239 lines
7.1 KiB
Java
239 lines
7.1 KiB
Java
# 算法 - 算法分析
|
||
<!-- GFM-TOC -->
|
||
* [算法 - 算法分析](#算法---算法分析)
|
||
* [数学模型](#数学模型)
|
||
* [1. 近似](#1-近似)
|
||
* [2. 增长数量级](#2-增长数量级)
|
||
* [3. 内循环](#3-内循环)
|
||
* [4. 成本模型](#4-成本模型)
|
||
* [注意事项](#注意事项)
|
||
* [1. 大常数](#1-大常数)
|
||
* [2. 缓存](#2-缓存)
|
||
* [3. 对最坏情况下的性能的保证](#3-对最坏情况下的性能的保证)
|
||
* [4. 随机化算法](#4-随机化算法)
|
||
* [5. 均摊分析](#5-均摊分析)
|
||
* [ThreeSum](#threesum)
|
||
* [1. ThreeSumSlow](#1-threesumslow)
|
||
* [2. ThreeSumBinarySearch](#2-threesumbinarysearch)
|
||
* [3. ThreeSumTwoPointer](#3-threesumtwopointer)
|
||
* [倍率实验](#倍率实验)
|
||
<!-- GFM-TOC -->
|
||
|
||
|
||
## 数学模型
|
||
|
||
### 1. 近似
|
||
|
||
N<sup>3</sup>/6-N<sup>2</sup>/2+N/3 \~ N<sup>3</sup>/6。使用 \~f(N) 来表示所有随着 N 的增大除以 f(N) 的结果趋近于 1 的函数。
|
||
|
||
### 2. 增长数量级
|
||
|
||
N<sup>3</sup>/6-N<sup>2</sup>/2+N/3 的增长数量级为 O(N<sup>3</sup>)。增长数量级将算法与它的具体实现隔离开来,一个算法的增长数量级为 O(N<sup>3</sup>) 与它是否用 Java 实现,是否运行于特定计算机上无关。
|
||
|
||
### 3. 内循环
|
||
|
||
执行最频繁的指令决定了程序执行的总时间,把这些指令称为程序的内循环。
|
||
|
||
### 4. 成本模型
|
||
|
||
使用成本模型来评估算法,例如数组的访问次数就是一种成本模型。
|
||
|
||
## 注意事项
|
||
|
||
### 1. 大常数
|
||
|
||
在求近似时,如果低级项的常数系数很大,那么近似的结果是错误的。
|
||
|
||
### 2. 缓存
|
||
|
||
计算机系统会使用缓存技术来组织内存,访问数组相邻的元素会比访问不相邻的元素快很多。
|
||
|
||
### 3. 对最坏情况下的性能的保证
|
||
|
||
在核反应堆、心脏起搏器或者刹车控制器中的软件,最坏情况下的性能是十分重要的。
|
||
|
||
### 4. 随机化算法
|
||
|
||
通过打乱输入,去除算法对输入的依赖。
|
||
|
||
### 5. 均摊分析
|
||
|
||
将所有操作的总成本除于操作总数来将成本均摊。例如对一个空栈进行 N 次连续的 push() 调用需要访问数组的次数为 N+4+8+16+...+2N=5N-4(N 是向数组写入元素的次数,其余都是调整数组大小时进行复制需要的访问数组次数),均摊后访问数组的平均次数为常数。
|
||
|
||
## ThreeSum
|
||
|
||
ThreeSum 用于统计一个数组中和为 0 的三元组数量。
|
||
|
||
```java
|
||
public interface ThreeSum {
|
||
int count(int[] nums);
|
||
}
|
||
```
|
||
|
||
### 1. ThreeSumSlow
|
||
|
||
该算法的内循环为 `if (nums[i] + nums[j] + nums[k] == 0)` 语句,总共执行的次数为 N(N-1)(N-2) = N<sup>3</sup>/6-N<sup>2</sup>/2+N/3,因此它的近似执行次数为 \~N<sup>3</sup>/6,增长数量级为 O(N<sup>3</sup>)。
|
||
|
||
```java
|
||
public class ThreeSumSlow implements ThreeSum {
|
||
@Override
|
||
public int count(int[] nums) {
|
||
int N = nums.length;
|
||
int cnt = 0;
|
||
for (int i = 0; i < N; i++) {
|
||
for (int j = i + 1; j < N; j++) {
|
||
for (int k = j + 1; k < N; k++) {
|
||
if (nums[i] + nums[j] + nums[k] == 0) {
|
||
cnt++;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return cnt;
|
||
}
|
||
}
|
||
```
|
||
|
||
### 2. ThreeSumBinarySearch
|
||
|
||
将数组进行排序,对两个元素求和,并用二分查找方法查找是否存在该和的相反数,如果存在,就说明存在和为 0 的三元组。
|
||
|
||
应该注意的是,只有数组不含有相同元素才能使用这种解法,否则二分查找的结果会出错。
|
||
|
||
该方法可以将 ThreeSum 算法增长数量级降低为 O(N<sup>2</sup>logN)。
|
||
|
||
```java
|
||
public class ThreeSumBinarySearch implements ThreeSum {
|
||
|
||
@Override
|
||
public int count(int[] nums) {
|
||
Arrays.sort(nums);
|
||
int N = nums.length;
|
||
int cnt = 0;
|
||
for (int i = 0; i < N; i++) {
|
||
for (int j = i + 1; j < N; j++) {
|
||
int target = -nums[i] - nums[j];
|
||
int index = BinarySearch.search(nums, target);
|
||
// 应该注意这里的下标必须大于 j,否则会重复统计。
|
||
if (index > j) {
|
||
cnt++;
|
||
}
|
||
}
|
||
}
|
||
return cnt;
|
||
}
|
||
}
|
||
```
|
||
|
||
```java
|
||
public class BinarySearch {
|
||
|
||
public static int search(int[] nums, int target) {
|
||
int l = 0, h = nums.length - 1;
|
||
while (l <= h) {
|
||
int m = l + (h - l) / 2;
|
||
if (target == nums[m]) {
|
||
return m;
|
||
} else if (target > nums[m]) {
|
||
l = m + 1;
|
||
} else {
|
||
h = m - 1;
|
||
}
|
||
}
|
||
return -1;
|
||
}
|
||
}
|
||
```
|
||
|
||
### 3. ThreeSumTwoPointer
|
||
|
||
更有效的方法是先将数组排序,然后使用双指针进行查找,时间复杂度为 O(N<sup>2</sup>)。
|
||
|
||
同样不适用与数组存在重复元素的情况。
|
||
|
||
```java
|
||
public class ThreeSumTwoPointer implements ThreeSum {
|
||
|
||
@Override
|
||
public int count(int[] nums) {
|
||
int N = nums.length;
|
||
int cnt = 0;
|
||
Arrays.sort(nums);
|
||
for (int i = 0; i < N - 2; i++) {
|
||
int l = i + 1, h = N - 1, target = -nums[i];
|
||
while (l < h) {
|
||
int sum = nums[l] + nums[h];
|
||
if (sum == target) {
|
||
cnt++;
|
||
l++;
|
||
h--;
|
||
} else if (sum < target) {
|
||
l++;
|
||
} else {
|
||
h--;
|
||
}
|
||
}
|
||
}
|
||
return cnt;
|
||
}
|
||
}
|
||
```
|
||
|
||
## 倍率实验
|
||
|
||
如果 T(N) \~ aN<sup>b</sup>logN,那么 T(2N)/T(N) \~ 2<sup>b</sup>。
|
||
|
||
例如对于暴力的 ThreeSum 算法,近似时间为 \~N<sup>3</sup>/6。进行如下实验:多次运行该算法,每次取的 N 值为前一次的两倍,统计每次执行的时间,并统计本次运行时间与前一次运行时间的比值,得到如下结果:
|
||
|
||
| N | Time(ms) | Ratio |
|
||
| :---: | :---: | :---: |
|
||
| 500 | 48 | / |
|
||
| 1000 | 320 | 6.7 |
|
||
| 2000 | 555 | 1.7 |
|
||
| 4000 | 4105 | 7.4 |
|
||
| 8000 | 33575 | 8.2 |
|
||
| 16000 | 268909 | 8.0 |
|
||
|
||
可以看到,T(2N)/T(N) \~ 2<sup>3</sup>,因此可以确定 T(N) \~ aN<sup>3</sup>logN。
|
||
|
||
```java
|
||
public class RatioTest {
|
||
|
||
public static void main(String[] args) {
|
||
int N = 500;
|
||
int loopTimes = 7;
|
||
double preTime = -1;
|
||
while (loopTimes-- > 0) {
|
||
int[] nums = new int[N];
|
||
StopWatch.start();
|
||
ThreeSum threeSum = new ThreeSumSlow();
|
||
int cnt = threeSum.count(nums);
|
||
System.out.println(cnt);
|
||
double elapsedTime = StopWatch.elapsedTime();
|
||
double ratio = preTime == -1 ? 0 : elapsedTime / preTime;
|
||
System.out.println(N + " " + elapsedTime + " " + ratio);
|
||
preTime = elapsedTime;
|
||
N *= 2;
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
```java
|
||
public class StopWatch {
|
||
|
||
private static long start;
|
||
|
||
|
||
public static void start() {
|
||
start = System.currentTimeMillis();
|
||
}
|
||
|
||
|
||
public static double elapsedTime() {
|
||
long now = System.currentTimeMillis();
|
||
return (now - start) / 1000.0;
|
||
}
|
||
}
|
||
```
|