CS-Notes/docs/notes/剑指 Offer 题解 - 20~29.md
2019-12-06 01:04:29 +08:00

11 KiB
Raw Blame History

20. 表示数值的字符串

NowCoder

题目描述

true

"+100"
"5e2"
"-123"
"3.1416"
"-1E-16"
false

"12e"
"1a3.14"
"1.2.3"
"+-5"
"12e+4.3"

解题思路

使用正则表达式进行匹配。

[]   字符集合
()   分组
?    重复 0 ~ 1 次
+    重复 1 ~ n 次
*    重复 0 ~ n 次
.    任意字符
\\.  转义后的 .
\\d  数字
public boolean isNumeric(char[] str) {
    if (str == null || str.length == 0)
        return false;
    return new String(str).matches("[+-]?\\d*(\\.\\d+)?([eE][+-]?\\d+)?");
}

21. 调整数组顺序使奇数位于偶数前面

NowCoder

题目描述

需要保证奇数和奇数,偶数和偶数之间的相对位置不变,这和书本不太一样。


解题思路

方法一:创建一个新数组,时间复杂度 O(N),空间复杂度 O(N)。

public void reOrderArray(int[] nums) {
    // 奇数个数
    int oddCnt = 0;
    for (int x : nums)
        if (!isEven(x))
            oddCnt++;
    int[] copy = nums.clone();
    int i = 0, j = oddCnt;
    for (int num : copy) {
        if (num % 2 == 1)
            nums[i++] = num;
        else
            nums[j++] = num;
    }
}

private boolean isEven(int x) {
    return x % 2 == 0;
}

方法二:使用冒泡思想,每次都当前偶数上浮到当前最右边。时间复杂度 O(N2),空间复杂度 O(1),时间换空间。

public void reOrderArray(int[] nums) {
    int N = nums.length;
    for (int i = N - 1; i > 0; i--) {
        for (int j = 0; j < i; j++) {
            if (isEven(nums[j]) && !isEven(nums[j + 1])) {
                swap(nums, j, j + 1);
            }
        }
    }
}

private boolean isEven(int x) {
    return x % 2 == 0;
}

private void swap(int[] nums, int i, int j) {
    int t = nums[i];
    nums[i] = nums[j];
    nums[j] = t;
}

22. 链表中倒数第 K 个结点

NowCoder

解题思路

设链表的长度为 N。设置两个指针 P1 和 P2先让 P1 移动 K 个节点,则还有 N - K 个节点可以移动。此时让 P1 和 P2 同时移动,可以知道当 P1 移动到链表结尾时P2 移动到第 N - K 个节点处,该位置就是倒数第 K 个节点。


public ListNode FindKthToTail(ListNode head, int k) {
    if (head == null)
        return null;
    ListNode P1 = head;
    while (P1 != null && k-- > 0)
        P1 = P1.next;
    if (k > 0)
        return null;
    ListNode P2 = head;
    while (P1 != null) {
        P1 = P1.next;
        P2 = P2.next;
    }
    return P2;
}

23. 链表中环的入口结点

NowCoder

题目描述

一个链表中包含环,请找出该链表的环的入口结点。要求不能使用额外的空间。

解题思路

使用双指针,一个指针 fast 每次移动两个节点,一个指针 slow 每次移动一个节点。因为存在环,所以两个指针必定相遇在环中的某个节点上。假设相遇点在下图的 z1 位置,此时 fast 移动的节点数为 x+2y+zslow 为 x+y由于 fast 速度比 slow 快一倍,因此 x+2y+z=2(x+y),得到 x=z。

在相遇点slow 要到环的入口点还需要移动 z 个节点,如果让 fast 重新从头开始移动,并且速度变为每次移动一个节点,那么它到环入口点还需要移动 x 个节点。在上面已经推导出 x=z因此 fast 和 slow 将在环入口点相遇。


public ListNode EntryNodeOfLoop(ListNode pHead) {
    if (pHead == null || pHead.next == null)
        return null;
    ListNode slow = pHead, fast = pHead;
    do {
        fast = fast.next.next;
        slow = slow.next;
    } while (slow != fast);
    fast = pHead;
    while (slow != fast) {
        slow = slow.next;
        fast = fast.next;
    }
    return slow;
}

24. 反转链表

NowCoder

解题思路

递归

public ListNode ReverseList(ListNode head) {
    if (head == null || head.next == null)
        return head;
    ListNode next = head.next;
    head.next = null;
    ListNode newHead = ReverseList(next);
    next.next = head;
    return newHead;
}

迭代

使用头插法。

public ListNode ReverseList(ListNode head) {
    ListNode newList = new ListNode(-1);
    while (head != null) {
        ListNode next = head.next;
        head.next = newList.next;
        newList.next = head;
        head = next;
    }
    return newList.next;
}

25. 合并两个排序的链表

NowCoder

题目描述


解题思路

递归

public ListNode Merge(ListNode list1, ListNode list2) {
    if (list1 == null)
        return list2;
    if (list2 == null)
        return list1;
    if (list1.val <= list2.val) {
        list1.next = Merge(list1.next, list2);
        return list1;
    } else {
        list2.next = Merge(list1, list2.next);
        return list2;
    }
}

迭代

public ListNode Merge(ListNode list1, ListNode list2) {
    ListNode head = new ListNode(-1);
    ListNode cur = head;
    while (list1 != null && list2 != null) {
        if (list1.val <= list2.val) {
            cur.next = list1;
            list1 = list1.next;
        } else {
            cur.next = list2;
            list2 = list2.next;
        }
        cur = cur.next;
    }
    if (list1 != null)
        cur.next = list1;
    if (list2 != null)
        cur.next = list2;
    return head.next;
}

26. 树的子结构

NowCoder

题目描述


解题思路

public boolean HasSubtree(TreeNode root1, TreeNode root2) {
    if (root1 == null || root2 == null)
        return false;
    return isSubtreeWithRoot(root1, root2) || HasSubtree(root1.left, root2) || HasSubtree(root1.right, root2);
}

private boolean isSubtreeWithRoot(TreeNode root1, TreeNode root2) {
    if (root2 == null)
        return true;
    if (root1 == null)
        return false;
    if (root1.val != root2.val)
        return false;
    return isSubtreeWithRoot(root1.left, root2.left) && isSubtreeWithRoot(root1.right, root2.right);
}

27. 二叉树的镜像

NowCoder

题目描述


解题思路

public void Mirror(TreeNode root) {
    if (root == null)
        return;
    swap(root);
    Mirror(root.left);
    Mirror(root.right);
}

private void swap(TreeNode root) {
    TreeNode t = root.left;
    root.left = root.right;
    root.right = t;
}

28 对称的二叉树

NowCoder

题目描述


解题思路

boolean isSymmetrical(TreeNode pRoot) {
    if (pRoot == null)
        return true;
    return isSymmetrical(pRoot.left, pRoot.right);
}

boolean isSymmetrical(TreeNode t1, TreeNode t2) {
    if (t1 == null && t2 == null)
        return true;
    if (t1 == null || t2 == null)
        return false;
    if (t1.val != t2.val)
        return false;
    return isSymmetrical(t1.left, t2.right) && isSymmetrical(t1.right, t2.left);
}

29. 顺时针打印矩阵

NowCoder

题目描述

下图的矩阵顺时针打印结果为1, 2, 3, 4, 8, 12, 16, 15, 14, 13, 9, 5, 6, 7, 11, 10


解题思路

public ArrayList<Integer> printMatrix(int[][] matrix) {
    ArrayList<Integer> ret = new ArrayList<>();
    int r1 = 0, r2 = matrix.length - 1, c1 = 0, c2 = matrix[0].length - 1;
    while (r1 <= r2 && c1 <= c2) {
        for (int i = c1; i <= c2; i++)
            ret.add(matrix[r1][i]);
        for (int i = r1 + 1; i <= r2; i++)
            ret.add(matrix[i][c2]);
        if (r1 != r2)
            for (int i = c2 - 1; i >= c1; i--)
                ret.add(matrix[r2][i]);
        if (c1 != c2)
            for (int i = r2 - 1; i > r1; i--)
                ret.add(matrix[i][c1]);
        r1++; r2--; c1++; c2--;
    }
    return ret;
}