mirror of
https://github.com/tfussell/xlnt.git
synced 2024-03-22 13:11:17 +08:00
725 lines
23 KiB
C++
725 lines
23 KiB
C++
#ifdef CRYPTO_ENABLED
|
|
|
|
#include <array>
|
|
#include <pole.h>
|
|
#include <include_libstudxml.hpp>
|
|
#include <nss.h>
|
|
#include <pk11pub.h>
|
|
#include <sechash.h>
|
|
|
|
#include <detail/xlsx_consumer.hpp>
|
|
#include <xlnt/utils/exceptions.hpp>
|
|
#include <xlnt/workbook/workbook.hpp>
|
|
|
|
namespace xlnt {
|
|
namespace detail {
|
|
|
|
static const std::size_t segment_length = 4096;
|
|
|
|
enum class cipher_algorithm
|
|
{
|
|
aes,
|
|
rc2,
|
|
rc4,
|
|
des,
|
|
desx,
|
|
triple_des,
|
|
triple_des_112
|
|
};
|
|
|
|
enum class cipher_chaining
|
|
{
|
|
ecb, // electronic code book
|
|
cbc, // cipher block chaining
|
|
cfb // cipher feedback chaining
|
|
};
|
|
|
|
enum class hash_algorithm
|
|
{
|
|
sha1,
|
|
sha256,
|
|
sha384,
|
|
sha512,
|
|
md5,
|
|
md4,
|
|
md2,
|
|
ripemd128,
|
|
ripemd160,
|
|
whirlpool
|
|
};
|
|
|
|
std::vector<std::uint8_t> rijndael_ecb_decrypt(std::vector<std::uint8_t> key,
|
|
const std::vector<std::uint8_t> &encrypted)
|
|
{
|
|
static const CK_MECHANISM_TYPE mechanism = CKM_AES_ECB;
|
|
static const CK_ATTRIBUTE_TYPE direction = CKA_DECRYPT;
|
|
|
|
// IV (null)
|
|
auto nss_iv_param = PK11_ParamFromIV(mechanism, nullptr);
|
|
|
|
// key
|
|
SECItem nss_key_item{ siBuffer, key.data(), static_cast<unsigned int>(key.size()) };
|
|
auto nss_key = PK11_ImportSymKey(PK11_GetBestSlot(mechanism, nullptr),
|
|
mechanism, PK11_OriginUnwrap, direction, &nss_key_item, nullptr);
|
|
|
|
// context
|
|
auto nss_context = PK11_CreateContextBySymKey(mechanism, direction, nss_key, nss_iv_param);
|
|
|
|
// decrypt
|
|
std::vector<std::uint8_t> decrypted(encrypted.size(), 0);
|
|
int output_length;
|
|
PK11_CipherOp(nss_context, decrypted.data(), &output_length,
|
|
static_cast<int>(encrypted.size()), encrypted.data(),
|
|
static_cast<int>(encrypted.size()));
|
|
|
|
// clean up
|
|
PK11_DestroyContext(nss_context, PR_TRUE);
|
|
PK11_FreeSymKey(nss_key);
|
|
SECITEM_FreeItem(nss_iv_param, PR_TRUE);
|
|
|
|
return decrypted;
|
|
}
|
|
|
|
std::vector<std::uint8_t> rijndael_cbc_decrypt(std::vector<std::uint8_t> key,
|
|
std::vector<std::uint8_t> iv, const std::vector<std::uint8_t> &encrypted)
|
|
{
|
|
static const CK_MECHANISM_TYPE mechanism = CKM_AES_CBC;
|
|
static const CK_ATTRIBUTE_TYPE direction = CKA_DECRYPT;
|
|
|
|
// IV
|
|
SECItem nss_iv_item{ siBuffer, iv.data(),
|
|
static_cast<unsigned int>(iv.size()) };
|
|
auto nss_iv_param = PK11_ParamFromIV(mechanism, &nss_iv_item);
|
|
|
|
// key
|
|
SECItem nss_key_item{ siBuffer, key.data(),
|
|
static_cast<unsigned int>(key.size()) };
|
|
auto nss_key = PK11_ImportSymKey(PK11_GetBestSlot(mechanism, nullptr),
|
|
mechanism, PK11_OriginUnwrap, direction, &nss_key_item, nullptr);
|
|
|
|
// context
|
|
auto nss_context = PK11_CreateContextBySymKey(mechanism, direction, nss_key, nss_iv_param);
|
|
|
|
// decrypt
|
|
std::vector<std::uint8_t> decrypted(encrypted.size(), 0);
|
|
int output_length;
|
|
PK11_CipherOp(nss_context, decrypted.data(), &output_length,
|
|
static_cast<int>(encrypted.size()), encrypted.data(),
|
|
static_cast<int>(encrypted.size()));
|
|
|
|
// clean up
|
|
PK11_DestroyContext(nss_context, PR_TRUE);
|
|
PK11_FreeSymKey(nss_key);
|
|
SECITEM_FreeItem(nss_iv_param, PR_TRUE);
|
|
|
|
return decrypted;
|
|
};
|
|
|
|
// Adapted from https://en.wikibooks.org/wiki/Algorithm_Implementation/Miscellaneous/Base64
|
|
// This function is public domain
|
|
std::vector<std::uint8_t> decode_base64(const std::string &encoded)
|
|
{
|
|
if (encoded.length() % 4)
|
|
{
|
|
throw xlnt::exception("invalid base64");
|
|
}
|
|
|
|
std::size_t padding = 0;
|
|
|
|
if (!encoded.empty())
|
|
{
|
|
if (encoded[encoded.length() - 1] == '=') padding++;
|
|
if (encoded[encoded.length() - 2] == '=') padding++;
|
|
}
|
|
|
|
std::vector<std::uint8_t> decoded(((encoded.length() / 4) * 3) - padding, 0);
|
|
auto decoded_iter = decoded.begin();
|
|
|
|
std::uint32_t temp = 0;
|
|
|
|
for (auto encoded_iter = encoded.begin(); encoded_iter != encoded.end();)
|
|
{
|
|
for (std::size_t quantumPosition = 0; quantumPosition < 4; quantumPosition++)
|
|
{
|
|
auto current_char = *encoded_iter;
|
|
temp <<= 6;
|
|
|
|
// convert character into index from 0 to 63
|
|
if (current_char >= 'A' && current_char <= 'Z')
|
|
{
|
|
temp |= current_char - 'A';
|
|
}
|
|
else if (current_char >= 'a' && current_char <= 'z')
|
|
{
|
|
temp |= current_char - 71;
|
|
}
|
|
else if (current_char >= '0' && current_char <= '9')
|
|
{
|
|
temp |= current_char + 4;
|
|
}
|
|
else if (current_char == '+')
|
|
{
|
|
temp |= 62;
|
|
}
|
|
else if (current_char == '/')
|
|
{
|
|
temp |= 63;
|
|
}
|
|
else if (current_char == '=')
|
|
{
|
|
switch (encoded.end() - encoded_iter)
|
|
{
|
|
case 1: // one pad character
|
|
*(decoded_iter++) = (temp >> 16) & 0x000000ff;
|
|
*(decoded_iter++) = (temp >> 8) & 0x000000ff;
|
|
return decoded;
|
|
case 2: // two pad characters
|
|
*(decoded_iter++) = (temp >> 10) & 0x000000ff;
|
|
return decoded;
|
|
default:
|
|
throw std::runtime_error("Invalid Padding in Base 64!");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
throw std::runtime_error("Non-Valid Character in Base 64!");
|
|
}
|
|
|
|
++encoded_iter;
|
|
}
|
|
|
|
// split lower 24 bits into 3 bytes
|
|
*(decoded_iter++) = (temp >> 16) & 0x000000FF;
|
|
*(decoded_iter++) = (temp >> 8) & 0x000000FF;
|
|
*(decoded_iter++) = (temp) & 0x000000FF;
|
|
}
|
|
|
|
return decoded;
|
|
};
|
|
|
|
std::vector<std::uint8_t> get_file(POLE::Storage &storage, const std::string &name)
|
|
{
|
|
POLE::Stream stream(&storage, name.c_str());
|
|
if (stream.fail()) return {};
|
|
std::vector<std::uint8_t> bytes(stream.size(), 0);
|
|
stream.read(bytes.data(), static_cast<unsigned long>(bytes.size()));
|
|
return bytes;
|
|
}
|
|
|
|
template<typename InIter>
|
|
std::vector<std::uint8_t> hash(hash_algorithm algorithm, InIter begin, InIter end)
|
|
{
|
|
HASH_HashType hash_type = HASH_HashType::HASH_AlgNULL;
|
|
std::size_t out_length = 0;
|
|
|
|
if (algorithm == hash_algorithm::sha1)
|
|
{
|
|
hash_type = HASH_HashType::HASH_AlgSHA1;
|
|
out_length = SHA1_LENGTH;
|
|
}
|
|
else if (algorithm == hash_algorithm::sha512)
|
|
{
|
|
hash_type = HASH_HashType::HASH_AlgSHA512;
|
|
out_length = SHA512_LENGTH;
|
|
}
|
|
else if (algorithm == hash_algorithm::sha256)
|
|
{
|
|
hash_type = HASH_HashType::HASH_AlgSHA256;
|
|
out_length = SHA256_LENGTH;
|
|
}
|
|
else if (algorithm == hash_algorithm::sha384)
|
|
{
|
|
hash_type = HASH_HashType::HASH_AlgSHA384;
|
|
out_length = SHA384_LENGTH;
|
|
}
|
|
|
|
auto context = HASH_Create(hash_type);
|
|
HASH_Begin(context);
|
|
std::vector<std::uint8_t> input(begin, end);
|
|
HASH_Update(context, input.data(), static_cast<unsigned int>(input.size()));
|
|
unsigned int write_length;
|
|
std::vector<std::uint8_t> result(out_length, 0);
|
|
HASH_End(context, result.data(), &write_length, static_cast<unsigned int>(out_length));
|
|
HASH_Destroy(context);
|
|
|
|
return result;
|
|
}
|
|
|
|
template<typename T>
|
|
auto read_int(std::size_t &index, const std::vector<std::uint8_t> &raw_data)
|
|
{
|
|
auto result = *reinterpret_cast<const T *>(&raw_data[index]);
|
|
index += sizeof(T);
|
|
return result;
|
|
};
|
|
|
|
struct standard_encryption_info
|
|
{
|
|
const std::size_t spin_count = 50000;
|
|
std::size_t block_size;
|
|
std::size_t key_bits;
|
|
std::size_t key_bytes;
|
|
std::size_t hash_size;
|
|
cipher_algorithm cipher;
|
|
cipher_chaining chaining;
|
|
const hash_algorithm hash = hash_algorithm::sha1;
|
|
std::vector<std::uint8_t> salt_value;
|
|
std::vector<std::uint8_t> verifier_hash_input;
|
|
std::vector<std::uint8_t> verifier_hash_value;
|
|
std::vector<std::uint8_t> encrypted_key_value;
|
|
};
|
|
|
|
std::vector<std::uint8_t> decrypt_xlsx_standard(const std::vector<std::uint8_t> &encryption_info,
|
|
const std::string &password, const std::vector<std::uint8_t> &encrypted_package)
|
|
{
|
|
std::size_t offset = 0;
|
|
|
|
standard_encryption_info info;
|
|
|
|
auto header_length = read_int<std::uint32_t>(offset, encryption_info);
|
|
auto index_at_start = offset;
|
|
auto skip_flags = read_int<std::uint32_t>(offset, encryption_info);
|
|
auto size_extra = read_int<std::uint32_t>(offset, encryption_info);
|
|
auto alg_id = read_int<std::uint32_t>(offset, encryption_info);
|
|
|
|
if (alg_id == 0 || alg_id == 0x0000660E || alg_id == 0x0000660F || alg_id == 0x00006610)
|
|
{
|
|
info.cipher = cipher_algorithm::aes;
|
|
}
|
|
else
|
|
{
|
|
throw xlnt::exception("invalid cipher algorithm");
|
|
}
|
|
|
|
auto alg_id_hash = read_int<std::uint32_t>(offset, encryption_info);
|
|
if (alg_id_hash != 0x00008004 && alg_id_hash == 0)
|
|
{
|
|
throw xlnt::exception("invalid hash algorithm");
|
|
}
|
|
|
|
info.key_bits = read_int<std::uint32_t>(offset, encryption_info);
|
|
info.key_bytes = info.key_bits / 8;
|
|
|
|
auto provider_type = read_int<std::uint32_t>(offset, encryption_info);
|
|
if (provider_type != 0 && provider_type != 0x00000018)
|
|
{
|
|
throw xlnt::exception("invalid provider type");
|
|
}
|
|
|
|
read_int<std::uint32_t>(offset, encryption_info); // reserved 1
|
|
if (read_int<std::uint32_t>(offset, encryption_info) != 0) // reserved 2
|
|
{
|
|
throw xlnt::exception("invalid header");
|
|
}
|
|
|
|
const auto csp_name_length = header_length - (offset - index_at_start);
|
|
std::vector<std::uint16_t> csp_name_wide(
|
|
reinterpret_cast<const std::uint16_t *>(&*(encryption_info.begin() + offset)),
|
|
reinterpret_cast<const std::uint16_t *>(&*(encryption_info.begin() + offset + csp_name_length)));
|
|
std::string csp_name(csp_name_wide.begin(), csp_name_wide.end() - 1); // without trailing null
|
|
if (csp_name != "Microsoft Enhanced RSA and AES Cryptographic Provider (Prototype)"
|
|
&& csp_name != "Microsoft Enhanced RSA and AES Cryptographic Provider")
|
|
{
|
|
throw xlnt::exception("invalid cryptographic provider");
|
|
}
|
|
offset += csp_name_length;
|
|
|
|
const auto salt_size = read_int<std::uint32_t>(offset, encryption_info);
|
|
std::vector<std::uint8_t> salt(encryption_info.begin() + offset,
|
|
encryption_info.begin() + offset + salt_size);
|
|
offset += salt_size;
|
|
|
|
static const auto verifier_size = std::size_t(16);
|
|
std::vector<std::uint8_t> verifier_hash_input(encryption_info.begin() + offset,
|
|
encryption_info.begin() + offset + verifier_size);
|
|
offset += verifier_size;
|
|
|
|
const auto verifier_hash_size = read_int<std::uint32_t>(offset, encryption_info);
|
|
std::vector<std::uint8_t> verifier_hash_value(encryption_info.begin() + offset,
|
|
encryption_info.begin() + offset + 32);
|
|
offset += verifier_hash_size;
|
|
|
|
// begin key generation algorithm
|
|
|
|
// H_0 = H(salt + password)
|
|
auto salt_plus_password = salt;
|
|
std::vector<std::uint16_t> password_wide(password.begin(), password.end());
|
|
std::for_each(password_wide.begin(), password_wide.end(),
|
|
[&salt_plus_password](std::uint16_t c)
|
|
{
|
|
salt_plus_password.insert(salt_plus_password.end(),
|
|
reinterpret_cast<char *>(&c),
|
|
reinterpret_cast<char *>(&c) + sizeof(std::uint16_t));
|
|
});
|
|
std::vector<std::uint8_t> h_0 = hash(info.hash,
|
|
salt_plus_password.begin(), salt_plus_password.end());
|
|
|
|
// H_n = H(iterator + H_n-1)
|
|
std::vector<std::uint8_t> iterator_plus_h_n(4, 0);
|
|
iterator_plus_h_n.insert(iterator_plus_h_n.end(), h_0.begin(), h_0.end());
|
|
std::uint32_t &iterator = *reinterpret_cast<std::uint32_t *>(iterator_plus_h_n.data());
|
|
std::vector<std::uint8_t> h_n;
|
|
for (iterator = 0; iterator < info.spin_count; ++iterator)
|
|
{
|
|
h_n = hash(info.hash, iterator_plus_h_n.begin(), iterator_plus_h_n.end());
|
|
std::copy(h_n.begin(), h_n.end(), iterator_plus_h_n.begin() + 4);
|
|
}
|
|
|
|
// H_final = H(H_n + block)
|
|
auto h_n_plus_block = h_n;
|
|
const std::uint32_t block_number = 0;
|
|
h_n_plus_block.insert(h_n_plus_block.end(),
|
|
reinterpret_cast<const std::uint8_t *>(&block_number),
|
|
reinterpret_cast<const std::uint8_t *>(&block_number) + sizeof(std::uint32_t));
|
|
auto h_final = hash(info.hash, h_n_plus_block.begin(), h_n_plus_block.end());
|
|
|
|
// X1 = H(h_final ^ 0x36)
|
|
std::vector<std::uint8_t> buffer(64, 0x36);
|
|
for (std::size_t i = 0; i < h_final.size(); ++i)
|
|
{
|
|
buffer[i] = static_cast<std::uint8_t>(0x36 ^ h_final[i]);
|
|
}
|
|
auto X1 = hash(info.hash, buffer.begin(), buffer.end());
|
|
|
|
// X2 = H(h_final ^ 0x5C)
|
|
buffer.assign(64, 0x5c);
|
|
for (std::size_t i = 0; i < h_final.size(); ++i)
|
|
{
|
|
buffer[i] = static_cast<std::uint8_t>(0x5c ^ h_final[i]);
|
|
}
|
|
auto X2 = hash(info.hash, buffer.begin(), buffer.end());
|
|
|
|
auto X3 = X1;
|
|
X3.insert(X3.end(), X2.begin(), X2.end());
|
|
|
|
auto key_derived = std::vector<std::uint8_t>(X3.begin(), X3.begin() + info.key_bytes);
|
|
|
|
//todo: verify here
|
|
|
|
std::vector<std::uint8_t> encrypted_data(encrypted_package.begin() + 8, encrypted_package.end());
|
|
return rijndael_ecb_decrypt(key_derived, encrypted_data);
|
|
}
|
|
|
|
|
|
struct agile_encryption_info
|
|
{
|
|
// key data
|
|
struct
|
|
{
|
|
std::size_t salt_size;
|
|
std::size_t block_size;
|
|
std::size_t key_bits;
|
|
std::size_t hash_size;
|
|
std::string cipher_algorithm;
|
|
std::string cipher_chaining;
|
|
std::string hash_algorithm;
|
|
std::vector<std::uint8_t> salt_value;
|
|
} key_data;
|
|
|
|
struct
|
|
{
|
|
std::vector<std::uint8_t> hmac_key;
|
|
std::vector<std::uint8_t> hmac_value;
|
|
} data_integrity;
|
|
|
|
struct
|
|
{
|
|
std::size_t spin_count;
|
|
std::size_t salt_size;
|
|
std::size_t block_size;
|
|
std::size_t key_bits;
|
|
std::size_t hash_size;
|
|
std::string cipher_algorithm;
|
|
std::string cipher_chaining;
|
|
hash_algorithm hash_algorithm;
|
|
std::vector<std::uint8_t> salt_value;
|
|
std::vector<std::uint8_t> verifier_hash_input;
|
|
std::vector<std::uint8_t> verifier_hash_value;
|
|
std::vector<std::uint8_t> encrypted_key_value;
|
|
} key_encryptor;
|
|
};
|
|
|
|
std::vector<std::uint8_t> decrypt_xlsx_agile(const std::vector<std::uint8_t> &encryption_info,
|
|
const std::string &password, const std::vector<std::uint8_t> &encrypted_package)
|
|
{
|
|
static const auto xmlns = std::string("http://schemas.microsoft.com/office/2006/encryption");
|
|
static const auto xmlns_p = std::string("http://schemas.microsoft.com/office/2006/keyEncryptor/password");
|
|
static const auto xmlns_c = std::string("http://schemas.microsoft.com/office/2006/keyEncryptor/certificate");
|
|
|
|
agile_encryption_info result;
|
|
|
|
xml::parser parser(encryption_info.data(), encryption_info.size(), "EncryptionInfo");
|
|
|
|
parser.next_expect(xml::parser::event_type::start_element, xmlns, "encryption");
|
|
|
|
parser.next_expect(xml::parser::event_type::start_element, xmlns, "keyData");
|
|
result.key_data.salt_size = parser.attribute<std::size_t>("saltSize");
|
|
result.key_data.block_size = parser.attribute<std::size_t>("blockSize");
|
|
result.key_data.key_bits = parser.attribute<std::size_t>("keyBits");
|
|
result.key_data.hash_size = parser.attribute<std::size_t>("hashSize");
|
|
result.key_data.cipher_algorithm = parser.attribute("cipherAlgorithm");
|
|
result.key_data.cipher_chaining = parser.attribute("cipherChaining");
|
|
result.key_data.hash_algorithm = parser.attribute("hashAlgorithm");
|
|
result.key_data.salt_value = decode_base64(parser.attribute("saltValue"));
|
|
parser.next_expect(xml::parser::event_type::end_element, xmlns, "keyData");
|
|
|
|
parser.next_expect(xml::parser::event_type::start_element, xmlns, "dataIntegrity");
|
|
result.data_integrity.hmac_key = decode_base64(parser.attribute("encryptedHmacKey"));
|
|
result.data_integrity.hmac_value = decode_base64(parser.attribute("encryptedHmacValue"));
|
|
parser.next_expect(xml::parser::event_type::end_element, xmlns, "dataIntegrity");
|
|
|
|
parser.next_expect(xml::parser::event_type::start_element, xmlns, "keyEncryptors");
|
|
parser.next_expect(xml::parser::event_type::start_element, xmlns, "keyEncryptor");
|
|
parser.attribute("uri");
|
|
bool any_password_key = false;
|
|
|
|
while (parser.peek() != xml::parser::event_type::end_element)
|
|
{
|
|
parser.next_expect(xml::parser::event_type::start_element);
|
|
|
|
if (parser.namespace_() == xmlns_p && parser.name() == "encryptedKey")
|
|
{
|
|
any_password_key = true;
|
|
result.key_encryptor.spin_count = parser.attribute<std::size_t>("spinCount");
|
|
result.key_encryptor.salt_size = parser.attribute<std::size_t>("saltSize");
|
|
result.key_encryptor.block_size = parser.attribute<std::size_t>("blockSize");
|
|
result.key_encryptor.key_bits = parser.attribute<std::size_t>("keyBits");
|
|
result.key_encryptor.hash_size = parser.attribute<std::size_t>("hashSize");
|
|
result.key_encryptor.cipher_algorithm = parser.attribute("cipherAlgorithm");
|
|
result.key_encryptor.cipher_chaining = parser.attribute("cipherChaining");
|
|
|
|
auto hash_algorithm_string = parser.attribute("hashAlgorithm");
|
|
if (hash_algorithm_string == "SHA512")
|
|
{
|
|
result.key_encryptor.hash_algorithm = hash_algorithm::sha512;
|
|
}
|
|
else if (hash_algorithm_string == "SHA1")
|
|
{
|
|
result.key_encryptor.hash_algorithm = hash_algorithm::sha1;
|
|
}
|
|
else if (hash_algorithm_string == "SHA256")
|
|
{
|
|
result.key_encryptor.hash_algorithm = hash_algorithm::sha256;
|
|
}
|
|
else if (hash_algorithm_string == "SHA384")
|
|
{
|
|
result.key_encryptor.hash_algorithm = hash_algorithm::sha384;
|
|
}
|
|
|
|
result.key_encryptor.salt_value = decode_base64(parser.attribute("saltValue"));
|
|
result.key_encryptor.verifier_hash_input = decode_base64(parser.attribute("encryptedVerifierHashInput"));
|
|
result.key_encryptor.verifier_hash_value = decode_base64(parser.attribute("encryptedVerifierHashValue"));
|
|
result.key_encryptor.encrypted_key_value = decode_base64(parser.attribute("encryptedKeyValue"));
|
|
}
|
|
else
|
|
{
|
|
throw xlnt::unsupported("other encryption key types not supported");
|
|
}
|
|
|
|
parser.next_expect(xml::parser::event_type::end_element);
|
|
}
|
|
|
|
if (!any_password_key)
|
|
{
|
|
throw "no password key in keyEncryptors";
|
|
}
|
|
|
|
parser.next_expect(xml::parser::event_type::end_element, xmlns, "keyEncryptor");
|
|
parser.next_expect(xml::parser::event_type::end_element, xmlns, "keyEncryptors");
|
|
|
|
parser.next_expect(xml::parser::event_type::end_element, xmlns, "encryption");
|
|
|
|
|
|
// begin key generation algorithm
|
|
|
|
// H_0 = H(salt + password)
|
|
auto salt_plus_password = result.key_encryptor.salt_value;
|
|
std::vector<std::uint16_t> password_wide(password.begin(), password.end());
|
|
std::for_each(password_wide.begin(), password_wide.end(),
|
|
[&salt_plus_password](std::uint16_t c)
|
|
{
|
|
salt_plus_password.insert(salt_plus_password.end(),
|
|
reinterpret_cast<char *>(&c),
|
|
reinterpret_cast<char *>(&c) + sizeof(std::uint16_t));
|
|
});
|
|
std::vector<std::uint8_t> h_0 = hash(result.key_encryptor.hash_algorithm,
|
|
salt_plus_password.begin(), salt_plus_password.end());
|
|
|
|
// H_n = H(iterator + H_n-1)
|
|
std::vector<std::uint8_t> iterator_plus_h_n(4, 0);
|
|
iterator_plus_h_n.insert(iterator_plus_h_n.end(), h_0.begin(), h_0.end());
|
|
std::uint32_t &iterator = *reinterpret_cast<std::uint32_t *>(iterator_plus_h_n.data());
|
|
std::vector<std::uint8_t> h_n;
|
|
for (iterator = 0; iterator < result.key_encryptor.spin_count; ++iterator)
|
|
{
|
|
h_n = hash(result.key_encryptor.hash_algorithm,
|
|
iterator_plus_h_n.begin(), iterator_plus_h_n.end());
|
|
std::copy(h_n.begin(), h_n.end(), iterator_plus_h_n.begin() + 4);
|
|
}
|
|
|
|
static const std::size_t block_size = 8;
|
|
|
|
auto calculate_block = [&result](
|
|
const std::vector<std::uint8_t> &raw_key,
|
|
const std::array<std::uint8_t, block_size> &block,
|
|
const std::vector<std::uint8_t> &encrypted)
|
|
{
|
|
auto combined = raw_key;
|
|
combined.insert(combined.end(), block.begin(), block.end());
|
|
auto key = hash(result.key_encryptor.hash_algorithm, combined.begin(), combined.end());
|
|
key.resize(result.key_encryptor.key_bits / 8);
|
|
return rijndael_cbc_decrypt(key, result.key_encryptor.salt_value, encrypted);
|
|
};
|
|
|
|
const std::array<std::uint8_t, block_size> input_block_key
|
|
= { 0xfe, 0xa7, 0xd2, 0x76, 0x3b, 0x4b, 0x9e, 0x79 };
|
|
auto hash_input = calculate_block(h_n, input_block_key,
|
|
result.key_encryptor.verifier_hash_input);
|
|
auto calculated_verifier = hash(result.key_encryptor.hash_algorithm,
|
|
hash_input.begin(), hash_input.end());
|
|
|
|
const std::array<std::uint8_t, block_size> verifier_block_key
|
|
= { 0xd7, 0xaa, 0x0f, 0x6d, 0x30, 0x61, 0x34, 0x4e };
|
|
auto expected_verifier = calculate_block(h_n, verifier_block_key,
|
|
result.key_encryptor.verifier_hash_value);
|
|
|
|
if (calculated_verifier.size() != expected_verifier.size()
|
|
|| std::mismatch(calculated_verifier.begin(), calculated_verifier.end(),
|
|
expected_verifier.begin(), expected_verifier.end())
|
|
!= std::make_pair(calculated_verifier.end(), expected_verifier.end()))
|
|
{
|
|
throw xlnt::exception("bad password");
|
|
}
|
|
|
|
const std::array<std::uint8_t, block_size> key_value_block_key
|
|
= { 0x14, 0x6e, 0x0b, 0xe7, 0xab, 0xac, 0xd0, 0xd6 };
|
|
auto key = calculate_block(h_n, key_value_block_key,
|
|
result.key_encryptor.encrypted_key_value);
|
|
|
|
auto salt_size = result.key_data.salt_size;
|
|
auto salt_with_block_key = result.key_data.salt_value;
|
|
salt_with_block_key.resize(salt_size + sizeof(std::uint32_t), 0);
|
|
|
|
auto &segment = *reinterpret_cast<std::uint32_t *>(salt_with_block_key.data() + salt_size);
|
|
auto total_size = *reinterpret_cast<const std::uint64_t *>(encrypted_package.data());
|
|
|
|
std::vector<std::uint8_t> encrypted_segment(segment_length, 0);
|
|
std::vector<std::uint8_t> decrypted_package;
|
|
decrypted_package.reserve(encrypted_package.size() - 8);
|
|
|
|
for (std::size_t i = 8; i < encrypted_package.size(); i += segment_length)
|
|
{
|
|
auto iv = hash(result.key_encryptor.hash_algorithm,
|
|
salt_with_block_key.begin(), salt_with_block_key.end());
|
|
iv.resize(32);
|
|
|
|
auto decrypted_segment = rijndael_cbc_decrypt(key, iv, std::vector<std::uint8_t>(
|
|
encrypted_package.begin() + i, encrypted_package.begin() + i + segment_length));
|
|
decrypted_package.insert(decrypted_package.end(),
|
|
decrypted_segment.begin(), decrypted_segment.end());
|
|
|
|
++segment;
|
|
}
|
|
|
|
decrypted_package.resize(total_size);
|
|
|
|
return decrypted_package;
|
|
}
|
|
|
|
std::vector<std::uint8_t> decrypt_xlsx(const std::vector<std::uint8_t> &bytes, const std::string &password)
|
|
{
|
|
// nss has checks for re-initialization, but there might be some overhead
|
|
static bool nss_initialized = false;
|
|
|
|
if (!nss_initialized)
|
|
{
|
|
NSS_NoDB_Init(nullptr);
|
|
nss_initialized = true;
|
|
}
|
|
|
|
if (bytes.empty())
|
|
{
|
|
throw xlnt::exception("empty file");
|
|
}
|
|
|
|
std::vector<char> as_chars(bytes.begin(), bytes.end());
|
|
POLE::Storage storage(as_chars.data(), static_cast<unsigned long>(bytes.size()));
|
|
|
|
if (!storage.open())
|
|
{
|
|
throw xlnt::exception("not an ole compound file");
|
|
}
|
|
|
|
auto encrypted_package = get_file(storage, "EncryptedPackage");
|
|
auto encryption_info = get_file(storage, "EncryptionInfo");
|
|
|
|
std::size_t index = 0;
|
|
|
|
auto version_major = read_int<std::uint16_t>(index, encryption_info);
|
|
auto version_minor = read_int<std::uint16_t>(index, encryption_info);
|
|
auto encryption_flags = read_int<std::uint32_t>(index, encryption_info);
|
|
|
|
// get rid of header
|
|
encryption_info.erase(encryption_info.begin(), encryption_info.begin() + index);
|
|
|
|
// version 4.4 is agile
|
|
if (version_major == 4 && version_minor == 4)
|
|
{
|
|
if (encryption_flags != 0x40)
|
|
{
|
|
throw xlnt::exception("bad header");
|
|
}
|
|
|
|
return decrypt_xlsx_agile(encryption_info, password, encrypted_package);
|
|
}
|
|
|
|
// not agile, only try to decrypt versions 3.2 and 4.2
|
|
if (version_minor != 2
|
|
|| (version_major != 2 && version_major != 3 && version_major != 4))
|
|
{
|
|
throw xlnt::exception("unsupported encryption version");
|
|
}
|
|
|
|
if ((encryption_flags & 0b00000011) != 0) // Reserved1 and Reserved2, MUST be 0
|
|
{
|
|
throw xlnt::exception("bad header");
|
|
}
|
|
|
|
if ((encryption_flags & 0b00000100) == 0 // fCryptoAPI
|
|
|| (encryption_flags & 0b00010000) != 0) // fExternal
|
|
{
|
|
throw xlnt::exception("extensible encryption is not supported");
|
|
}
|
|
|
|
if ((encryption_flags & 0b00100000) == 0) // fAES
|
|
{
|
|
throw xlnt::exception("not an OOXML document");
|
|
}
|
|
|
|
return decrypt_xlsx_standard(encryption_info, password, encrypted_package);
|
|
}
|
|
|
|
void xlsx_consumer::read(const std::vector<std::uint8_t> &source, const std::string &password)
|
|
{
|
|
source_.load(decrypt_xlsx(source, password));
|
|
populate_workbook();
|
|
}
|
|
|
|
void xlsx_consumer::read(std::istream &source, const std::string &password)
|
|
{
|
|
std::vector<std::uint8_t> data((std::istreambuf_iterator<char>(source)),
|
|
std::istreambuf_iterator<char>());
|
|
return read(data, password);
|
|
}
|
|
|
|
void xlsx_consumer::read(const path &source, const std::string &password)
|
|
{
|
|
std::ifstream file_stream(source.string(), std::iostream::binary);
|
|
return read(file_stream, password);
|
|
}
|
|
|
|
} // namespace detail
|
|
} // namespace xlnt
|
|
|
|
#endif
|