CS-Notes/docs/notes/算法 - 其它.md
2019-06-12 12:20:21 +08:00

5.6 KiB
Raw Blame History

汉诺塔


有三个柱子,分别为 from、buffer、to。需要将 from 上的圆盘全部移动到 to 上,并且要保证小圆盘始终在大圆盘上。

这是一个经典的递归问题,分为三步求解:

① 将 n-1 个圆盘从 from -> buffer


② 将 1 个圆盘从 from -> to


③ 将 n-1 个圆盘从 buffer -> to


如果只有一个圆盘,那么只需要进行一次移动操作。

从上面的讨论可以知道an = 2 * an-1 + 1显然 an = 2n - 1n 个圆盘需要移动 2n - 1 次。

public class Hanoi {
    public static void move(int n, String from, String buffer, String to) {
        if (n == 1) {
            System.out.println("from " + from + " to " + to);
            return;
        }
        move(n - 1, from, to, buffer);
        move(1, from, buffer, to);
        move(n - 1, buffer, from, to);
    }

    public static void main(String[] args) {
        Hanoi.move(3, "H1", "H2", "H3");
    }
}
from H1 to H3
from H1 to H2
from H3 to H2
from H1 to H3
from H2 to H1
from H2 to H3
from H1 to H3

哈夫曼编码

根据数据出现的频率对数据进行编码,从而压缩原始数据。

例如对于一个文本文件,其中各种字符出现的次数如下:

  • a : 10
  • b : 20
  • c : 40
  • d : 80

可以将每种字符转换成二进制编码,例如将 a 转换为 00b 转换为 01c 转换为 10d 转换为 11。这是最简单的一种编码方式没有考虑各个字符的权值出现频率。而哈夫曼编码采用了贪心策略使出现频率最高的字符的编码最短从而保证整体的编码长度最短。

首先生成一颗哈夫曼树,每次生成过程中选取频率最少的两个节点,生成一个新节点作为它们的父节点,并且新节点的频率为两个节点的和。选取频率最少的原因是,生成过程使得先选取的节点位于树的更低层,那么需要的编码长度更长,频率更少可以使得总编码长度更少。

生成编码时,从根节点出发,向左遍历则添加二进制位 0向右则添加二进制位 1直到遍历到叶子节点叶子节点代表的字符的编码就是这个路径编码。


public class Huffman {

    private class Node implements Comparable<Node> {
        char ch;
        int freq;
        boolean isLeaf;
        Node left, right;

        public Node(char ch, int freq) {
            this.ch = ch;
            this.freq = freq;
            isLeaf = true;
        }

        public Node(Node left, Node right, int freq) {
            this.left = left;
            this.right = right;
            this.freq = freq;
            isLeaf = false;
        }

        @Override
        public int compareTo(Node o) {
            return this.freq - o.freq;
        }
    }

    public Map<Character, String> encode(Map<Character, Integer> frequencyForChar) {
        PriorityQueue<Node> priorityQueue = new PriorityQueue<>();
        for (Character c : frequencyForChar.keySet()) {
            priorityQueue.add(new Node(c, frequencyForChar.get(c)));
        }
        while (priorityQueue.size() != 1) {
            Node node1 = priorityQueue.poll();
            Node node2 = priorityQueue.poll();
            priorityQueue.add(new Node(node1, node2, node1.freq + node2.freq));
        }
        return encode(priorityQueue.poll());
    }

    private Map<Character, String> encode(Node root) {
        Map<Character, String> encodingForChar = new HashMap<>();
        encode(root, "", encodingForChar);
        return encodingForChar;
    }

    private void encode(Node node, String encoding, Map<Character, String> encodingForChar) {
        if (node.isLeaf) {
            encodingForChar.put(node.ch, encoding);
            return;
        }
        encode(node.left, encoding + '0', encodingForChar);
        encode(node.right, encoding + '1', encodingForChar);
    }
}

和我交流

如果你想和我交流,可以在我的微信公众号后台留言。另外,公众号提供了该项目的离线阅读版本,后台回复 "下载" 即可领取。也提供了一份技术面试复习大纲,不仅系统整理了面试知识点,而且标注了各个知识点的重要程度,从而帮你理清多而杂的面试知识点,后台回复 "大纲" 即可领取。我基本是按照这个大纲来进行复习的,对我拿到了 BAT 头条等 Offer 起到很大的帮助。你们完全可以和我一样根据大纲上列的知识点来进行复习,就不用看很多不重要的内容,也可以知道哪些内容很重要从而多安排一些复习时间。