auto commit
This commit is contained in:
parent
8d449f3d96
commit
836191f408
|
@ -296,7 +296,7 @@ private int minNumber(int[] nums, int l, int h) {
|
|||
|
||||
## 题目描述
|
||||
|
||||
请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。
|
||||
判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。
|
||||
|
||||
例如下面的矩阵包含了一条 bfce 路径。
|
||||
|
||||
|
@ -304,14 +304,19 @@ private int minNumber(int[] nums, int l, int h) {
|
|||
|
||||
## 解题思路
|
||||
|
||||
使用回溯法(backtracking)进行求解,它是一种暴力搜索方法,通过搜索所有可能的结果来求解问题。回溯法在一次搜索结束时需要进行回溯(回退),将这一次搜索过程中设置的状态进行清除,从而开始一次新的搜索过程。例如下图示例中,从 f 开始,下一步有 4 种搜索可能,如果先搜索 b,需要将 b 标记为已经使用,防止重复使用。在这一次搜索结束之后,需要将 b 的已经使用状态清除,并搜索 c。
|
||||
|
||||
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/dc964b86-7a08-4bde-a3d9-e6ddceb29f98.png" width="200px"> </div><br>
|
||||
|
||||
本题的输入是数组而不是矩阵(二维数组),因此需要先将数组转换成矩阵。
|
||||
|
||||
```java
|
||||
private final static int[][] next = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}};
|
||||
private int rows;
|
||||
private int cols;
|
||||
|
||||
public boolean hasPath(char[] array, int rows, int cols, char[] str) {
|
||||
if (rows == 0 || cols == 0)
|
||||
return false;
|
||||
if (rows == 0 || cols == 0) return false;
|
||||
this.rows = rows;
|
||||
this.cols = cols;
|
||||
boolean[][] marked = new boolean[rows][cols];
|
||||
|
@ -320,14 +325,19 @@ public boolean hasPath(char[] array, int rows, int cols, char[] str) {
|
|||
for (int j = 0; j < cols; j++)
|
||||
if (backtracking(matrix, str, marked, 0, i, j))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
private boolean backtracking(char[][] matrix, char[] str, boolean[][] marked, int pathLen, int r, int c) {
|
||||
if (pathLen == str.length)
|
||||
return true;
|
||||
if (r < 0 || r >= rows || c < 0 || c >= cols || matrix[r][c] != str[pathLen] || marked[r][c])
|
||||
private boolean backtracking(char[][] matrix, char[] str,
|
||||
boolean[][] marked, int pathLen, int r, int c) {
|
||||
|
||||
if (pathLen == str.length) return true;
|
||||
if (r < 0 || r >= rows || c < 0 || c >= cols
|
||||
|| matrix[r][c] != str[pathLen] || marked[r][c]) {
|
||||
|
||||
return false;
|
||||
}
|
||||
marked[r][c] = true;
|
||||
for (int[] n : next)
|
||||
if (backtracking(matrix, str, marked, pathLen + 1, r + n[0], c + n[1]))
|
||||
|
@ -338,9 +348,9 @@ private boolean backtracking(char[][] matrix, char[] str, boolean[][] marked, in
|
|||
|
||||
private char[][] buildMatrix(char[] array) {
|
||||
char[][] matrix = new char[rows][cols];
|
||||
for (int i = 0, idx = 0; i < rows; i++)
|
||||
for (int j = 0; j < cols; j++)
|
||||
matrix[i][j] = array[idx++];
|
||||
for (int r = 0, idx = 0; r < rows; r++)
|
||||
for (int c = 0; c < cols; c++)
|
||||
matrix[r][c] = array[idx++];
|
||||
return matrix;
|
||||
}
|
||||
```
|
||||
|
|
BIN
docs/pics/dc964b86-7a08-4bde-a3d9-e6ddceb29f98.png
Normal file
BIN
docs/pics/dc964b86-7a08-4bde-a3d9-e6ddceb29f98.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
BIN
notes/pics/dc964b86-7a08-4bde-a3d9-e6ddceb29f98.png
Normal file
BIN
notes/pics/dc964b86-7a08-4bde-a3d9-e6ddceb29f98.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
|
@ -296,7 +296,7 @@ private int minNumber(int[] nums, int l, int h) {
|
|||
|
||||
## 题目描述
|
||||
|
||||
请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。
|
||||
判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。
|
||||
|
||||
例如下面的矩阵包含了一条 bfce 路径。
|
||||
|
||||
|
@ -304,14 +304,19 @@ private int minNumber(int[] nums, int l, int h) {
|
|||
|
||||
## 解题思路
|
||||
|
||||
使用回溯法(backtracking)进行求解,它是一种暴力搜索方法,通过搜索所有可能的结果来求解问题。回溯法在一次搜索结束时需要进行回溯(回退),将这一次搜索过程中设置的状态进行清除,从而开始一次新的搜索过程。例如下图示例中,从 f 开始,下一步有 4 种搜索可能,如果先搜索 b,需要将 b 标记为已经使用,防止重复使用。在这一次搜索结束之后,需要将 b 的已经使用状态清除,并搜索 c。
|
||||
|
||||
<div align="center"> <img src="pics/dc964b86-7a08-4bde-a3d9-e6ddceb29f98.png" width="200px"> </div><br>
|
||||
|
||||
本题的输入是数组而不是矩阵(二维数组),因此需要先将数组转换成矩阵。
|
||||
|
||||
```java
|
||||
private final static int[][] next = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}};
|
||||
private int rows;
|
||||
private int cols;
|
||||
|
||||
public boolean hasPath(char[] array, int rows, int cols, char[] str) {
|
||||
if (rows == 0 || cols == 0)
|
||||
return false;
|
||||
if (rows == 0 || cols == 0) return false;
|
||||
this.rows = rows;
|
||||
this.cols = cols;
|
||||
boolean[][] marked = new boolean[rows][cols];
|
||||
|
@ -320,14 +325,19 @@ public boolean hasPath(char[] array, int rows, int cols, char[] str) {
|
|||
for (int j = 0; j < cols; j++)
|
||||
if (backtracking(matrix, str, marked, 0, i, j))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
private boolean backtracking(char[][] matrix, char[] str, boolean[][] marked, int pathLen, int r, int c) {
|
||||
if (pathLen == str.length)
|
||||
return true;
|
||||
if (r < 0 || r >= rows || c < 0 || c >= cols || matrix[r][c] != str[pathLen] || marked[r][c])
|
||||
private boolean backtracking(char[][] matrix, char[] str,
|
||||
boolean[][] marked, int pathLen, int r, int c) {
|
||||
|
||||
if (pathLen == str.length) return true;
|
||||
if (r < 0 || r >= rows || c < 0 || c >= cols
|
||||
|| matrix[r][c] != str[pathLen] || marked[r][c]) {
|
||||
|
||||
return false;
|
||||
}
|
||||
marked[r][c] = true;
|
||||
for (int[] n : next)
|
||||
if (backtracking(matrix, str, marked, pathLen + 1, r + n[0], c + n[1]))
|
||||
|
@ -338,9 +348,9 @@ private boolean backtracking(char[][] matrix, char[] str, boolean[][] marked, in
|
|||
|
||||
private char[][] buildMatrix(char[] array) {
|
||||
char[][] matrix = new char[rows][cols];
|
||||
for (int i = 0, idx = 0; i < rows; i++)
|
||||
for (int j = 0; j < cols; j++)
|
||||
matrix[i][j] = array[idx++];
|
||||
for (int r = 0, idx = 0; r < rows; r++)
|
||||
for (int c = 0; c < cols; c++)
|
||||
matrix[r][c] = array[idx++];
|
||||
return matrix;
|
||||
}
|
||||
```
|
||||
|
|
Loading…
Reference in New Issue
Block a user