xlnt/source/detail/binary.hpp
Thomas Fussell f5b5d67594 wip
2017-04-28 17:56:05 -04:00

325 lines
7.4 KiB
C++

// Copyright (c) 2014-2017 Thomas Fussell
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, WRISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE
//
// @license: http://www.opensource.org/licenses/mit-license.php
// @author: see AUTHORS file
#pragma once
#include <cstdint>
#include <cstring>
#include <vector>
#include <xlnt/utils/exceptions.hpp>
namespace xlnt {
namespace detail {
using byte = std::uint8_t;
template<typename T>
class binary_reader
{
public:
binary_reader() = delete;
binary_reader(const std::vector<T> &vector)
: vector_(&vector),
data_(nullptr),
size_(0)
{
}
binary_reader(const T *source_data, std::size_t size)
: vector_(nullptr),
data_(source_data),
size_(size)
{
}
binary_reader(const binary_reader &other) = default;
binary_reader &operator=(const binary_reader &other)
{
vector_ = other.vector_;
offset_ = other.offset_;
data_ = other.data_;
return *this;
}
~binary_reader()
{
}
const T *data() const
{
return vector_ == nullptr ? data_ : vector_->data();
}
void offset(std::size_t offset)
{
offset_ = offset;
}
std::size_t offset() const
{
return offset_;
}
void reset()
{
offset_ = 0;
}
template<typename U>
U read()
{
return read_reference<U>();
}
template<typename U>
const U *read_pointer()
{
const auto result = reinterpret_cast<const U *>(data() + offset_);
offset_ += sizeof(U) / sizeof(T);
return result;
}
template<typename U>
const U &read_reference()
{
return *read_pointer<U>();
}
template<typename U>
std::vector<U> as_vector() const
{
auto result = std::vector<T>(bytes() / sizeof(U), U());
std::memcpy(result.data(), data(), bytes());
return result;
}
template<typename U>
std::vector<U> read_vector(std::size_t count)
{
auto result = std::vector<U>(count, U());
std::memcpy(result.data(), data() + offset_, count * sizeof(U));
offset_ += count * sizeof(T) / sizeof(U);
return result;
}
std::size_t count() const
{
return vector_ != nullptr ? vector_->size() : size_;
}
std::size_t bytes() const
{
return count() * sizeof(T);
}
private:
std::size_t offset_ = 0;
const std::vector<T> *vector_;
const T *data_;
const std::size_t size_;
};
template<typename T>
class binary_writer
{
public:
binary_writer(std::vector<T> &bytes)
: data_(&bytes)
{
}
binary_writer(const binary_writer &other)
{
*this = other;
}
~binary_writer()
{
}
binary_writer &operator=(const binary_writer &other)
{
data_ = other.data_;
offset_ = other.offset_;
return *this;
}
std::vector<T> &data()
{
return *data_;
}
// Make the bytes of the data pointed to by this writer equivalent to those in the given vector
// sizeof(U) should be a multiple of sizeof(T)
template<typename U>
void assign(const std::vector<U> &ints)
{
resize(ints.size() * sizeof(U));
std::memcpy(data_->data(), ints.data(), bytes());
}
// Make the bytes of the data pointed to by this writer equivalent to those in the given string
// sizeof(U) should be a multiple of sizeof(T)
template<typename U>
void assign(const std::basic_string<U> &string)
{
resize(string.size() * sizeof(U));
std::memcpy(data_->data(), string.data(), bytes());
}
void offset(std::size_t new_offset)
{
offset_ = new_offset;
}
std::size_t offset() const
{
return offset_;
}
void reset()
{
offset_ = 0;
data_->clear();
}
template<typename U>
void write(U value)
{
const auto num_bytes = sizeof(U);
const auto remaining_bytes = bytes() - offset() * sizeof(T);
if (remaining_bytes < num_bytes)
{
extend((num_bytes - remaining_bytes) / sizeof(T));
}
std::memcpy(data_->data() + offset(), &value, num_bytes);
offset_ += num_bytes / sizeof(T);
}
std::size_t count() const
{
return data_->size();
}
std::size_t bytes() const
{
return count() * sizeof(T);
}
void resize(std::size_t new_size, byte fill = 0)
{
data_->resize(new_size, fill);
}
void extend(std::size_t amount, byte fill = 0)
{
data_->resize(count() + amount, fill);
}
std::vector<byte>::iterator iterator()
{
return data_->begin() + static_cast<std::ptrdiff_t>(offset());
}
template<typename U>
void append(const std::vector<U> &data)
{
binary_reader<U> reader(data);
append(reader, data.size() * sizeof(U));
}
template<typename U>
void append(binary_reader<U> &reader, std::size_t reader_element_count)
{
const auto num_bytes = sizeof(U) * reader_element_count;
const auto remaining_bytes = bytes() - offset() * sizeof(T);
if (remaining_bytes < num_bytes)
{
extend((num_bytes - remaining_bytes) / sizeof(T));
}
if ((reader.offset() + reader_element_count) * sizeof(U) > reader.bytes())
{
throw xlnt::exception("reading past end");
}
std::memcpy(data_->data() + offset_, reader.data() + reader.offset(), reader_element_count * sizeof(U));
offset_ += reader_element_count * sizeof(U) / sizeof(T);
}
private:
std::vector<T> *data_;
std::size_t offset_ = 0;
};
template<typename T>
std::vector<byte> string_to_bytes(const std::basic_string<T> &string)
{
std::vector<byte> bytes;
binary_writer<byte> writer(bytes);
writer.assign(string);
return bytes;
}
template<typename T>
T read(std::istream &in)
{
T result;
in.read(reinterpret_cast<char *>(&result), sizeof(T));
return result;
}
template<typename T>
std::vector<T> read_vector(std::istream &in, std::size_t count)
{
std::vector<T> result(count, T());
in.read(reinterpret_cast<char *>(&result[0]), sizeof(T) * count);
return result;
}
template<typename T>
std::basic_string<T> read_string(std::istream &in, std::size_t count)
{
std::basic_string<T> result(count, T());
in.read(reinterpret_cast<char *>(&result[0]), sizeof(T) * count);
return result;
}
} // namespace detail
} // namespace xlnt