xlnt/source/detail/xlsx_crypto.cpp
2016-10-23 22:40:05 -04:00

725 lines
23 KiB
C++

#ifdef CRYPTO_ENABLED
#include <array>
#include <pole.h>
#include <include_libstudxml.hpp>
#include <nss.h>
#include <pk11pub.h>
#include <sechash.h>
#include <detail/xlsx_consumer.hpp>
#include <xlnt/utils/exceptions.hpp>
#include <xlnt/workbook/workbook.hpp>
namespace xlnt {
namespace detail {
static const std::size_t segment_length = 4096;
enum class cipher_algorithm
{
aes,
rc2,
rc4,
des,
desx,
triple_des,
triple_des_112
};
enum class cipher_chaining
{
ecb, // electronic code book
cbc, // cipher block chaining
cfb // cipher feedback chaining
};
enum class hash_algorithm
{
sha1,
sha256,
sha384,
sha512,
md5,
md4,
md2,
ripemd128,
ripemd160,
whirlpool
};
std::vector<std::uint8_t> rijndael_ecb_decrypt(std::vector<std::uint8_t> key,
const std::vector<std::uint8_t> &encrypted)
{
static const CK_MECHANISM_TYPE mechanism = CKM_AES_ECB;
static const CK_ATTRIBUTE_TYPE direction = CKA_DECRYPT;
// IV (null)
auto nss_iv_param = PK11_ParamFromIV(mechanism, nullptr);
// key
SECItem nss_key_item{ siBuffer, key.data(), static_cast<unsigned int>(key.size()) };
auto nss_key = PK11_ImportSymKey(PK11_GetBestSlot(mechanism, nullptr),
mechanism, PK11_OriginUnwrap, direction, &nss_key_item, nullptr);
// context
auto nss_context = PK11_CreateContextBySymKey(mechanism, direction, nss_key, nss_iv_param);
// decrypt
std::vector<std::uint8_t> decrypted(encrypted.size(), 0);
int output_length;
PK11_CipherOp(nss_context, decrypted.data(), &output_length,
static_cast<int>(encrypted.size()), encrypted.data(),
static_cast<int>(encrypted.size()));
// clean up
PK11_DestroyContext(nss_context, PR_TRUE);
PK11_FreeSymKey(nss_key);
SECITEM_FreeItem(nss_iv_param, PR_TRUE);
return decrypted;
}
std::vector<std::uint8_t> rijndael_cbc_decrypt(std::vector<std::uint8_t> key,
std::vector<std::uint8_t> iv, const std::vector<std::uint8_t> &encrypted)
{
static const CK_MECHANISM_TYPE mechanism = CKM_AES_CBC;
static const CK_ATTRIBUTE_TYPE direction = CKA_DECRYPT;
// IV
SECItem nss_iv_item{ siBuffer, iv.data(),
static_cast<unsigned int>(iv.size()) };
auto nss_iv_param = PK11_ParamFromIV(mechanism, &nss_iv_item);
// key
SECItem nss_key_item{ siBuffer, key.data(),
static_cast<unsigned int>(key.size()) };
auto nss_key = PK11_ImportSymKey(PK11_GetBestSlot(mechanism, nullptr),
mechanism, PK11_OriginUnwrap, direction, &nss_key_item, nullptr);
// context
auto nss_context = PK11_CreateContextBySymKey(mechanism, direction, nss_key, nss_iv_param);
// decrypt
std::vector<std::uint8_t> decrypted(encrypted.size(), 0);
int output_length;
PK11_CipherOp(nss_context, decrypted.data(), &output_length,
static_cast<int>(encrypted.size()), encrypted.data(),
static_cast<int>(encrypted.size()));
// clean up
PK11_DestroyContext(nss_context, PR_TRUE);
PK11_FreeSymKey(nss_key);
SECITEM_FreeItem(nss_iv_param, PR_TRUE);
return decrypted;
};
// Adapted from https://en.wikibooks.org/wiki/Algorithm_Implementation/Miscellaneous/Base64
// This function is public domain
std::vector<std::uint8_t> decode_base64(const std::string &encoded)
{
if (encoded.length() % 4)
{
throw xlnt::exception("invalid base64");
}
std::size_t padding = 0;
if (!encoded.empty())
{
if (encoded[encoded.length() - 1] == '=') padding++;
if (encoded[encoded.length() - 2] == '=') padding++;
}
std::vector<std::uint8_t> decoded(((encoded.length() / 4) * 3) - padding, 0);
auto decoded_iter = decoded.begin();
std::uint32_t temp = 0;
for (auto encoded_iter = encoded.begin(); encoded_iter != encoded.end();)
{
for (std::size_t quantumPosition = 0; quantumPosition < 4; quantumPosition++)
{
auto current_char = *encoded_iter;
temp <<= 6;
// convert character into index from 0 to 63
if (current_char >= 'A' && current_char <= 'Z')
{
temp |= current_char - 'A';
}
else if (current_char >= 'a' && current_char <= 'z')
{
temp |= current_char - 71;
}
else if (current_char >= '0' && current_char <= '9')
{
temp |= current_char + 4;
}
else if (current_char == '+')
{
temp |= 62;
}
else if (current_char == '/')
{
temp |= 63;
}
else if (current_char == '=')
{
switch (encoded.end() - encoded_iter)
{
case 1: // one pad character
*(decoded_iter++) = (temp >> 16) & 0x000000ff;
*(decoded_iter++) = (temp >> 8) & 0x000000ff;
return decoded;
case 2: // two pad characters
*(decoded_iter++) = (temp >> 10) & 0x000000ff;
return decoded;
default:
throw std::runtime_error("Invalid Padding in Base 64!");
}
}
else
{
throw std::runtime_error("Non-Valid Character in Base 64!");
}
++encoded_iter;
}
// split lower 24 bits into 3 bytes
*(decoded_iter++) = (temp >> 16) & 0x000000FF;
*(decoded_iter++) = (temp >> 8) & 0x000000FF;
*(decoded_iter++) = (temp) & 0x000000FF;
}
return decoded;
};
std::vector<std::uint8_t> get_file(POLE::Storage &storage, const std::string &name)
{
POLE::Stream stream(&storage, name.c_str());
if (stream.fail()) return {};
std::vector<std::uint8_t> bytes(stream.size(), 0);
stream.read(bytes.data(), static_cast<unsigned long>(bytes.size()));
return bytes;
}
template<typename InIter>
std::vector<std::uint8_t> hash(hash_algorithm algorithm, InIter begin, InIter end)
{
HASH_HashType hash_type = HASH_HashType::HASH_AlgNULL;
std::size_t out_length = 0;
if (algorithm == hash_algorithm::sha1)
{
hash_type = HASH_HashType::HASH_AlgSHA1;
out_length = SHA1_LENGTH;
}
else if (algorithm == hash_algorithm::sha512)
{
hash_type = HASH_HashType::HASH_AlgSHA512;
out_length = SHA512_LENGTH;
}
else if (algorithm == hash_algorithm::sha256)
{
hash_type = HASH_HashType::HASH_AlgSHA256;
out_length = SHA256_LENGTH;
}
else if (algorithm == hash_algorithm::sha384)
{
hash_type = HASH_HashType::HASH_AlgSHA384;
out_length = SHA384_LENGTH;
}
auto context = HASH_Create(hash_type);
HASH_Begin(context);
std::vector<std::uint8_t> input(begin, end);
HASH_Update(context, input.data(), static_cast<unsigned int>(input.size()));
unsigned int write_length;
std::vector<std::uint8_t> result(out_length, 0);
HASH_End(context, result.data(), &write_length, static_cast<unsigned int>(out_length));
HASH_Destroy(context);
return result;
}
template<typename T>
auto read_int(std::size_t &index, const std::vector<std::uint8_t> &raw_data)
{
auto result = *reinterpret_cast<const T *>(&raw_data[index]);
index += sizeof(T);
return result;
};
struct standard_encryption_info
{
const std::size_t spin_count = 50000;
std::size_t block_size;
std::size_t key_bits;
std::size_t key_bytes;
std::size_t hash_size;
cipher_algorithm cipher;
cipher_chaining chaining;
const hash_algorithm hash = hash_algorithm::sha1;
std::vector<std::uint8_t> salt_value;
std::vector<std::uint8_t> verifier_hash_input;
std::vector<std::uint8_t> verifier_hash_value;
std::vector<std::uint8_t> encrypted_key_value;
};
std::vector<std::uint8_t> decrypt_xlsx_standard(const std::vector<std::uint8_t> &encryption_info,
const std::string &password, const std::vector<std::uint8_t> &encrypted_package)
{
std::size_t offset = 0;
standard_encryption_info info;
auto header_length = read_int<std::uint32_t>(offset, encryption_info);
auto index_at_start = offset;
auto skip_flags = read_int<std::uint32_t>(offset, encryption_info);
auto size_extra = read_int<std::uint32_t>(offset, encryption_info);
auto alg_id = read_int<std::uint32_t>(offset, encryption_info);
if (alg_id == 0 || alg_id == 0x0000660E || alg_id == 0x0000660F || alg_id == 0x00006610)
{
info.cipher = cipher_algorithm::aes;
}
else
{
throw xlnt::exception("invalid cipher algorithm");
}
auto alg_id_hash = read_int<std::uint32_t>(offset, encryption_info);
if (alg_id_hash != 0x00008004 && alg_id_hash == 0)
{
throw xlnt::exception("invalid hash algorithm");
}
info.key_bits = read_int<std::uint32_t>(offset, encryption_info);
info.key_bytes = info.key_bits / 8;
auto provider_type = read_int<std::uint32_t>(offset, encryption_info);
if (provider_type != 0 && provider_type != 0x00000018)
{
throw xlnt::exception("invalid provider type");
}
read_int<std::uint32_t>(offset, encryption_info); // reserved 1
if (read_int<std::uint32_t>(offset, encryption_info) != 0) // reserved 2
{
throw xlnt::exception("invalid header");
}
const auto csp_name_length = header_length - (offset - index_at_start);
std::vector<std::uint16_t> csp_name_wide(
reinterpret_cast<const std::uint16_t *>(&*(encryption_info.begin() + offset)),
reinterpret_cast<const std::uint16_t *>(&*(encryption_info.begin() + offset + csp_name_length)));
std::string csp_name(csp_name_wide.begin(), csp_name_wide.end() - 1); // without trailing null
if (csp_name != "Microsoft Enhanced RSA and AES Cryptographic Provider (Prototype)"
&& csp_name != "Microsoft Enhanced RSA and AES Cryptographic Provider")
{
throw xlnt::exception("invalid cryptographic provider");
}
offset += csp_name_length;
const auto salt_size = read_int<std::uint32_t>(offset, encryption_info);
std::vector<std::uint8_t> salt(encryption_info.begin() + offset,
encryption_info.begin() + offset + salt_size);
offset += salt_size;
static const auto verifier_size = std::size_t(16);
std::vector<std::uint8_t> verifier_hash_input(encryption_info.begin() + offset,
encryption_info.begin() + offset + verifier_size);
offset += verifier_size;
const auto verifier_hash_size = read_int<std::uint32_t>(offset, encryption_info);
std::vector<std::uint8_t> verifier_hash_value(encryption_info.begin() + offset,
encryption_info.begin() + offset + 32);
offset += verifier_hash_size;
// begin key generation algorithm
// H_0 = H(salt + password)
auto salt_plus_password = salt;
std::vector<std::uint16_t> password_wide(password.begin(), password.end());
std::for_each(password_wide.begin(), password_wide.end(),
[&salt_plus_password](std::uint16_t c)
{
salt_plus_password.insert(salt_plus_password.end(),
reinterpret_cast<char *>(&c),
reinterpret_cast<char *>(&c) + sizeof(std::uint16_t));
});
std::vector<std::uint8_t> h_0 = hash(info.hash,
salt_plus_password.begin(), salt_plus_password.end());
// H_n = H(iterator + H_n-1)
std::vector<std::uint8_t> iterator_plus_h_n(4, 0);
iterator_plus_h_n.insert(iterator_plus_h_n.end(), h_0.begin(), h_0.end());
std::uint32_t &iterator = *reinterpret_cast<std::uint32_t *>(iterator_plus_h_n.data());
std::vector<std::uint8_t> h_n;
for (iterator = 0; iterator < info.spin_count; ++iterator)
{
h_n = hash(info.hash, iterator_plus_h_n.begin(), iterator_plus_h_n.end());
std::copy(h_n.begin(), h_n.end(), iterator_plus_h_n.begin() + 4);
}
// H_final = H(H_n + block)
auto h_n_plus_block = h_n;
const std::uint32_t block_number = 0;
h_n_plus_block.insert(h_n_plus_block.end(),
reinterpret_cast<const std::uint8_t *>(&block_number),
reinterpret_cast<const std::uint8_t *>(&block_number) + sizeof(std::uint32_t));
auto h_final = hash(info.hash, h_n_plus_block.begin(), h_n_plus_block.end());
// X1 = H(h_final ^ 0x36)
std::vector<std::uint8_t> buffer(64, 0x36);
for (std::size_t i = 0; i < h_final.size(); ++i)
{
buffer[i] = static_cast<std::uint8_t>(0x36 ^ h_final[i]);
}
auto X1 = hash(info.hash, buffer.begin(), buffer.end());
// X2 = H(h_final ^ 0x5C)
buffer.assign(64, 0x5c);
for (std::size_t i = 0; i < h_final.size(); ++i)
{
buffer[i] = static_cast<std::uint8_t>(0x5c ^ h_final[i]);
}
auto X2 = hash(info.hash, buffer.begin(), buffer.end());
auto X3 = X1;
X3.insert(X3.end(), X2.begin(), X2.end());
auto key_derived = std::vector<std::uint8_t>(X3.begin(), X3.begin() + info.key_bytes);
//todo: verify here
std::vector<std::uint8_t> encrypted_data(encrypted_package.begin() + 8, encrypted_package.end());
return rijndael_ecb_decrypt(key_derived, encrypted_data);
}
struct agile_encryption_info
{
// key data
struct
{
std::size_t salt_size;
std::size_t block_size;
std::size_t key_bits;
std::size_t hash_size;
std::string cipher_algorithm;
std::string cipher_chaining;
std::string hash_algorithm;
std::vector<std::uint8_t> salt_value;
} key_data;
struct
{
std::vector<std::uint8_t> hmac_key;
std::vector<std::uint8_t> hmac_value;
} data_integrity;
struct
{
std::size_t spin_count;
std::size_t salt_size;
std::size_t block_size;
std::size_t key_bits;
std::size_t hash_size;
std::string cipher_algorithm;
std::string cipher_chaining;
hash_algorithm hash_algorithm;
std::vector<std::uint8_t> salt_value;
std::vector<std::uint8_t> verifier_hash_input;
std::vector<std::uint8_t> verifier_hash_value;
std::vector<std::uint8_t> encrypted_key_value;
} key_encryptor;
};
std::vector<std::uint8_t> decrypt_xlsx_agile(const std::vector<std::uint8_t> &encryption_info,
const std::string &password, const std::vector<std::uint8_t> &encrypted_package)
{
static const auto xmlns = std::string("http://schemas.microsoft.com/office/2006/encryption");
static const auto xmlns_p = std::string("http://schemas.microsoft.com/office/2006/keyEncryptor/password");
static const auto xmlns_c = std::string("http://schemas.microsoft.com/office/2006/keyEncryptor/certificate");
agile_encryption_info result;
xml::parser parser(encryption_info.data(), encryption_info.size(), "EncryptionInfo");
parser.next_expect(xml::parser::event_type::start_element, xmlns, "encryption");
parser.next_expect(xml::parser::event_type::start_element, xmlns, "keyData");
result.key_data.salt_size = parser.attribute<std::size_t>("saltSize");
result.key_data.block_size = parser.attribute<std::size_t>("blockSize");
result.key_data.key_bits = parser.attribute<std::size_t>("keyBits");
result.key_data.hash_size = parser.attribute<std::size_t>("hashSize");
result.key_data.cipher_algorithm = parser.attribute("cipherAlgorithm");
result.key_data.cipher_chaining = parser.attribute("cipherChaining");
result.key_data.hash_algorithm = parser.attribute("hashAlgorithm");
result.key_data.salt_value = decode_base64(parser.attribute("saltValue"));
parser.next_expect(xml::parser::event_type::end_element, xmlns, "keyData");
parser.next_expect(xml::parser::event_type::start_element, xmlns, "dataIntegrity");
result.data_integrity.hmac_key = decode_base64(parser.attribute("encryptedHmacKey"));
result.data_integrity.hmac_value = decode_base64(parser.attribute("encryptedHmacValue"));
parser.next_expect(xml::parser::event_type::end_element, xmlns, "dataIntegrity");
parser.next_expect(xml::parser::event_type::start_element, xmlns, "keyEncryptors");
parser.next_expect(xml::parser::event_type::start_element, xmlns, "keyEncryptor");
parser.attribute("uri");
bool any_password_key = false;
while (parser.peek() != xml::parser::event_type::end_element)
{
parser.next_expect(xml::parser::event_type::start_element);
if (parser.namespace_() == xmlns_p && parser.name() == "encryptedKey")
{
any_password_key = true;
result.key_encryptor.spin_count = parser.attribute<std::size_t>("spinCount");
result.key_encryptor.salt_size = parser.attribute<std::size_t>("saltSize");
result.key_encryptor.block_size = parser.attribute<std::size_t>("blockSize");
result.key_encryptor.key_bits = parser.attribute<std::size_t>("keyBits");
result.key_encryptor.hash_size = parser.attribute<std::size_t>("hashSize");
result.key_encryptor.cipher_algorithm = parser.attribute("cipherAlgorithm");
result.key_encryptor.cipher_chaining = parser.attribute("cipherChaining");
auto hash_algorithm_string = parser.attribute("hashAlgorithm");
if (hash_algorithm_string == "SHA512")
{
result.key_encryptor.hash_algorithm = hash_algorithm::sha512;
}
else if (hash_algorithm_string == "SHA1")
{
result.key_encryptor.hash_algorithm = hash_algorithm::sha1;
}
else if (hash_algorithm_string == "SHA256")
{
result.key_encryptor.hash_algorithm = hash_algorithm::sha256;
}
else if (hash_algorithm_string == "SHA384")
{
result.key_encryptor.hash_algorithm = hash_algorithm::sha384;
}
result.key_encryptor.salt_value = decode_base64(parser.attribute("saltValue"));
result.key_encryptor.verifier_hash_input = decode_base64(parser.attribute("encryptedVerifierHashInput"));
result.key_encryptor.verifier_hash_value = decode_base64(parser.attribute("encryptedVerifierHashValue"));
result.key_encryptor.encrypted_key_value = decode_base64(parser.attribute("encryptedKeyValue"));
}
else
{
throw xlnt::unsupported("other encryption key types not supported");
}
parser.next_expect(xml::parser::event_type::end_element);
}
if (!any_password_key)
{
throw "no password key in keyEncryptors";
}
parser.next_expect(xml::parser::event_type::end_element, xmlns, "keyEncryptor");
parser.next_expect(xml::parser::event_type::end_element, xmlns, "keyEncryptors");
parser.next_expect(xml::parser::event_type::end_element, xmlns, "encryption");
// begin key generation algorithm
// H_0 = H(salt + password)
auto salt_plus_password = result.key_encryptor.salt_value;
std::vector<std::uint16_t> password_wide(password.begin(), password.end());
std::for_each(password_wide.begin(), password_wide.end(),
[&salt_plus_password](std::uint16_t c)
{
salt_plus_password.insert(salt_plus_password.end(),
reinterpret_cast<char *>(&c),
reinterpret_cast<char *>(&c) + sizeof(std::uint16_t));
});
std::vector<std::uint8_t> h_0 = hash(result.key_encryptor.hash_algorithm,
salt_plus_password.begin(), salt_plus_password.end());
// H_n = H(iterator + H_n-1)
std::vector<std::uint8_t> iterator_plus_h_n(4, 0);
iterator_plus_h_n.insert(iterator_plus_h_n.end(), h_0.begin(), h_0.end());
std::uint32_t &iterator = *reinterpret_cast<std::uint32_t *>(iterator_plus_h_n.data());
std::vector<std::uint8_t> h_n;
for (iterator = 0; iterator < result.key_encryptor.spin_count; ++iterator)
{
h_n = hash(result.key_encryptor.hash_algorithm,
iterator_plus_h_n.begin(), iterator_plus_h_n.end());
std::copy(h_n.begin(), h_n.end(), iterator_plus_h_n.begin() + 4);
}
static const std::size_t block_size = 8;
auto calculate_block = [&result](
const std::vector<std::uint8_t> &raw_key,
const std::array<std::uint8_t, block_size> &block,
const std::vector<std::uint8_t> &encrypted)
{
auto combined = raw_key;
combined.insert(combined.end(), block.begin(), block.end());
auto key = hash(result.key_encryptor.hash_algorithm, combined.begin(), combined.end());
key.resize(result.key_encryptor.key_bits / 8);
return rijndael_cbc_decrypt(key, result.key_encryptor.salt_value, encrypted);
};
const std::array<std::uint8_t, block_size> input_block_key
= { 0xfe, 0xa7, 0xd2, 0x76, 0x3b, 0x4b, 0x9e, 0x79 };
auto hash_input = calculate_block(h_n, input_block_key,
result.key_encryptor.verifier_hash_input);
auto calculated_verifier = hash(result.key_encryptor.hash_algorithm,
hash_input.begin(), hash_input.end());
const std::array<std::uint8_t, block_size> verifier_block_key
= { 0xd7, 0xaa, 0x0f, 0x6d, 0x30, 0x61, 0x34, 0x4e };
auto expected_verifier = calculate_block(h_n, verifier_block_key,
result.key_encryptor.verifier_hash_value);
if (calculated_verifier.size() != expected_verifier.size()
|| std::mismatch(calculated_verifier.begin(), calculated_verifier.end(),
expected_verifier.begin(), expected_verifier.end())
!= std::make_pair(calculated_verifier.end(), expected_verifier.end()))
{
throw xlnt::exception("bad password");
}
const std::array<std::uint8_t, block_size> key_value_block_key
= { 0x14, 0x6e, 0x0b, 0xe7, 0xab, 0xac, 0xd0, 0xd6 };
auto key = calculate_block(h_n, key_value_block_key,
result.key_encryptor.encrypted_key_value);
auto salt_size = result.key_data.salt_size;
auto salt_with_block_key = result.key_data.salt_value;
salt_with_block_key.resize(salt_size + sizeof(std::uint32_t), 0);
auto &segment = *reinterpret_cast<std::uint32_t *>(salt_with_block_key.data() + salt_size);
auto total_size = *reinterpret_cast<const std::uint64_t *>(encrypted_package.data());
std::vector<std::uint8_t> encrypted_segment(segment_length, 0);
std::vector<std::uint8_t> decrypted_package;
decrypted_package.reserve(encrypted_package.size() - 8);
for (std::size_t i = 8; i < encrypted_package.size(); i += segment_length)
{
auto iv = hash(result.key_encryptor.hash_algorithm,
salt_with_block_key.begin(), salt_with_block_key.end());
iv.resize(32);
auto decrypted_segment = rijndael_cbc_decrypt(key, iv, std::vector<std::uint8_t>(
encrypted_package.begin() + i, encrypted_package.begin() + i + segment_length));
decrypted_package.insert(decrypted_package.end(),
decrypted_segment.begin(), decrypted_segment.end());
++segment;
}
decrypted_package.resize(total_size);
return decrypted_package;
}
std::vector<std::uint8_t> decrypt_xlsx(const std::vector<std::uint8_t> &bytes, const std::string &password)
{
// nss has checks for re-initialization, but there might be some overhead
static bool nss_initialized = false;
if (!nss_initialized)
{
NSS_NoDB_Init(nullptr);
nss_initialized = true;
}
if (bytes.empty())
{
throw xlnt::exception("empty file");
}
std::vector<char> as_chars(bytes.begin(), bytes.end());
POLE::Storage storage(as_chars.data(), static_cast<unsigned long>(bytes.size()));
if (!storage.open())
{
throw xlnt::exception("not an ole compound file");
}
auto encrypted_package = get_file(storage, "EncryptedPackage");
auto encryption_info = get_file(storage, "EncryptionInfo");
std::size_t index = 0;
auto version_major = read_int<std::uint16_t>(index, encryption_info);
auto version_minor = read_int<std::uint16_t>(index, encryption_info);
auto encryption_flags = read_int<std::uint32_t>(index, encryption_info);
// get rid of header
encryption_info.erase(encryption_info.begin(), encryption_info.begin() + index);
// version 4.4 is agile
if (version_major == 4 && version_minor == 4)
{
if (encryption_flags != 0x40)
{
throw xlnt::exception("bad header");
}
return decrypt_xlsx_agile(encryption_info, password, encrypted_package);
}
// not agile, only try to decrypt versions 3.2 and 4.2
if (version_minor != 2
|| (version_major != 2 && version_major != 3 && version_major != 4))
{
throw xlnt::exception("unsupported encryption version");
}
if ((encryption_flags & 0b00000011) != 0) // Reserved1 and Reserved2, MUST be 0
{
throw xlnt::exception("bad header");
}
if ((encryption_flags & 0b00000100) == 0 // fCryptoAPI
|| (encryption_flags & 0b00010000) != 0) // fExternal
{
throw xlnt::exception("extensible encryption is not supported");
}
if ((encryption_flags & 0b00100000) == 0) // fAES
{
throw xlnt::exception("not an OOXML document");
}
return decrypt_xlsx_standard(encryption_info, password, encrypted_package);
}
void xlsx_consumer::read(const std::vector<std::uint8_t> &source, const std::string &password)
{
source_.load(decrypt_xlsx(source, password));
populate_workbook();
}
void xlsx_consumer::read(std::istream &source, const std::string &password)
{
std::vector<std::uint8_t> data((std::istreambuf_iterator<char>(source)),
std::istreambuf_iterator<char>());
return read(data, password);
}
void xlsx_consumer::read(const path &source, const std::string &password)
{
std::ifstream file_stream(source.string(), std::iostream::binary);
return read(file_stream, password);
}
} // namespace detail
} // namespace xlnt
#endif