mirror of
https://github.com/tfussell/xlnt.git
synced 2024-03-22 13:11:17 +08:00
2137a7a243
Fixes warning C4305: 'initializing': truncation from 'double' to 'float' Fixes warning C4244: 'initializing': conversion from 'double' to 'float', possible loss of data
224 lines
12 KiB
C++
224 lines
12 KiB
C++
// Copyright (c) 2014-2021 Thomas Fussell
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
// THE SOFTWARE
|
|
//
|
|
// @license: http://www.opensource.org/licenses/mit-license.php
|
|
// @author: see AUTHORS file
|
|
|
|
#include <xlnt/utils/numeric.hpp>
|
|
#include <helpers/test_suite.hpp>
|
|
|
|
class numeric_test_suite : public test_suite
|
|
{
|
|
public:
|
|
numeric_test_suite()
|
|
{
|
|
register_test(test_serialise_number);
|
|
register_test(test_float_equals_zero);
|
|
register_test(test_float_equals_large);
|
|
register_test(test_float_equals_fairness);
|
|
register_test(test_min);
|
|
register_test(test_max);
|
|
register_test(test_abs);
|
|
}
|
|
|
|
void test_serialise_number()
|
|
{
|
|
xlnt::detail::number_serialiser serialiser;
|
|
// excel serialises numbers as floating point values with <= 15 digits of precision
|
|
xlnt_assert(serialiser.serialise(1) == "1");
|
|
// trailing zeroes are ignored
|
|
xlnt_assert(serialiser.serialise(1.0) == "1");
|
|
xlnt_assert(serialiser.serialise(1.0f) == "1");
|
|
// one to 1 relation
|
|
xlnt_assert(serialiser.serialise(1.23456) == "1.23456");
|
|
xlnt_assert(serialiser.serialise(1.23456789012345) == "1.23456789012345");
|
|
xlnt_assert(serialiser.serialise(123456.789012345) == "123456.789012345");
|
|
xlnt_assert(serialiser.serialise(1.23456789012345e+67) == "1.23456789012345e+67");
|
|
xlnt_assert(serialiser.serialise(1.23456789012345e-67) == "1.23456789012345e-67");
|
|
}
|
|
|
|
void test_float_equals_zero()
|
|
{
|
|
// comparing relatively small numbers (2.3e-6) with 0 will be true by default
|
|
const float comp_val = 2.3e-6f; // about the largest difference allowed by default
|
|
xlnt_assert(0.f != comp_val); // fail because not exactly equal
|
|
xlnt_assert(xlnt::detail::float_equals(0.0, comp_val));
|
|
xlnt_assert(xlnt::detail::float_equals(0.0, -comp_val));
|
|
// fail because diff is out of bounds for fuzzy equality
|
|
xlnt_assert(!xlnt::detail::float_equals(0.0, comp_val + 0.1e-6));
|
|
xlnt_assert(!xlnt::detail::float_equals(0.0, -(comp_val + 0.1e-6)));
|
|
// if the bounds of comparison are too loose, there are two tweakable knobs to tighten the comparison up
|
|
//==========================================================
|
|
// #1: reduce the epsilon_scale (default is 20)
|
|
// This can bring the range down to FLT_EPSILON (scale factor of 1)
|
|
xlnt_assert(!xlnt::detail::float_equals(0.0, comp_val, 10));
|
|
const float closer_comp_val = 1.1e-6f;
|
|
xlnt_assert(xlnt::detail::float_equals(0.0, closer_comp_val, 10));
|
|
xlnt_assert(!xlnt::detail::float_equals(0.0, closer_comp_val + 0.1e-6, 10));
|
|
xlnt_assert(xlnt::detail::float_equals(0.0, -closer_comp_val, 10));
|
|
xlnt_assert(!xlnt::detail::float_equals(0.0, -(closer_comp_val + 0.1e-6), 10));
|
|
//==========================================================
|
|
// #2: specify the epsilon source as a higher precision type (e.g. double)
|
|
// This makes the epsilon range quite significantly less
|
|
xlnt_assert(!xlnt::detail::float_equals<double>(0.0, comp_val));
|
|
xlnt_assert(!xlnt::detail::float_equals<double>(0.0, closer_comp_val));
|
|
const float tiny_comp_val = 4.4e-15f;
|
|
xlnt_assert(xlnt::detail::float_equals<double>(0.0, tiny_comp_val));
|
|
xlnt_assert(!xlnt::detail::float_equals<double>(0.0, tiny_comp_val + 0.1e-15));
|
|
xlnt_assert(xlnt::detail::float_equals<double>(0.0, -tiny_comp_val));
|
|
xlnt_assert(!xlnt::detail::float_equals<double>(0.0, -(tiny_comp_val + 0.1e-15)));
|
|
//==========================================================
|
|
// #3: combine #1 & #2
|
|
// for the tightest default precision, double with a scale of 1
|
|
xlnt_assert(!xlnt::detail::float_equals<double>(0.0, comp_val, 1));
|
|
xlnt_assert(!xlnt::detail::float_equals<double>(0.0, closer_comp_val, 1));
|
|
xlnt_assert(!xlnt::detail::float_equals<double>(0.0, tiny_comp_val, 1));
|
|
const float really_tiny_comp_val = 2.2e-16f; // the limit is +/- std::numeric_limits<double>::epsilon()
|
|
xlnt_assert(xlnt::detail::float_equals<double>(0.0, really_tiny_comp_val, 1));
|
|
xlnt_assert(!xlnt::detail::float_equals<double>(0.0, really_tiny_comp_val + 0.1e-16, 1));
|
|
xlnt_assert(xlnt::detail::float_equals<double>(0.0, -really_tiny_comp_val, 1));
|
|
xlnt_assert(!xlnt::detail::float_equals<double>(0.0, -(really_tiny_comp_val + 0.1e-16), 1));
|
|
//==========================================================
|
|
// in the world of floats, 2.2e-16 is still significantly different to 0.f (smallest representable float is around 1e-38)
|
|
// if comparisons are known to involve extremely small numbers (such that +/- 2.2e-16 is too large a band),
|
|
// a type that specialises std::numeric_limits::epsilon may be passed as the first template parameter
|
|
// the type itself doesn't actually need to have any behaviour as it is only used as the source for epsilon
|
|
// struct super_precise{};
|
|
// namespace std {
|
|
// template<> numeric_limits<super_precise> {
|
|
// double epsilon() {
|
|
// return 1e-30;
|
|
// }
|
|
// }
|
|
// }
|
|
// float_equals<double>(0.0, 2e-30, 1); // returns true
|
|
// float_equals<super_precise>(0.0, 2e-30, 1); // returns false
|
|
}
|
|
|
|
void test_float_equals_large()
|
|
{
|
|
const float compare_to = 20e6;
|
|
// fp math with arguments of different magnitudes is wierd
|
|
xlnt_assert(compare_to == compare_to + 1); // x == x + 1 ...
|
|
xlnt_assert(compare_to != compare_to + 10); // x != x + 10
|
|
xlnt_assert(compare_to != compare_to - 10); // x != x - 10
|
|
// if the same epsilon was used for comparison of large values as the values around one
|
|
// we'd have all the issues around zero again
|
|
xlnt_assert(xlnt::detail::float_equals(compare_to, compare_to + 49));
|
|
xlnt_assert(!xlnt::detail::float_equals(compare_to, compare_to + 50));
|
|
xlnt_assert(xlnt::detail::float_equals(compare_to, compare_to - 49));
|
|
xlnt_assert(!xlnt::detail::float_equals(compare_to, compare_to - 50));
|
|
// float_equals also scales epsilon up to match the magnitude of its arguments
|
|
// all the same options are available for increasing/decreasing the precision of the comparison
|
|
// however the the epsilon source should always be of equal or lesser precision than the arguments when away from zero
|
|
}
|
|
|
|
void test_float_equals_nan()
|
|
{
|
|
const float nan = std::nanf("");
|
|
// nans always compare false
|
|
xlnt_assert(!xlnt::detail::float_equals(nan, 0.f));
|
|
xlnt_assert(!xlnt::detail::float_equals(nan, nan));
|
|
xlnt_assert(!xlnt::detail::float_equals(nan, 1000.f));
|
|
}
|
|
|
|
void test_float_equals_fairness()
|
|
{
|
|
// tests for parameter ordering dependency
|
|
// (lhs ~= rhs) == (rhs ~= lhs)
|
|
const double test_val = 1.0;
|
|
const double test_diff_pass = 1.192092e-07; // should all pass with this
|
|
const double test_diff = 1.192093e-07; // difference enough to provide different results if the comparison is not "fair"
|
|
const double test_diff_fails = 1.192094e-07; // should all fail with this
|
|
|
|
// test_diff_pass
|
|
xlnt_assert(xlnt::detail::float_equals<float>((test_val + test_diff_pass), test_val, 1));
|
|
xlnt_assert(xlnt::detail::float_equals<float>(test_val, (test_val + test_diff_pass), 1));
|
|
xlnt_assert(xlnt::detail::float_equals<float>(-(test_val + test_diff_pass), -test_val, 1));
|
|
xlnt_assert(xlnt::detail::float_equals<float>(-test_val, -(test_val + test_diff_pass), 1));
|
|
// test_diff
|
|
xlnt_assert(xlnt::detail::float_equals<float>((test_val + test_diff), test_val, 1));
|
|
xlnt_assert(xlnt::detail::float_equals<float>(test_val, (test_val + test_diff), 1));
|
|
xlnt_assert(xlnt::detail::float_equals<float>(-(test_val + test_diff), -test_val, 1));
|
|
xlnt_assert(xlnt::detail::float_equals<float>(-test_val, -(test_val + test_diff), 1));
|
|
// test_diff_fails
|
|
xlnt_assert(!xlnt::detail::float_equals<float>((test_val + test_diff_fails), test_val, 1));
|
|
xlnt_assert(!xlnt::detail::float_equals<float>(test_val, (test_val + test_diff_fails), 1));
|
|
xlnt_assert(!xlnt::detail::float_equals<float>(-(test_val + test_diff_fails), -test_val, 1));
|
|
xlnt_assert(!xlnt::detail::float_equals<float>(-test_val, -(test_val + test_diff_fails), 1));
|
|
}
|
|
|
|
void test_min()
|
|
{
|
|
// simple
|
|
xlnt_assert(xlnt::detail::min(0, 1) == 0);
|
|
xlnt_assert(xlnt::detail::min(1, 0) == 0);
|
|
xlnt_assert(xlnt::detail::min(0.0, 1) == 0.0); // comparisons between different types just work
|
|
xlnt_assert(xlnt::detail::min(1, 0.0) == 0.0);
|
|
// negative numbers
|
|
xlnt_assert(xlnt::detail::min(0, -1) == -1.0);
|
|
xlnt_assert(xlnt::detail::min(-1, 0) == -1.0);
|
|
xlnt_assert(xlnt::detail::min(0.0, -1) == -1.0);
|
|
xlnt_assert(xlnt::detail::min(-1, 0.0) == -1.0);
|
|
// no zeroes
|
|
xlnt_assert(xlnt::detail::min(10, -10) == -10.0);
|
|
xlnt_assert(xlnt::detail::min(-10, 10) == -10.0);
|
|
xlnt_assert(xlnt::detail::min(10.0, -10) == -10.0);
|
|
xlnt_assert(xlnt::detail::min(-10, 10.0) == -10.0);
|
|
|
|
static_assert(xlnt::detail::min(-10, 10.0) == -10.0, "constexpr");
|
|
}
|
|
|
|
void test_max()
|
|
{
|
|
// simple
|
|
xlnt_assert(xlnt::detail::max(0, 1) == 1);
|
|
xlnt_assert(xlnt::detail::max(1, 0) == 1);
|
|
xlnt_assert(xlnt::detail::max(0.0, 1) == 1.0); // comparisons between different types just work
|
|
xlnt_assert(xlnt::detail::max(1, 0.0) == 1.0);
|
|
// negative numbers
|
|
xlnt_assert(xlnt::detail::max(0, -1) == 0.0);
|
|
xlnt_assert(xlnt::detail::max(-1, 0) == 0.0);
|
|
xlnt_assert(xlnt::detail::max(0.0, -1) == 0.0);
|
|
xlnt_assert(xlnt::detail::max(-1, 0.0) == 0.0);
|
|
// no zeroes
|
|
xlnt_assert(xlnt::detail::max(10, -10) == 10.0);
|
|
xlnt_assert(xlnt::detail::max(-10, 10) == 10.0);
|
|
xlnt_assert(xlnt::detail::max(10.0, -10) == 10.0);
|
|
xlnt_assert(xlnt::detail::max(-10, 10.0) == 10.0);
|
|
|
|
static_assert(xlnt::detail::max(-10, 10.0) == 10.0, "constexpr");
|
|
}
|
|
|
|
void test_abs()
|
|
{
|
|
xlnt_assert(xlnt::detail::abs(0) == 0);
|
|
xlnt_assert(xlnt::detail::abs(1) == 1);
|
|
xlnt_assert(xlnt::detail::abs(-1) == 1);
|
|
|
|
xlnt_assert(xlnt::detail::abs(0.0) == 0.0);
|
|
xlnt_assert(xlnt::detail::abs(1.5) == 1.5);
|
|
xlnt_assert(xlnt::detail::abs(-1.5) == 1.5);
|
|
|
|
static_assert(xlnt::detail::abs(-1.23) == 1.23, "constexpr");
|
|
}
|
|
};
|
|
static numeric_test_suite x;
|