CS-Notes/docs/notes/12. 矩阵中的路径.md
2019-11-02 17:33:10 +08:00

72 lines
3.0 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 12. 矩阵中的路径
[NowCoder](https://www.nowcoder.com/practice/c61c6999eecb4b8f88a98f66b273a3cc?tpId=13&tqId=11218&tPage=1&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking&from=cyc_github)
## 题目描述
判断在一个矩阵中是否存在一条包含某字符串所有字符的路径路径可以从矩阵中的任意一个格子开始每一步可以在矩阵中向上下左右移动一个格子如果一条路径经过了矩阵中的某一个格子则该路径不能再进入该格子
例如下面的矩阵包含了一条 bfce 路径
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/1db1c7ea-0443-478b-8df9-7e33b1336cc4.png" width="200px"> </div><br>
## 解题思路
使用回溯法backtracking进行求解它是一种暴力搜索方法通过搜索所有可能的结果来求解问题回溯法在一次搜索结束时需要进行回溯回退将这一次搜索过程中设置的状态进行清除从而开始一次新的搜索过程例如下图示例中 f 开始下一步有 4 种搜索可能如果先搜索 b需要将 b 标记为已经使用防止重复使用在这一次搜索结束之后需要将 b 的已经使用状态清除并搜索 c
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/dc964b86-7a08-4bde-a3d9-e6ddceb29f98.png" width="200px"> </div><br>
本题的输入是数组而不是矩阵二维数组因此需要先将数组转换成矩阵
```java
private final static int[][] next = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}};
private int rows;
private int cols;
public boolean hasPath(char[] array, int rows, int cols, char[] str) {
if (rows == 0 || cols == 0) return false;
this.rows = rows;
this.cols = cols;
boolean[][] marked = new boolean[rows][cols];
char[][] matrix = buildMatrix(array);
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
if (backtracking(matrix, str, marked, 0, i, j))
return true;
return false;
}
private boolean backtracking(char[][] matrix, char[] str,
boolean[][] marked, int pathLen, int r, int c) {
if (pathLen == str.length) return true;
if (r < 0 || r >= rows || c < 0 || c >= cols
|| matrix[r][c] != str[pathLen] || marked[r][c]) {
return false;
}
marked[r][c] = true;
for (int[] n : next)
if (backtracking(matrix, str, marked, pathLen + 1, r + n[0], c + n[1]))
return true;
marked[r][c] = false;
return false;
}
private char[][] buildMatrix(char[] array) {
char[][] matrix = new char[rows][cols];
for (int r = 0, idx = 0; r < rows; r++)
for (int c = 0; c < cols; c++)
matrix[r][c] = array[idx++];
return matrix;
}
```
<div align="center"><img width="320px" src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/githubio/公众号二维码-2.png"></img></div>