CS-Notes/docs/notes/Leetcode 题解 - 贪心思想.md
2019-06-12 12:20:21 +08:00

13 KiB
Raw Blame History

保证每次操作都是局部最优的,并且最后得到的结果是全局最优的。

1. 分配饼干

455. Assign Cookies (Easy)

Input: [1,2], [1,2,3]
Output: 2

Explanation: You have 2 children and 3 cookies. The greed factors of 2 children are 1, 2.
You have 3 cookies and their sizes are big enough to gratify all of the children,
You need to output 2.

题目描述:每个孩子都有一个满足度,每个饼干都有一个大小,只有饼干的大小大于等于一个孩子的满足度,该孩子才会获得满足。求解最多可以获得满足的孩子数量。

给一个孩子的饼干应当尽量小又能满足该孩子,这样大饼干就能拿来给满足度比较大的孩子。因为最小的孩子最容易得到满足,所以先满足最小的孩子。

证明:假设在某次选择中,贪心策略选择给当前满足度最小的孩子分配第 m 个饼干,第 m 个饼干为可以满足该孩子的最小饼干。假设存在一种最优策略,给该孩子分配第 n 个饼干,并且 m < n。我们可以发现经过这一轮分配贪心策略分配后剩下的饼干一定有一个比最优策略来得大。因此在后续的分配中贪心策略一定能满足更多的孩子。也就是说不存在比贪心策略更优的策略即贪心策略就是最优策略。

public int findContentChildren(int[] g, int[] s) {
    Arrays.sort(g);
    Arrays.sort(s);
    int gi = 0, si = 0;
    while (gi < g.length && si < s.length) {
        if (g[gi] <= s[si]) {
            gi++;
        }
        si++;
    }
    return gi;
}

2. 不重叠的区间个数

435. Non-overlapping Intervals (Medium)

Input: [ [1,2], [1,2], [1,2] ]

Output: 2

Explanation: You need to remove two [1,2] to make the rest of intervals non-overlapping.
Input: [ [1,2], [2,3] ]

Output: 0

Explanation: You don't need to remove any of the intervals since they're already non-overlapping.

题目描述:计算让一组区间不重叠所需要移除的区间个数。

先计算最多能组成的不重叠区间个数,然后用区间总个数减去不重叠区间的个数。

在每次选择中,区间的结尾最为重要,选择的区间结尾越小,留给后面的区间的空间越大,那么后面能够选择的区间个数也就越大。

按区间的结尾进行排序,每次选择结尾最小,并且和前一个区间不重叠的区间。

public int eraseOverlapIntervals(int[][] intervals) {
    if (intervals.length == 0) {
        return 0;
    }
    Arrays.sort(intervals, Comparator.comparingInt(o -> o[1]));
    int cnt = 1;
    int end = intervals[0][1];
    for (int i = 1; i < intervals.length; i++) {
        if (intervals[i][0] < end) {
            continue;
        }
        end = intervals[i][1];
        cnt++;
    }
    return intervals.length - cnt;
}

使用 lambda 表示式创建 Comparator 会导致算法运行时间过长,如果注重运行时间,可以修改为普通创建 Comparator 语句:

Arrays.sort(intervals, new Comparator<int[]>() {
    @Override
    public int compare(int[] o1, int[] o2) {
        return o1[1] - o2[1];
    }
});

3. 投飞镖刺破气球

452. Minimum Number of Arrows to Burst Balloons (Medium)

Input:
[[10,16], [2,8], [1,6], [7,12]]

Output:
2

题目描述:气球在一个水平数轴上摆放,可以重叠,飞镖垂直投向坐标轴,使得路径上的气球都被刺破。求解最小的投飞镖次数使所有气球都被刺破。

也是计算不重叠的区间个数,不过和 Non-overlapping Intervals 的区别在于,[1, 2] 和 [2, 3] 在本题中算是重叠区间。

public int findMinArrowShots(int[][] points) {
    if (points.length == 0) {
        return 0;
    }
    Arrays.sort(points, Comparator.comparingInt(o -> o[1]));
    int cnt = 1, end = points[0][1];
    for (int i = 1; i < points.length; i++) {
        if (points[i][0] <= end) {
            continue;
        }
        cnt++;
        end = points[i][1];
    }
    return cnt;
}

4. 根据身高和序号重组队列

406. Queue Reconstruction by Height(Medium)

Input:
[[7,0], [4,4], [7,1], [5,0], [6,1], [5,2]]

Output:
[[5,0], [7,0], [5,2], [6,1], [4,4], [7,1]]

题目描述:一个学生用两个分量 (h, k) 描述h 表示身高k 表示排在前面的有 k 个学生的身高比他高或者和他一样高。

为了使插入操作不影响后续的操作,身高较高的学生应该先做插入操作,否则身高较小的学生原先正确插入的第 k 个位置可能会变成第 k+1 个位置。

身高 h 降序、个数 k 值升序,然后将某个学生插入队列的第 k 个位置中。

public int[][] reconstructQueue(int[][] people) {
    if (people == null || people.length == 0 || people[0].length == 0) {
        return new int[0][0];
    }
    Arrays.sort(people, (a, b) -> (a[0] == b[0] ? a[1] - b[1] : b[0] - a[0]));
    List<int[]> queue = new ArrayList<>();
    for (int[] p : people) {
        queue.add(p[1], p);
    }
    return queue.toArray(new int[queue.size()][]);
}

5. 买卖股票最大的收益

121. Best Time to Buy and Sell Stock (Easy)

题目描述:一次股票交易包含买入和卖出,只进行一次交易,求最大收益。

只要记录前面的最小价格,将这个最小价格作为买入价格,然后将当前的价格作为售出价格,查看当前收益是不是最大收益。

public int maxProfit(int[] prices) {
    int n = prices.length;
    if (n == 0) return 0;
    int soFarMin = prices[0];
    int max = 0;
    for (int i = 1; i < n; i++) {
        if (soFarMin > prices[i]) soFarMin = prices[i];
        else max = Math.max(max, prices[i] - soFarMin);
    }
    return max;
}

6. 买卖股票的最大收益 II

122. Best Time to Buy and Sell Stock II (Easy)

题目描述:可以进行多次交易,多次交易之间不能交叉进行,可以进行多次交易。

对于 [a, b, c, d],如果有 a <= b <= c <= d ,那么最大收益为 d - a。而 d - a = (d - c) + (c - b) + (b - a) ,因此当访问到一个 prices[i] 且 prices[i] - prices[i-1] > 0那么就把 prices[i] - prices[i-1] 添加到收益中。

public int maxProfit(int[] prices) {
    int profit = 0;
    for (int i = 1; i < prices.length; i++) {
        if (prices[i] > prices[i - 1]) {
            profit += (prices[i] - prices[i - 1]);
        }
    }
    return profit;
}

7. 种植花朵

605. Can Place Flowers (Easy)

Input: flowerbed = [1,0,0,0,1], n = 1
Output: True

题目描述flowerbed 数组中 1 表示已经种下了花朵。花朵之间至少需要一个单位的间隔,求解是否能种下 n 朵花。

public boolean canPlaceFlowers(int[] flowerbed, int n) {
    int len = flowerbed.length;
    int cnt = 0;
    for (int i = 0; i < len && cnt < n; i++) {
        if (flowerbed[i] == 1) {
            continue;
        }
        int pre = i == 0 ? 0 : flowerbed[i - 1];
        int next = i == len - 1 ? 0 : flowerbed[i + 1];
        if (pre == 0 && next == 0) {
            cnt++;
            flowerbed[i] = 1;
        }
    }
    return cnt >= n;
}

8. 判断是否为子序列

392. Is Subsequence (Medium)

s = "abc", t = "ahbgdc"
Return true.
public boolean isSubsequence(String s, String t) {
    int index = -1;
    for (char c : s.toCharArray()) {
        index = t.indexOf(c, index + 1);
        if (index == -1) {
            return false;
        }
    }
    return true;
}

9. 修改一个数成为非递减数组

665. Non-decreasing Array (Easy)

Input: [4,2,3]
Output: True
Explanation: You could modify the first 4 to 1 to get a non-decreasing array.

题目描述:判断一个数组是否能只修改一个数就成为非递减数组。

在出现 nums[i] < nums[i - 1] 时,需要考虑的是应该修改数组的哪个数,使得本次修改能使 i 之前的数组成为非递减数组,并且 不影响后续的操作 。优先考虑令 nums[i - 1] = nums[i],因为如果修改 nums[i] = nums[i - 1] 的话,那么 nums[i] 这个数会变大,就有可能比 nums[i + 1] 大,从而影响了后续操作。还有一个比较特别的情况就是 nums[i] < nums[i - 2],修改 nums[i - 1] = nums[i] 不能使数组成为非递减数组,只能修改 nums[i] = nums[i - 1]。

public boolean checkPossibility(int[] nums) {
    int cnt = 0;
    for (int i = 1; i < nums.length && cnt < 2; i++) {
        if (nums[i] >= nums[i - 1]) {
            continue;
        }
        cnt++;
        if (i - 2 >= 0 && nums[i - 2] > nums[i]) {
            nums[i] = nums[i - 1];
        } else {
            nums[i - 1] = nums[i];
        }
    }
    return cnt <= 1;
}

10. 子数组最大的和

53. Maximum Subarray (Easy)

For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
the contiguous subarray [4,-1,2,1] has the largest sum = 6.
public int maxSubArray(int[] nums) {
    if (nums == null || nums.length == 0) {
        return 0;
    }
    int preSum = nums[0];
    int maxSum = preSum;
    for (int i = 1; i < nums.length; i++) {
        preSum = preSum > 0 ? preSum + nums[i] : nums[i];
        maxSum = Math.max(maxSum, preSum);
    }
    return maxSum;
}

11. 分隔字符串使同种字符出现在一起

763. Partition Labels (Medium)

Input: S = "ababcbacadefegdehijhklij"
Output: [9,7,8]
Explanation:
The partition is "ababcbaca", "defegde", "hijhklij".
This is a partition so that each letter appears in at most one part.
A partition like "ababcbacadefegde", "hijhklij" is incorrect, because it splits S into less parts.
public List<Integer> partitionLabels(String S) {
    int[] lastIndexsOfChar = new int[26];
    for (int i = 0; i < S.length(); i++) {
        lastIndexsOfChar[char2Index(S.charAt(i))] = i;
    }
    List<Integer> partitions = new ArrayList<>();
    int firstIndex = 0;
    while (firstIndex < S.length()) {
        int lastIndex = firstIndex;
        for (int i = firstIndex; i < S.length() && i <= lastIndex; i++) {
            int index = lastIndexsOfChar[char2Index(S.charAt(i))];
            if (index > lastIndex) {
                lastIndex = index;
            }
        }
        partitions.add(lastIndex - firstIndex + 1);
        firstIndex = lastIndex + 1;
    }
    return partitions;
}

private int char2Index(char c) {
    return c - 'a';
}

和我交流

如果你想和我交流,可以在我的微信公众号后台留言。另外,公众号提供了该项目的离线阅读版本,后台回复 "下载" 即可领取。也提供了一份技术面试复习大纲,不仅系统整理了面试知识点,而且标注了各个知识点的重要程度,从而帮你理清多而杂的面试知识点,后台回复 "大纲" 即可领取。我基本是按照这个大纲来进行复习的,对我拿到了 BAT 头条等 Offer 起到很大的帮助。你们完全可以和我一样根据大纲上列的知识点来进行复习,就不用看很多不重要的内容,也可以知道哪些内容很重要从而多安排一些复习时间。