isSymmetrical(pRoot.left, pRoot.right);
}

boolean isSymmetrical(TreeNode t1, TreeNode t2) {
    if (t1 == null && t2 == null) return true;
    if (t1 == null || t2 == null) return false;
    if (t1.val != t2.val) return false;
    return isSymmetrical(t1.left, t2.right) && isSymmetrical(t1.right, t2.left);
}

28.2 平衡二叉树

private boolean isBalanced = true;

public boolean IsBalanced_Solution(TreeNode root) {
    height(root);
    return isBalanced;
}

private int height(TreeNode root) {
    if (root == null) return 0;
    int left = height(root.left);
    int right = height(root.right);
    if (Math.abs(left - right) > 1) isBalanced = false;
    return 1 + Math.max(left, right);
}

29. 顺时针打印矩阵

public ArrayList<Integer> printMatrix(int[][] matrix) {
    ArrayList<Integer> ret = new ArrayList<>();
    int r1 = 0, r2 = matrix.length - 1, c1 = 0, c2 = matrix[0].length - 1;
    while (r1 <= r2 && c1 <= c2) {
        for (int i = c1; i <= c2; i++) ret.add(matrix[r1][i]);
        for (int i = r1 + 1; i <= r2; i++) ret.add(matrix[i][c2]);
        if (r1 != r2) for (int i = c2 - 1; i >= c1; i--) ret.add(matrix[r2][i]);
        if (c1 != c2) for (int i = r2 - 1; i > r1; i--) ret.add(matrix[i][c1]);
        r1++; r2--; c1++; c2--;
    }
    return ret;
}

30. 包含 min 函数的栈

private Stack<Integer> stack = new Stack<>();
private Stack<Integer> minStack = new Stack<>();
private int min = Integer.MAX_VALUE;

public void push(int node) {
    stack.push(node);
    if (min > node) min = node;
    minStack.push(min);
}

public void pop() {
    stack.pop();
    minStack.pop();
    min = minStack.peek();
}

public int top() {
    return stack.peek();
}

public int min() {
    return minStack.peek();
}

31. 栈的压入、弹出序列

public boolean IsPopOrder(int[] pushA, int[] popA) {
    int n = pushA.length;
    Stack<Integer> stack = new Stack<>();
    for (int i = 0, j = 0; i < n; i++) {
        stack.push(pushA[i]);
        while (j < n && stack.peek() == popA[j]) {
            stack.pop();
            j++;
        }
    }
    return stack.isEmpty();
}

32.1 从上往下打印二叉树

public ArrayList<Integer> PrintFromTopToBottom(TreeNode root) {
    Queue<TreeNode> queue = new LinkedList<>();
    ArrayList<Integer> ret = new ArrayList<>();
    if (root == null) return ret;
    queue.add(root);
    while (!queue.isEmpty()) {
        int cnt = queue.size();
        for (int i = 0; i < cnt; i++) {
            TreeNode t = queue.poll();
            if (t.left != null) queue.add(t.left);
            if (t.right != null) queue.add(t.right);
            ret.add(t.val);
        }
    }
    return ret;
}

32.3 把二叉树打印成多行

ArrayList<ArrayList<Integer>> Print(TreeNode pRoot) {
    ArrayList<ArrayList<Integer>> ret = new ArrayList<>();
    if (pRoot == null) return ret;
    Queue<TreeNode> queue = new LinkedList<>();
    queue.add(pRoot);
    while (!queue.isEmpty()) {
        int cnt = queue.size();
        ArrayList<Integer> list = new ArrayList<>();
        for (int i = 0; i < cnt; i++) {
            TreeNode node = queue.poll();
            list.add(node.val);
            if (node.left != null) queue.add(node.left);
            if (node.right != null) queue.add(node.right);
        }
        ret.add(list);
    }
    return ret;
}

32.3 按之字形顺序打印二叉树

public ArrayList<ArrayList<Integer>> Print(TreeNode pRoot) {
    ArrayList<ArrayList<Integer>> ret = new ArrayList<>();
    if (pRoot == null) return ret;
    Queue<TreeNode> queue = new LinkedList<>();
    queue.add(pRoot);
    boolean reverse = false;
    while (!queue.isEmpty()) {
        int cnt = queue.size();
        ArrayList<Integer> list = new ArrayList<>();
        for (int i = 0; i < cnt; i++) {
            TreeNode node = queue.poll();
            list.add(node.val);
            if (node.left != null) queue.add(node.left);
            if (node.right != null) queue.add(node.right);
        }
        if (reverse) {
            Collections.reverse(list);
            reverse = false;
        } else {
            reverse = true;
        }
        ret.add(list);
    }
    return ret;
}

33. 二叉搜索树的后序遍历序列

public boolean VerifySquenceOfBST(int[] sequence) {
    if (sequence.length == 0) return false;
    return verify(sequence, 0, sequence.length - 1);
}

private boolean verify(int[] sequence, int start, int end) {
    if (end - start <= 1) return true;
    int rootVal = sequence[end];
    int cutIdx = start;
    while (cutIdx < end) {
        if (sequence[cutIdx] > rootVal) break;
        cutIdx++;
    }
    for (int i = cutIdx + 1; i < end; i++) {
        if (sequence[i] < rootVal) return false;
    }
    return verify(sequence, start, cutIdx - 1) && verify(sequence, cutIdx, end - 1);
}

34. 二叉树中和为某一值的路径

private ArrayList<ArrayList<Integer>> ret = new ArrayList<>();

public ArrayList<ArrayList<Integer>> FindPath(TreeNode root, int target) {
    dfs(root, target, 0, new ArrayList<>());
    return ret;
}

private void dfs(TreeNode node, int target, int curSum, ArrayList<Integer> path) {
    if (node == null) return;
    curSum += node.val;
    path.add(node.val);
    if (curSum == target && node.left == null && node.right == null) {
        ret.add(new ArrayList(path));
    } else {
        dfs(node.left, target, curSum, path);
        dfs(node.right, target, curSum, path);
    }
    path.remove(path.size() - 1);
}

35. 复杂链表的复制

题目描述

输入一个复杂链表(每个节点中有节点值,以及两个指针,一个指向下一个节点,另一个特殊指针指向任意一个节点),返回结果为复制后复杂链表的 head。注意输出结果中请不要返回参数中的节点引用否则判题程序会直接返回空

第一步,在每个节点的后面插入复制的节点。

第二步,对复制节点的 random 链接进行赋值。

第三步,拆分。

public RandomListNode Clone(RandomListNode pHead) {
    if (pHead == null) return null;
    // 插入新节点
    RandomListNode cur = pHead;
    while (cur != null) {
        RandomListNode node = new RandomListNode(cur.label);
        node.next = cur.next;
        cur.next = node;
        cur = node.next;
    }
    // 建立 random 链接
    cur = pHead;
    while (cur != null) {
        RandomListNode clone = cur.next;
        if (cur.random != null) {
            clone.random = cur.random.next;
        }
        cur = clone.next;
    }
    // 拆分
    RandomListNode pCloneHead = pHead.next;
    cur = pHead;
    while (cur.next != null) {
        RandomListNode t = cur.next;
        cur.next = t.next;
        cur = t;
    }
    return pCloneHead;
}

36. 二叉搜索树与双向链表

题目描述

输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表。要求不能创建任何新的结点,只能调整树中结点指针的指向。

private TreeNode pre = null;
public TreeNode Convert(TreeNode pRootOfTree) {
    if(pRootOfTree == null) return null;
    inOrder(pRootOfTree);
    while(pRootOfTree.left != null) pRootOfTree = pRootOfTree.left;
    return pRootOfTree;
}

private void inOrder(TreeNode node) {
    if(node == null) return;
    inOrder(node.left);
    node.left = pre;
    if(pre != null) pre.right = node;
    pre = node;
    inOrder(node.right);
}

37. 序列化二叉树

private String serizeString = "";

String Serialize(TreeNode root) {
    if (root == null) return "#";
    return root.val + " " + Serialize(root.left) + " "
        + Serialize(root.right);
}

TreeNode Deserialize(String str) {
    this.serizeString = str;
    return Deserialize();
}

private TreeNode Deserialize() {
    if (this.serizeString.length() == 0) return null;
    int idx = this.serizeString.indexOf(" ");
    if (idx == -1) return null;
    String sub = this.serizeString.substring(0, idx);
    this.serizeString = this.serizeString.substring(idx + 1);
    if (sub.equals("#")) {
        return null;
    }
    int val = Integer.valueOf(sub);
    TreeNode t = new TreeNode(val);
    t.left = Deserialize();
    t.right = Deserialize();
    return t;
}

38. 字符串的排列

题目描述

输入一个字符串 , 按字典序打印出该字符串中字符的所有排列。例如输入字符串 abc, 则打印出由字符 a, b, c 所能排列出来的所有字符串 abc, acb, bac, bca, cab 和 cba。

private ArrayList<String> ret = new ArrayList<>();

public ArrayList<String> Permutation(String str) {
    if (str.length() == 0) return new ArrayList<>();
    char[] chars = str.toCharArray();
    Arrays.sort(chars);
    backtracking(chars, new boolean[chars.length], "");
    return ret;
}

private void backtracking(char[] chars, boolean[] used, String s) {
    if (s.length() == chars.length) {
        ret.add(s);
        return;
    }
    for (int i = 0; i < chars.length; i++) {
        if (used[i]) continue;
        if (i != 0 && chars[i] == chars[i - 1] && !used[i - 1]) continue; // 保证不重复
        used[i] = true;
        backtracking(chars, used, s + chars[i]);
        used[i] = false;
    }
}

第五章 优化时间和空间效率

39. 数组中出现次数超过一半的数字

public int MoreThanHalfNum_Solution(int[] array) {
    int cnt = 1, num = array[0];
    for (int i = 1; i < array.length; i++) {
        if (array[i] == num) cnt++;
        else cnt--;
        if (cnt == 0) {
            num = array[i];
            cnt = 1;
        }
    }
    cnt = 0;
    for (int i = 0; i < array.length; i++) {
        if (num == array[i]) cnt++;
    }
    return cnt > array.length / 2 ? num : 0;
}

40. 最小的 K 个数

构建大小为 k 的小顶堆。

时间复杂度O(nlgk) 空间复杂度O(k)

public ArrayList<Integer> GetLeastNumbers_Solution(int[] input, int k) {
    if (k > input.length || k <= 0) return new ArrayList<>();
    PriorityQueue<Integer> pq = new PriorityQueue<>((o1, o2) -> o2 - o1);
    for (int num : input) {
        pq.add(num);
        if (pq.size() > k) {
            pq.poll();
        }
    }
    ArrayList<Integer> ret = new ArrayList<>(pq);
    return ret;
}

利用快速选择

时间复杂度O(n) 空间复杂度O(1)

public ArrayList<Integer> GetLeastNumbers_Solution(int[] input, int k) {
    if (k > input.length || k <= 0) return new ArrayList<>();
    int kthSmallest = findKthSmallest(input, k - 1);
    ArrayList<Integer> ret = new ArrayList<>();
    for (int num : input) {
        if(num <= kthSmallest && ret.size() < k) ret.add(num);
    }
    return ret;
}

public int findKthSmallest(int[] nums, int k) {
    int lo = 0;
    int hi = nums.length - 1;
    while (lo < hi) {
        int j = partition(nums, lo, hi);
        if (j < k) {
            lo = j + 1;
        } else if (j > k) {
            hi = j - 1;
        } else {
            break;
        }
    }
    return nums[k];
}

private int partition(int[] a, int lo, int hi) {
    int i = lo;
    int j = hi + 1;
    while (true) {
        while (i < hi && less(a[++i], a[lo])) ;
        while (j > lo && less(a[lo], a[--j])) ;
        if (i >= j) {
            break;
        }
        exch(a, i, j);
    }
    exch(a, lo, j);
    return j;
}

private void exch(int[] a, int i, int j) {
    final int tmp = a[i];
    a[i] = a[j];
    a[j] = tmp;
}

private boolean less(int v, int w) {
    return v < w;
}

41.1 数据流中的中位数

题目描述

如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。

private PriorityQueue<Integer> maxHeap = new PriorityQueue<>((o1, o2) -> o2-o1); // 实现左边部分
private PriorityQueue<Integer> minHeep = new PriorityQueue<>(); // 实现右边部分,右边部分所有元素大于左边部分
private int cnt = 0;

public void Insert(Integer num) {
    // 插入要保证两个堆存于平衡状态
    if(cnt % 2 == 0) { 
        // 为偶数的情况下插入到最小堆,先经过最大堆筛选,这样就能保证最大堆中的元素都小于最小堆中的元素
        maxHeap.add(num);
        minHeep.add(maxHeap.poll());
    } else {
        minHeep.add(num);
        maxHeap.add(minHeep.poll());
    }
    cnt++;
}

public Double GetMedian() {
    if(cnt % 2 == 0) {
        return (maxHeap.peek() + minHeep.peek()) / 2.0;
    } else {
        return (double) minHeep.peek();
    }
}

14.2 字符流中第一个不重复的字符

题目描述

请实现一个函数用来找出字符流中第一个只出现一次的字符。例如,当从字符流中只读出前两个字符 "go" 时,第一个只出现一次的字符是 "g"。当从该字符流中读出前六个字符“google" 时,第一个只出现一次的字符是 "l"。

//Insert one char from stringstream
private int[] cnts = new int[256];
private Queue<Character> queue = new LinkedList<>();

public void Insert(char ch) {
    cnts[ch]++;
    queue.add(ch);
    while (!queue.isEmpty() && cnts[queue.peek()] > 1) {
        queue.poll();
    }
}

//return the first appearence once char in current stringstream
public char FirstAppearingOnce() {
    if (queue.isEmpty()) return '#';
    return queue.peek();
}

42. 连续子数组的最大和

public int FindGreatestSumOfSubArray(int[] array) {
    if(array.length == 0) return 0;
    int ret = Integer.MIN_VALUE;
    int sum = 0;
    for(int num : array) {
        if(sum <= 0) sum = num;
        else sum += num;
        ret = Math.max(ret, sum);
    }
    return ret;
}

43. 从 1 到 n 整数中 1 出现的次数

解题参考:Leetcode : 233. Number of Digit One

public int NumberOf1Between1AndN_Solution(int n) {
    int cnt = 0;
    for (int m = 1; m <= n; m *= 10) {
        int a = n / m, b = n % m;
        cnt += (a + 8) / 10 * m + (a % 10 == 1 ? b + 1 : 0);
    }
    return cnt;
}

45. 把数组排成最小的数

题目描述

输入一个正整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最小的一个。例如输入数组 {332321},则打印出这三个数字能排成的最小数字为 321323。

public String PrintMinNumber(int[] numbers) {
    int n = numbers.length;
    String[] nums = new String[n];
    for (int i = 0; i < n; i++) nums[i] = numbers[i] + "";
    Arrays.sort(nums, (s1, s2) -> (s1 + s2).compareTo(s2 + s1));
    String ret = "";
    for (String str : nums) ret += str;
    return ret;
}

49. 丑数

题目描述

把只包含因子 2、3 和 5 的数称作丑数Ugly Number。例如 6、8 都是丑数,但 14 不是,因为它包含因子 7。 习惯上我们把 1 当做是第一个丑数。求按从小到大的顺序的第 N 个丑数。

public int GetUglyNumber_Solution(int index) {
    if (index <= 6) return index;
    int i2 = 0, i3 = 0, i5 = 0;
    int cnt = 1;
    int[] dp = new int[index];
    dp[0] = 1;
    while (cnt < index) {
        int n2 = dp[i2] * 2, n3 = dp[i3] * 3, n5 = dp[i5] * 5;
        int tmp = Math.min(n2, Math.min(n3, n5));
        dp[cnt++] = tmp;
        if (tmp == n2) i2++;
        if (tmp == n3) i3++;
        if (tmp == n5) i5++;
    }
    return dp[index - 1];
}

50. 第一个只出现一次的字符位置

public int FirstNotRepeatingChar(String str) {
    int[] cnts = new int[256];
    for (int i = 0; i < str.length(); i++) cnts[str.charAt(i)]++;
    for (int i = 0; i < str.length(); i++) if (cnts[str.charAt(i)] == 1) return i;
    return -1;
}

51. 数组中的逆序对

private long cnt = 0;

public int InversePairs(int[] array) {
    mergeSortUp2Down(array, 0, array.length - 1);
    return (int) (cnt % 1000000007);
}

private void mergeSortUp2Down(int[] a, int start, int end) {
    if (end - start < 1) return;
    int mid = start + (end - start) / 2;
    mergeSortUp2Down(a, start, mid);
    mergeSortUp2Down(a, mid + 1, end);
    merge(a, start, mid, end);
}

private void merge(int[] a, int start, int mid, int end) {
    int[] tmp = new int[end - start + 1];
    int i = start, j = mid + 1, k = 0;
    while (i <= mid || j <= end) {
        if (i > mid) tmp[k] = a[j++];
        else if (j > end) tmp[k] = a[i++];
        else if (a[i] < a[j]) tmp[k] = a[i++];
        else {
            tmp[k] = a[j++];
            this.cnt += mid - i + 1; // a[i] > a[j] ,说明 a[i...mid] 都大于 a[j]
        }
        k++;
    }

    for (k = 0; k < tmp.length; k++) {
        a[start + k] = tmp[k];
    }
}

52. 两个链表的第一个公共结点

public ListNode FindFirstCommonNode(ListNode pHead1, ListNode pHead2) {
    ListNode l1 = pHead1, l2 = pHead2;
    while (l1 != l2) {
        if (l1 == null) l1 = pHead2;
        else l1 = l1.next;
        if (l2 == null) l2 = pHead1;
        else l2 = l2.next;
    }
    return l1;
}

第六章 面试中的各项能力

53 数字在排序数组中出现的次数

public int GetNumberOfK(int[] array, int k) {
    int l = 0, h = array.length - 1;
    while (l <= h) {
        int m = l + (h - l) / 2;
        if (array[m] >= k) h = m - 1;
        else l = m + 1;
    }
    int cnt = 0;
    while (l < array.length && array[l++] == k) cnt++;
    return cnt;
}

54. 二叉搜索树的第 k 个结点

TreeNode ret;
int cnt = 0;

TreeNode KthNode(TreeNode pRoot, int k) {
    inorder(pRoot, k);
    return ret;
}

private void inorder(TreeNode root, int k) {
    if (root == null) return;
    if (cnt > k) return;
    inorder(root.left, k);
    cnt++;
    if (cnt == k) ret = root;
    inorder(root.right, k);
}

55 二叉树的深度

public int TreeDepth(TreeNode root) {
    if (root == null) return 0;
    return 1 + Math.max(TreeDepth(root.left), TreeDepth(root.right));
}

56. 数组中只出现一次的数字

题目描述

一个整型数组里除了两个数字之外,其他的数字都出现了两次,找出这两个数。

解题思路

两个不相等的元素在位级表示上必定会有一位存在不同。

将数组的所有元素异或得到的结果为不存在重复的两个元素异或的结果。

diff &= -diff 得到出 diff 最右侧不为 0 的位,也就是不存在重复的两个元素在位级表示上最右侧不同的那一位,利用这一位就可以将两个元素区分开来。

public void FindNumsAppearOnce(int[] array, int num1[], int num2[]) {
    int diff = 0;
    for (int num : array) diff ^= num;
    // 得到最右一位
    diff &= -diff;
    for (int num : array) {
        if ((num & diff) == 0) num1[0] ^= num;
        else num2[0] ^= num;
    }
}

57.1 和为 S 的两个数字

题目描述

输入一个递增排序的数组和一个数字 S在数组中查找两个数是的他们的和正好是 S如果有多对数字的和等于 S输出两个数的乘积最小的。

public ArrayList<Integer> FindNumbersWithSum(int[] array, int sum) {
    int i = 0, j = array.length - 1;
    while (i < j) {
        int cur = array[i] + array[j];
        if (cur == sum) return new ArrayList<Integer>(Arrays.asList(array[i], array[j]));
        else if (cur < sum) i++;
        else j--;
    }
    return new ArrayList<Integer>();
}

57.2 和为 S 的连续正数序列

题目描述

和为 100 的连续序列有 18, 19, 20, 21, 22

public ArrayList<ArrayList<Integer>> FindContinuousSequence(int sum) {
    ArrayList<ArrayList<Integer>> ret = new ArrayList<>();
    int start = 1, end = 2;
    int mid = sum / 2;
    int curSum = 3;
    while (start <= mid && end < sum) {
        if (curSum > sum) {
            curSum -= start;
            start++;
        } else if (curSum < sum) {
            end++;
            curSum += end;
        } else {
            ArrayList<Integer> list = new ArrayList<>();
            for (int i = start; i <= end; i++) {
                list.add(i);
            }
            ret.add(list);
            curSum -= start;
            start++;
            end++;
            curSum += end;
        }
    }
    return ret;
}

58.1 翻转单词顺序列

题目描述

输入:"I am a student."

输出:"student. a am I"

public String ReverseSentence(String str) {
    if (str.length() == 0) return str;
    int n = str.length();
    char[] chars = str.toCharArray();
    int start = 0, end = 0;
    while (end <= n) {
        if (end == n || chars[end] == ' ') {
            reverse(chars, start, end - 1);
            start = end + 1;
        }
        end++;
    }
    reverse(chars, 0, n - 1);
    return new String(chars);
}

private void reverse(char[] c, int start, int end) {
    while (start < end) {
        char t = c[start];
        c[start] = c[end];
        c[end] = t;
        start++;
        end--;
    }
}

58.2 左旋转字符串

题目描述

对于一个给定的字符序列 S请你把其循环左移 K 位后的序列输出。例如,字符序列 S=”abcXYZdef”, 要求输出循环左移 3 位后的结果即“XYZdefabc”。

public String LeftRotateString(String str, int n) {
    if (str.length() == 0) return "";
    char[] c = str.toCharArray();
    reverse(c, 0, n - 1);
    reverse(c, n, c.length - 1);
    reverse(c, 0, c.length - 1);
    return new String(c);
}

private void reverse(char[] c, int i, int j) {
    while (i < j) {
        char t = c[i];
        c[i] = c[j];
        c[j] = t;
        i++;
        j--;
    }
}

59. 滑动窗口的最大值

题目描述

给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。例如,如果输入数组 {2, 3, 4, 2, 6, 2, 5, 1} 及滑动窗口的大小 3那么一共存在 6 个滑动窗口,他们的最大值分别为 {4, 4, 6, 6, 6, 5}

public ArrayList<Integer> maxInWindows(int[] num, int size) {
    ArrayList<Integer> ret = new ArrayList<>();
    if (size > num.length || size < 1) return ret;
    PriorityQueue<Integer> heap = new PriorityQueue<Integer>((o1, o2) -> o2 - o1);
    for (int i = 0; i < size; i++) heap.add(num[i]);
    ret.add(heap.peek());
    for (int i = 1; i + size - 1 < num.length; i++) {
        heap.remove(num[i - 1]);
        heap.add(num[i + size - 1]);
        ret.add(heap.peek());
    }
    return ret;
}

61. 扑克牌顺子

题目描述

五张牌,其中大小鬼为癞子,牌面大小为 0。判断是否能组成顺子。

public boolean isContinuous(int[] numbers) {
    if (numbers.length < 5) return false;
    Arrays.sort(numbers);
    int cnt = 0;
    for (int num : numbers) if (num == 0) cnt++;
    for (int i = cnt; i < numbers.length - 1; i++) {
        if (numbers[i + 1] == numbers[i]) return false;
        int cut = numbers[i + 1] - numbers[i] - 1;
        if (cut > cnt) return false;
        cnt -= cut;
    }
    return true;
}

62. 圆圈中最后剩下的数

题目描述

让小朋友们围成一个大圈。然后 , 他随机指定一个数 m, 让编号为 0 的小朋友开始报数。每次喊到 m-1 的那个小朋友要出列唱首歌 , 然后可以在礼品箱中任意的挑选礼物 , 并且不再回到圈中 , 从他的下一个小朋友开始 , 继续 0...m-1 报数 .... 这样下去 .... 直到剩下最后一个小朋友 , 可以不用表演。

解题思路

约瑟夫环

public int LastRemaining_Solution(int n, int m) {
    if (n == 0) return -1;
    if (n == 1) return 0;
    return (LastRemaining_Solution(n - 1, m) + m) % n;
}

63. 股票的最大利润

题目描述

可以有一次买入和一次卖出,买入必须在前。求最大收益。

public int maxProfit(int[] prices) {
    int n = prices.length;
    if(n == 0) return 0;
    int soFarMin = prices[0];
    int max = 0;
    for(int i = 1; i < n; i++) {
        if(soFarMin > prices[i]) soFarMin = prices[i];
        else max = Math.max(max, prices[i] - soFarMin);
    }
    return max;
}

64. 求 1+2+3+...+n

题目描述

求 1+2+3+...+n要求不能使用乘除法、for、while、if、else、switch、case 等关键字及条件判断语句A?B:C

public int Sum_Solution(int n) {
    if(n == 0) return 0;
    return n + Sum_Solution(n - 1);
}

65. 不用加减乘除做加法

a ^ b 表示没有考虑进位的情况下两数的和,(a & b) << 1 就是进位。递归会终止的原因是 (a & b) << 1 最右边会多一个 0那么继续递归进位最右边的 0 会慢慢增多,最后进位会变为 0递归终止。

public int Add(int num1, int num2) {
    if(num2 == 0) return num1;
    return Add(num1 ^ num2, (num1 & num2) << 1);
}

66. 构建乘积数组

题目描述

给定一个数组 A[0, 1,..., n-1], 请构建一个数组 B[0, 1,..., n-1], 其中 B 中的元素 B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]*...*A[n-1]。不能使用除法。

public int[] multiply(int[] A) {
    int n = A.length;
    int[][] dp = new int[n][n];
    for (int i = 0; i < n; i++) {
        dp[i][i] = A[i];
    }
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
            dp[i][j] = dp[i][j - 1] * A[j];
        }
    }

    int[] B = new int[n];
    Arrays.fill(B, 1);
    for (int i = 0; i < n; i++) {
        if (i != 0) B[i] *= dp[0][i - 1];
        if (i != n - 1) B[i] *= dp[i + 1][n - 1];
    }
    return B;
}

第七章 两个面试案例

67. 把字符串转换成整数

public int StrToInt(String str) {
    if (str.length() == 0) return 0;
    char[] chars = str.toCharArray();
    boolean isNegative = chars[0] == '-';
    int ret = 0;
    for (int i = 0; i < chars.length; i++) {
        if (i == 0 && (chars[i] == '+' || chars[i] == '-')) continue;
        if (chars[i] < '0' || chars[i] > '9') return 0;
        ret = ret * 10 + (chars[i] - '0');
    }
    return isNegative ? -ret : ret;
}

68. 树中两个节点的最低公共祖先

树是二叉查找树的最低公共祖先问题:

public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
    if(root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q);
    if(root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q);
    return root;
}