2019-11-02 12:07:41 +08:00
|
|
|
|
# 13. 机器人的运动范围
|
|
|
|
|
|
2021-03-23 02:48:19 +08:00
|
|
|
|
[牛客网](https://www.nowcoder.com/practice/6e5207314b5241fb83f2329e89fdecc8?tpId=13&tqId=11219&tPage=1&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking&from=cyc_github)
|
2019-11-02 12:07:41 +08:00
|
|
|
|
|
|
|
|
|
## 题目描述
|
|
|
|
|
|
|
|
|
|
地上有一个 m 行和 n 列的方格。一个机器人从坐标 (0, 0) 的格子开始移动,每一次只能向左右上下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于 k 的格子。
|
|
|
|
|
|
|
|
|
|
例如,当 k 为 18 时,机器人能够进入方格 (35,37),因为 3+5+3+7=18。但是,它不能进入方格 (35,38),因为 3+5+3+8=19。请问该机器人能够达到多少个格子?
|
|
|
|
|
|
|
|
|
|
## 解题思路
|
|
|
|
|
|
|
|
|
|
使用深度优先搜索(Depth First Search,DFS)方法进行求解。回溯是深度优先搜索的一种特例,它在一次搜索过程中需要设置一些本次搜索过程的局部状态,并在本次搜索结束之后清除状态。而普通的深度优先搜索并不需要使用这些局部状态,虽然还是有可能设置一些全局状态。
|
|
|
|
|
|
|
|
|
|
```java
|
|
|
|
|
private static final int[][] next = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}};
|
|
|
|
|
private int cnt = 0;
|
|
|
|
|
private int rows;
|
|
|
|
|
private int cols;
|
|
|
|
|
private int threshold;
|
|
|
|
|
private int[][] digitSum;
|
|
|
|
|
|
|
|
|
|
public int movingCount(int threshold, int rows, int cols) {
|
|
|
|
|
this.rows = rows;
|
|
|
|
|
this.cols = cols;
|
|
|
|
|
this.threshold = threshold;
|
|
|
|
|
initDigitSum();
|
|
|
|
|
boolean[][] marked = new boolean[rows][cols];
|
|
|
|
|
dfs(marked, 0, 0);
|
|
|
|
|
return cnt;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private void dfs(boolean[][] marked, int r, int c) {
|
|
|
|
|
if (r < 0 || r >= rows || c < 0 || c >= cols || marked[r][c])
|
|
|
|
|
return;
|
|
|
|
|
marked[r][c] = true;
|
|
|
|
|
if (this.digitSum[r][c] > this.threshold)
|
|
|
|
|
return;
|
|
|
|
|
cnt++;
|
|
|
|
|
for (int[] n : next)
|
|
|
|
|
dfs(marked, r + n[0], c + n[1]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private void initDigitSum() {
|
|
|
|
|
int[] digitSumOne = new int[Math.max(rows, cols)];
|
|
|
|
|
for (int i = 0; i < digitSumOne.length; i++) {
|
|
|
|
|
int n = i;
|
|
|
|
|
while (n > 0) {
|
|
|
|
|
digitSumOne[i] += n % 10;
|
|
|
|
|
n /= 10;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
this.digitSum = new int[rows][cols];
|
|
|
|
|
for (int i = 0; i < this.rows; i++)
|
|
|
|
|
for (int j = 0; j < this.cols; j++)
|
|
|
|
|
this.digitSum[i][j] = digitSumOne[i] + digitSumOne[j];
|
|
|
|
|
}
|
|
|
|
|
```
|