xlnt/source/detail/cryptography/compound_document.cpp
2018-01-22 09:38:48 -05:00

1387 lines
39 KiB
C++

// Copyright (C) 2016-2018 Thomas Fussell
// Copyright (C) 2002-2007 Ariya Hidayat (ariya@kde.org).
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <array>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <locale>
#include <string>
#include <vector>
#include <detail/binary.hpp>
#include <detail/unicode.hpp>
#include <detail/cryptography/compound_document.hpp>
#include <xlnt/utils/exceptions.hpp>
namespace {
using namespace xlnt::detail;
int compare_keys(const std::string &left, const std::string &right)
{
auto to_lower = [](std::string s)
{
static const auto *locale = new std::locale();
std::use_facet<std::ctype<char>>(*locale).tolower(&s[0], &s[0] + s.size());
return s;
};
return to_lower(left).compare(to_lower(right));
}
std::vector<std::string> split_path(const std::string &path)
{
auto split = std::vector<std::string>();
auto current = path.find('/');
auto prev = std::size_t(0);
while (current != std::string::npos)
{
split.push_back(path.substr(prev, current - prev));
prev = current + 1;
current = path.find('/', prev);
}
split.push_back(path.substr(prev));
return split;
}
std::string join_path(const std::vector<std::string> &path)
{
auto joined = std::string();
for (auto part : path)
{
joined.append(part);
joined.push_back('/');
}
return joined;
}
const sector_id FreeSector = -1;
const sector_id EndOfChain = -2;
const sector_id SATSector = -3;
//const sector_id MSATSector = -4;
const directory_id End = -1;
} // namespace
namespace xlnt {
namespace detail {
/// <summary>
/// Allows a std::vector to be read through a std::istream.
/// </summary>
class compound_document_istreambuf : public std::streambuf
{
using int_type = std::streambuf::int_type;
public:
compound_document_istreambuf(const compound_document_entry &entry, compound_document &document)
: entry_(entry),
document_(document),
sector_writer_(current_sector_),
position_(0)
{
}
compound_document_istreambuf(const compound_document_istreambuf &) = delete;
compound_document_istreambuf &operator=(const compound_document_istreambuf &) = delete;
~compound_document_istreambuf() override;
private:
std::streamsize xsgetn(char *c, std::streamsize count) override
{
auto bytes_read = std::streamsize(0);
if (entry_.size < document_.header_.threshold)
{
const auto chain = document_.follow_chain(entry_.start, document_.ssat_);
auto current_sector = chain[position_ / document_.short_sector_size()];
auto remaining = std::min(std::size_t(entry_.size) - position_, std::size_t(count));
while (remaining)
{
if (current_sector_.empty() || chain[position_ / document_.short_sector_size()] != current_sector)
{
current_sector = chain[position_ / document_.short_sector_size()];
sector_writer_.reset();
document_.read_short_sector(current_sector, sector_writer_);
}
const auto available = std::min(entry_.size - position_,
document_.short_sector_size() - position_ % document_.short_sector_size());
const auto to_read = std::min(available, std::size_t(remaining));
auto start = current_sector_.begin() + static_cast<std::ptrdiff_t>(position_ % document_.short_sector_size());
auto end = start + static_cast<std::ptrdiff_t>(to_read);
for (auto i = start; i < end; ++i)
{
*(c++) = static_cast<char>(*i);
}
remaining -= to_read;
position_ += to_read;
bytes_read += to_read;
}
if (position_ < entry_.size && chain[position_ / document_.short_sector_size()] != current_sector)
{
current_sector = chain[position_ / document_.short_sector_size()];
sector_writer_.reset();
document_.read_short_sector(current_sector, sector_writer_);
}
}
else
{
const auto chain = document_.follow_chain(entry_.start, document_.sat_);
auto current_sector = chain[position_ / document_.sector_size()];
auto remaining = std::min(std::size_t(entry_.size) - position_, std::size_t(count));
while (remaining)
{
if (current_sector_.empty() || chain[position_ / document_.sector_size()] != current_sector)
{
current_sector = chain[position_ / document_.sector_size()];
sector_writer_.reset();
document_.read_sector(current_sector, sector_writer_);
}
const auto available = std::min(entry_.size - position_,
document_.sector_size() - position_ % document_.sector_size());
const auto to_read = std::min(available, std::size_t(remaining));
auto start = current_sector_.begin() + static_cast<std::ptrdiff_t>(position_ % document_.sector_size());
auto end = start + static_cast<std::ptrdiff_t>(to_read);
for (auto i = start; i < end; ++i)
{
*(c++) = static_cast<char>(*i);
}
remaining -= to_read;
position_ += to_read;
bytes_read += to_read;
}
if (position_ < entry_.size && chain[position_ / document_.sector_size()] != current_sector)
{
current_sector = chain[position_ / document_.sector_size()];
sector_writer_.reset();
document_.read_sector(current_sector, sector_writer_);
}
}
return bytes_read;
}
int_type underflow() override
{
if (position_ >= entry_.size)
{
return traits_type::eof();
}
auto old_position = position_;
auto result = '\0';
xsgetn(&result, 1);
position_ = old_position;
return result;
}
int_type uflow() override
{
auto result = underflow();
++position_;
return result;
}
std::streamsize showmanyc() override
{
if (position_ == entry_.size)
{
return static_cast<std::streamsize>(-1);
}
return static_cast<std::streamsize>(entry_.size - position_);
}
std::streampos seekoff(std::streamoff off, std::ios_base::seekdir way, std::ios_base::openmode) override
{
if (way == std::ios_base::beg)
{
position_ = 0;
}
else if (way == std::ios_base::end)
{
position_ = entry_.size;
}
if (off < 0)
{
if (static_cast<std::size_t>(-off) > position_)
{
position_ = 0;
return static_cast<std::ptrdiff_t>(-1);
}
else
{
position_ -= static_cast<std::size_t>(-off);
}
}
else if (off > 0)
{
if (static_cast<std::size_t>(off) + position_ > entry_.size)
{
position_ = entry_.size;
return static_cast<std::ptrdiff_t>(-1);
}
else
{
position_ += static_cast<std::size_t>(off);
}
}
return static_cast<std::ptrdiff_t>(position_);
}
std::streampos seekpos(std::streampos sp, std::ios_base::openmode) override
{
if (sp < 0)
{
position_ = 0;
}
else if (static_cast<std::size_t>(sp) > entry_.size)
{
position_ = entry_.size;
}
else
{
position_ = static_cast<std::size_t>(sp);
}
return static_cast<std::ptrdiff_t>(position_);
}
private:
const compound_document_entry &entry_;
compound_document &document_;
binary_writer<byte> sector_writer_;
std::vector<byte> current_sector_;
std::size_t position_;
};
compound_document_istreambuf::~compound_document_istreambuf()
{
}
/// <summary>
/// Allows a std::vector to be written through a std::ostream.
/// </summary>
class compound_document_ostreambuf : public std::streambuf
{
using int_type = std::streambuf::int_type;
public:
compound_document_ostreambuf(compound_document_entry &entry, compound_document &document)
: entry_(entry),
document_(document),
sector_reader_(current_sector_),
current_sector_(document.header_.threshold),
position_(0)
{
setp(reinterpret_cast<char *>(current_sector_.data()),
reinterpret_cast<char *>(current_sector_.data() + current_sector_.size()));
}
compound_document_ostreambuf(const compound_document_ostreambuf &) = delete;
compound_document_ostreambuf &operator=(const compound_document_ostreambuf &) = delete;
~compound_document_ostreambuf() override;
private:
int sync() override
{
auto written = static_cast<std::size_t>(pptr() - pbase());
if (written == std::size_t(0))
{
return 0;
}
sector_reader_.reset();
if (short_stream())
{
if (position_ + written >= document_.header_.threshold)
{
convert_to_long_stream();
}
else
{
if (entry_.start < 0)
{
auto num_sectors = (position_ + written + document_.short_sector_size() - 1) / document_.short_sector_size();
chain_ = document_.allocate_short_sectors(num_sectors);
entry_.start = chain_.front();
}
for (auto link : chain_)
{
document_.write_short_sector(sector_reader_, link);
sector_reader_.offset(sector_reader_.offset() + document_.short_sector_size());
}
}
}
else
{
const auto sector_index = position_ / document_.sector_size();
document_.write_sector(sector_reader_, chain_[sector_index]);
}
position_ += written;
entry_.size = std::max(entry_.size, static_cast<std::uint32_t>(position_));
document_.write_directory();
std::fill(current_sector_.begin(), current_sector_.end(), byte(0));
setp(reinterpret_cast<char *>(current_sector_.data()),
reinterpret_cast<char *>(current_sector_.data() + current_sector_.size()));
return 0;
}
bool short_stream()
{
return entry_.size < document_.header_.threshold;
}
int_type overflow(int_type c = traits_type::eof()) override
{
sync();
if (short_stream())
{
auto next_sector = document_.allocate_short_sector();
document_.ssat_[static_cast<std::size_t>(chain_.back())] = next_sector;
chain_.push_back(next_sector);
document_.write_ssat();
}
else
{
auto next_sector = document_.allocate_sector();
document_.sat_[static_cast<std::size_t>(chain_.back())] = next_sector;
chain_.push_back(next_sector);
document_.write_sat();
}
auto value = static_cast<std::uint8_t>(c);
if (c != traits_type::eof())
{
current_sector_[position_ % current_sector_.size()] = value;
}
pbump(1);
return traits_type::to_int_type(static_cast<char>(value));
}
void convert_to_long_stream()
{
sector_reader_.reset();
auto num_sectors = current_sector_.size() / document_.sector_size();
auto new_chain = document_.allocate_sectors(num_sectors);
for (auto link : new_chain)
{
document_.write_sector(sector_reader_, link);
sector_reader_.offset(sector_reader_.offset() + document_.short_sector_size());
}
current_sector_.resize(document_.sector_size(), 0);
std::fill(current_sector_.begin(), current_sector_.end(), byte(0));
if (entry_.start < 0)
{
// TODO: deallocate short sectors here
if (document_.header_.num_short_sectors == 0)
{
document_.entries_[0].start = EndOfChain;
}
}
chain_ = new_chain;
entry_.start = chain_.front();
document_.write_directory();
}
std::streampos seekoff(std::streamoff off, std::ios_base::seekdir way, std::ios_base::openmode) override
{
if (way == std::ios_base::beg)
{
position_ = 0;
}
else if (way == std::ios_base::end)
{
position_ = entry_.size;
}
if (off < 0)
{
if (static_cast<std::size_t>(-off) > position_)
{
position_ = 0;
return static_cast<std::ptrdiff_t>(-1);
}
else
{
position_ -= static_cast<std::size_t>(-off);
}
}
else if (off > 0)
{
if (static_cast<std::size_t>(off) + position_ > entry_.size)
{
position_ = entry_.size;
return static_cast<std::ptrdiff_t>(-1);
}
else
{
position_ += static_cast<std::size_t>(off);
}
}
return static_cast<std::ptrdiff_t>(position_);
}
std::streampos seekpos(std::streampos sp, std::ios_base::openmode) override
{
if (sp < 0)
{
position_ = 0;
}
else if (static_cast<std::size_t>(sp) > entry_.size)
{
position_ = entry_.size;
}
else
{
position_ = static_cast<std::size_t>(sp);
}
return static_cast<std::ptrdiff_t>(position_);
}
private:
compound_document_entry &entry_;
compound_document &document_;
binary_reader<byte> sector_reader_;
std::vector<byte> current_sector_;
std::size_t position_;
sector_chain chain_;
};
compound_document_ostreambuf::~compound_document_ostreambuf()
{
sync();
}
compound_document::compound_document(std::ostream &out)
: out_(&out),
stream_in_(nullptr),
stream_out_(nullptr)
{
header_.msat.fill(FreeSector);
write_header();
insert_entry("/Root Entry", compound_document_entry::entry_type::RootStorage);
}
compound_document::compound_document(std::istream &in)
: in_(&in),
stream_in_(nullptr),
stream_out_(nullptr)
{
read_header();
read_msat();
read_sat();
read_ssat();
read_directory();
}
compound_document::~compound_document()
{
close();
}
void compound_document::close()
{
stream_out_buffer_.reset(nullptr);
}
std::size_t compound_document::sector_size()
{
return static_cast<std::size_t>(1) << header_.sector_size_power;
}
std::size_t compound_document::short_sector_size()
{
return static_cast<std::size_t>(1) << header_.short_sector_size_power;
}
std::istream &compound_document::open_read_stream(const std::string &name)
{
if (!contains_entry(name, compound_document_entry::entry_type::UserStream))
{
throw xlnt::exception("not found");
}
const auto entry_id = find_entry(name, compound_document_entry::entry_type::UserStream);
const auto &entry = entries_.at(static_cast<std::size_t>(entry_id));
stream_in_buffer_.reset(new compound_document_istreambuf(entry, *this));
stream_in_.rdbuf(stream_in_buffer_.get());
return stream_in_;
}
std::ostream &compound_document::open_write_stream(const std::string &name)
{
auto entry_id = contains_entry(name, compound_document_entry::entry_type::UserStream)
? find_entry(name, compound_document_entry::entry_type::UserStream)
: insert_entry(name, compound_document_entry::entry_type::UserStream);
auto &entry = entries_.at(static_cast<std::size_t>(entry_id));
stream_out_buffer_.reset(new compound_document_ostreambuf(entry, *this));
stream_out_.rdbuf(stream_out_buffer_.get());
return stream_out_;
}
template<typename T>
void compound_document::write_sector(binary_reader<T> &reader, sector_id id)
{
out_->seekp(static_cast<std::ptrdiff_t>(sector_data_start() + sector_size() * static_cast<std::size_t>(id)));
out_->write(reinterpret_cast<const char *>(reader.data() + reader.offset()),
static_cast<std::ptrdiff_t>(std::min(sector_size(), reader.bytes() - reader.offset())));
}
template<typename T>
void compound_document::write_short_sector(binary_reader<T> &reader, sector_id id)
{
auto chain = follow_chain(entries_[0].start, sat_);
auto sector_id = chain[static_cast<std::size_t>(id) / (sector_size() / short_sector_size())];
auto sector_offset = static_cast<std::size_t>(id) % (sector_size() / short_sector_size()) * short_sector_size();
out_->seekp(static_cast<std::ptrdiff_t>(sector_data_start() + sector_size() * static_cast<std::size_t>(sector_id) + sector_offset));
out_->write(reinterpret_cast<const char *>(reader.data() + reader.offset()),
static_cast<std::ptrdiff_t>(std::min(short_sector_size(), reader.bytes() - reader.offset())));
}
template<typename T>
void compound_document::read_sector(sector_id id, binary_writer<T> &writer)
{
in_->seekg(static_cast<std::ptrdiff_t>(sector_data_start() + sector_size() * static_cast<std::size_t>(id)));
std::vector<byte> sector(sector_size(), 0);
in_->read(reinterpret_cast<char *>(sector.data()), static_cast<std::ptrdiff_t>(sector_size()));
writer.append(sector);
}
template<typename T>
void compound_document::read_sector_chain(sector_id start, binary_writer<T> &writer)
{
for (auto link : follow_chain(start, sat_))
{
read_sector(link, writer);
}
}
template<typename T>
void compound_document::read_sector_chain(sector_id start, binary_writer<T> &writer, sector_id offset, std::size_t count)
{
auto chain = follow_chain(start, sat_);
for (auto i = std::size_t(0); i < count; ++i)
{
read_sector(chain[offset + i], writer);
}
}
template<typename T>
void compound_document::read_short_sector(sector_id id, binary_writer<T> &writer)
{
const auto container_chain = follow_chain(entries_[0].start, sat_);
auto container = std::vector<byte>();
auto container_writer = binary_writer<byte>(container);
for (auto sector : container_chain)
{
read_sector(sector, container_writer);
}
auto container_reader = binary_reader<byte>(container);
container_reader.offset(static_cast<std::size_t>(id) * short_sector_size());
writer.append(container_reader, short_sector_size());
}
template<typename T>
void compound_document::read_short_sector_chain(sector_id start, binary_writer<T> &writer)
{
for (auto link : follow_chain(start, ssat_))
{
read_short_sector(link, writer);
}
}
template<typename T>
void compound_document::read_short_sector_chain(sector_id start, binary_writer<T> &writer, sector_id offset, std::size_t count)
{
auto chain = follow_chain(start, ssat_);
for (auto i = std::size_t(0); i < count; ++i)
{
read_short_sector(chain[offset + i], writer);
}
}
sector_id compound_document::allocate_sector()
{
const auto sectors_per_sector = sector_size() / sizeof(sector_id);
auto next_free_iter = std::find(sat_.begin(), sat_.end(), FreeSector);
if (next_free_iter == sat_.end())
{
auto next_msat_index = header_.num_msat_sectors;
auto new_sat_sector_id = sector_id(sat_.size());
msat_.push_back(new_sat_sector_id);
write_msat();
header_.msat[msat_.size() - 1] = new_sat_sector_id;
++header_.num_msat_sectors;
write_header();
sat_.resize(sat_.size() + sectors_per_sector, FreeSector);
sat_[static_cast<std::size_t>(new_sat_sector_id)] = SATSector;
auto sat_reader = binary_reader<sector_id>(sat_);
sat_reader.offset(next_msat_index * sectors_per_sector);
write_sector(sat_reader, new_sat_sector_id);
next_free_iter = std::find(sat_.begin(), sat_.end(), FreeSector);
}
auto next_free = sector_id(next_free_iter - sat_.begin());
sat_[static_cast<std::size_t>(next_free)] = EndOfChain;
write_sat();
auto empty_sector = std::vector<byte>(sector_size());
auto empty_sector_reader = binary_reader<byte>(empty_sector);
write_sector(empty_sector_reader, next_free);
return next_free;
}
sector_chain compound_document::allocate_sectors(std::size_t count)
{
if (count == std::size_t(0)) return {};
auto chain = sector_chain();
auto current = allocate_sector();
for (auto i = std::size_t(1); i < count; ++i)
{
chain.push_back(current);
auto next = allocate_sector();
sat_[static_cast<std::size_t>(current)] = next;
current = next;
}
chain.push_back(current);
write_sat();
return chain;
}
sector_chain compound_document::follow_chain(sector_id start, const sector_chain &table)
{
auto chain = sector_chain();
auto current = start;
while (current >= 0)
{
chain.push_back(current);
current = table[static_cast<std::size_t>(current)];
}
return chain;
}
sector_chain compound_document::allocate_short_sectors(std::size_t count)
{
if (count == std::size_t(0)) return {};
auto chain = sector_chain();
auto current = allocate_short_sector();
for (auto i = std::size_t(1); i < count; ++i)
{
chain.push_back(current);
auto next = allocate_short_sector();
ssat_[static_cast<std::size_t>(current)] = next;
current = next;
}
chain.push_back(current);
write_ssat();
return chain;
}
sector_id compound_document::allocate_short_sector()
{
const auto sectors_per_sector = sector_size() / sizeof(sector_id);
auto next_free_iter = std::find(ssat_.begin(), ssat_.end(), FreeSector);
if (next_free_iter == ssat_.end())
{
auto new_ssat_sector_id = allocate_sector();
if (header_.ssat_start < 0)
{
header_.ssat_start = new_ssat_sector_id;
}
else
{
auto ssat_chain = follow_chain(header_.ssat_start, sat_);
sat_[static_cast<std::size_t>(ssat_chain.back())] = new_ssat_sector_id;
write_sat();
}
write_header();
auto old_size = ssat_.size();
ssat_.resize(old_size + sectors_per_sector, FreeSector);
auto ssat_reader = binary_reader<sector_id>(ssat_);
ssat_reader.offset(old_size / sectors_per_sector);
write_sector(ssat_reader, new_ssat_sector_id);
next_free_iter = std::find(ssat_.begin(), ssat_.end(), FreeSector);
}
++header_.num_short_sectors;
write_header();
auto next_free = sector_id(next_free_iter - ssat_.begin());
ssat_[static_cast<std::size_t>(next_free)] = EndOfChain;
write_ssat();
const auto short_sectors_per_sector = sector_size() / short_sector_size();
const auto required_container_sectors = static_cast<std::size_t>(next_free) / short_sectors_per_sector + std::size_t(1);
if (required_container_sectors > 0)
{
if (entries_[0].start < 0)
{
entries_[0].start = allocate_sector();
write_entry(0);
}
auto container_chain = follow_chain(entries_[0].start, sat_);
if (required_container_sectors > container_chain.size())
{
sat_[static_cast<std::size_t>(container_chain.back())] = allocate_sector();
write_sat();
}
}
return next_free;
}
directory_id compound_document::next_empty_entry()
{
auto entry_id = directory_id(0);
for (; entry_id < directory_id(entries_.size()); ++entry_id)
{
auto &entry = entries_[static_cast<std::size_t>(entry_id)];
if (entry.type == compound_document_entry::entry_type::Empty)
{
return entry_id;
}
}
// entry_id is now equal to entries_.size()
if (header_.directory_start < 0)
{
header_.directory_start = allocate_sector();
}
else
{
auto directory_chain = follow_chain(header_.directory_start, sat_);
sat_[static_cast<std::size_t>(directory_chain.back())] = allocate_sector();
write_sat();
}
const auto entries_per_sector = sector_size()
/ sizeof(compound_document_entry);
for (auto i = std::size_t(0); i < entries_per_sector; ++i)
{
auto empty_entry = compound_document_entry();
empty_entry.type = compound_document_entry::entry_type::Empty;
entries_.push_back(empty_entry);
write_entry(entry_id + directory_id(i));
}
return entry_id;
}
directory_id compound_document::insert_entry(
const std::string &name,
compound_document_entry::entry_type type)
{
auto entry_id = next_empty_entry();
auto &entry = entries_[static_cast<std::size_t>(entry_id)];
auto parent_id = directory_id(0);
auto split = split_path(name);
auto filename = split.back();
split.pop_back();
if (split.size() > 1)
{
parent_id = find_entry(join_path(split), compound_document_entry::entry_type::UserStorage);
if (parent_id < 0)
{
throw xlnt::exception("bad path");
}
parent_storage_[entry_id] = parent_id;
}
entry.name(filename);
entry.type = type;
tree_insert(entry_id, parent_id);
write_directory();
return entry_id;
}
std::size_t compound_document::sector_data_start()
{
return sizeof(compound_document_header);
}
bool compound_document::contains_entry(const std::string &path,
compound_document_entry::entry_type type)
{
return find_entry(path, type) >= 0;
}
directory_id compound_document::find_entry(const std::string &name,
compound_document_entry::entry_type type)
{
if (type == compound_document_entry::entry_type::RootStorage
&& (name == "/" || name == "/Root Entry")) return 0;
auto entry_id = directory_id(0);
for (auto &entry : entries_)
{
if (entry.type == type && tree_path(entry_id) == name)
{
return entry_id;
}
++entry_id;
}
return End;
}
void compound_document::print_directory()
{
auto entry_id = directory_id(0);
for (auto &entry : entries_)
{
if (entry.type == compound_document_entry::entry_type::UserStream)
{
std::cout << tree_path(entry_id) << std::endl;
}
++entry_id;
}
}
void compound_document::write_directory()
{
for (auto entry_id = std::size_t(0); entry_id < entries_.size(); ++entry_id)
{
write_entry(directory_id(entry_id));
}
}
void compound_document::read_directory()
{
const auto entries_per_sector = sector_size() / sizeof(compound_document_entry);
const auto num_entries = follow_chain(header_.directory_start, sat_).size() * entries_per_sector;
for (auto entry_id = std::size_t(0); entry_id < num_entries; ++entry_id)
{
entries_.push_back(compound_document_entry());
read_entry(directory_id(entry_id));
}
auto stack = std::vector<directory_id>();
auto storage_siblings = std::vector<directory_id>();
auto stream_siblings = std::vector<directory_id>();
auto directory_stack = std::vector<directory_id>();
directory_stack.push_back(directory_id(0));
while (!directory_stack.empty())
{
auto current_storage_id = directory_stack.back();
directory_stack.pop_back();
if (tree_child(current_storage_id) < 0) continue;
auto storage_stack = std::vector<directory_id>();
auto storage_root_id = tree_child(current_storage_id);
parent_[storage_root_id] = End;
storage_stack.push_back(storage_root_id);
while (!storage_stack.empty())
{
auto current_entry_id = storage_stack.back();
auto current_entry = entries_[static_cast<std::size_t>(current_entry_id)];
storage_stack.pop_back();
parent_storage_[current_entry_id] = current_storage_id;
if (current_entry.type == compound_document_entry::entry_type::UserStorage)
{
directory_stack.push_back(current_entry_id);
}
if (tree_left(current_entry_id) >= 0)
{
storage_stack.push_back(tree_left(current_entry_id));
tree_parent(tree_left(current_entry_id)) = current_entry_id;
}
if (tree_right(current_entry_id) >= 0)
{
storage_stack.push_back(tree_right(current_entry_id));
tree_parent(tree_right(current_entry_id)) = current_entry_id;
}
}
}
}
void compound_document::tree_insert(directory_id new_id, directory_id storage_id)
{
using entry_color = compound_document_entry::entry_color;
parent_storage_[new_id] = storage_id;
tree_left(new_id) = End;
tree_right(new_id) = End;
if (tree_root(new_id) == End)
{
if (new_id != 0)
{
tree_root(new_id) = new_id;
}
tree_color(new_id) = entry_color::Black;
tree_parent(new_id) = End;
return;
}
// normal tree insert
// (will probably unbalance the tree, fix after)
auto x = tree_root(new_id);
auto y = End;
while (x >= 0)
{
y = x;
if (compare_keys(tree_key(new_id), tree_key(x)) > 0)
{
x = tree_right(x);
}
else
{
x = tree_left(x);
}
}
tree_parent(new_id) = y;
if (compare_keys(tree_key(new_id), tree_key(y)) > 0)
{
tree_right(y) = new_id;
}
else
{
tree_left(y) = new_id;
}
tree_insert_fixup(new_id);
}
std::string compound_document::tree_path(directory_id id)
{
auto storage_id = parent_storage_[id];
auto result = std::vector<std::string>();
while (storage_id > 0)
{
storage_id = parent_storage_[storage_id];
result.push_back(entries_[static_cast<std::size_t>(storage_id)].name());
}
return "/" + join_path(result) + entries_[static_cast<std::size_t>(id)].name();
}
void compound_document::tree_rotate_left(directory_id x)
{
auto y = tree_right(x);
// turn y's left subtree into x's right subtree
tree_right(x) = tree_left(y);
if (tree_left(y) != End)
{
tree_parent(tree_left(y)) = x;
}
// link x's parent to y
tree_parent(y) = tree_parent(x);
if (tree_parent(x) == End)
{
tree_root(x) = y;
}
else if (x == tree_left(tree_parent(x)))
{
tree_left(tree_parent(x)) = y;
}
else
{
tree_right(tree_parent(x)) = y;
}
// put x on y's left
tree_left(y) = x;
tree_parent(x) = y;
}
void compound_document::tree_rotate_right(directory_id y)
{
auto x = tree_left(y);
// turn x's right subtree into y's left subtree
tree_left(y) = tree_right(x);
if (tree_right(x) != End)
{
tree_parent(tree_right(x)) = y;
}
// link y's parent to x
tree_parent(x) = tree_parent(y);
if (tree_parent(y) == End)
{
tree_root(y) = x;
}
else if (y == tree_left(tree_parent(y)))
{
tree_left(tree_parent(y)) = x;
}
else
{
tree_right(tree_parent(y)) = x;
}
// put y on x's right
tree_right(x) = y;
tree_parent(y) = x;
}
void compound_document::tree_insert_fixup(directory_id x)
{
using entry_color = compound_document_entry::entry_color;
tree_color(x) = entry_color::Red;
while (x != tree_root(x) && tree_color(tree_parent(x)) == entry_color::Red)
{
if (tree_parent(x) == tree_left(tree_parent(tree_parent(x))))
{
auto y = tree_right(tree_parent(tree_parent(x)));
if (y >= 0 && tree_color(y) == entry_color::Red)
{
// case 1
tree_color(tree_parent(x)) = entry_color::Black;
tree_color(y) = entry_color::Black;
tree_color(tree_parent(tree_parent(x))) = entry_color::Red;
x = tree_parent(tree_parent(x));
}
else
{
if (x == tree_right(tree_parent(x)))
{
// case 2
x = tree_parent(x);
tree_rotate_left(x);
}
// case 3
tree_color(tree_parent(x)) = entry_color::Black;
tree_color(tree_parent(tree_parent(x))) = entry_color::Red;
tree_rotate_right(tree_parent(tree_parent(x)));
}
}
else // same as above with left and right switched
{
auto y = tree_left(tree_parent(tree_parent(x)));
if (y >= 0 && tree_color(y) == entry_color::Red)
{
//case 1
tree_color(tree_parent(x)) = entry_color::Black;
tree_color(y) = entry_color::Black;
tree_color(tree_parent(tree_parent(x))) = entry_color::Red;
x = tree_parent(tree_parent(x));
}
else
{
if (x == tree_left(tree_parent(x)))
{
// case 2
x = tree_parent(x);
tree_rotate_right(x);
}
// case 3
tree_color(tree_parent(x)) = entry_color::Black;
tree_color(tree_parent(tree_parent(x))) = entry_color::Red;
tree_rotate_left(tree_parent(tree_parent(x)));
}
}
}
tree_color(tree_root(x)) = entry_color::Black;
}
directory_id &compound_document::tree_left(directory_id id)
{
return entries_[static_cast<std::size_t>(id)].prev;
}
directory_id &compound_document::tree_right(directory_id id)
{
return entries_[static_cast<std::size_t>(id)].next;
}
directory_id &compound_document::tree_parent(directory_id id)
{
return parent_[id];
}
directory_id &compound_document::tree_root(directory_id id)
{
return tree_child(parent_storage_[id]);
}
directory_id &compound_document::tree_child(directory_id id)
{
return entries_[static_cast<std::size_t>(id)].child;
}
std::string compound_document::tree_key(directory_id id)
{
return entries_[static_cast<std::size_t>(id)].name();
}
compound_document_entry::entry_color &compound_document::tree_color(directory_id id)
{
return entries_[static_cast<std::size_t>(id)].color;
}
void compound_document::read_header()
{
in_->seekg(0, std::ios::beg);
in_->read(reinterpret_cast<char *>(&header_), sizeof(compound_document_header));
}
void compound_document::read_msat()
{
msat_.clear();
auto msat_sector = header_.extra_msat_start;
auto msat_writer = binary_writer<sector_id>(msat_);
for (auto i = std::uint32_t(0); i < header_.num_msat_sectors; ++i)
{
if (i < std::uint32_t(109))
{
msat_writer.write(header_.msat[i]);
}
else
{
read_sector(msat_sector, msat_writer);
msat_sector = msat_.back();
msat_.pop_back();
}
}
}
void compound_document::read_sat()
{
sat_.clear();
auto sat_writer = binary_writer<sector_id>(sat_);
for (auto msat_sector : msat_)
{
read_sector(msat_sector, sat_writer);
}
}
void compound_document::read_ssat()
{
ssat_.clear();
auto ssat_writer = binary_writer<sector_id>(ssat_);
for (auto ssat_sector : follow_chain(header_.ssat_start, sat_))
{
read_sector(ssat_sector, ssat_writer);
}
}
void compound_document::read_entry(directory_id id)
{
const auto directory_chain = follow_chain(header_.directory_start, sat_);
const auto entries_per_sector = sector_size() / sizeof(compound_document_entry);
const auto directory_sector = directory_chain[static_cast<std::size_t>(id) / entries_per_sector];
const auto offset = sector_size() * static_cast<std::size_t>(directory_sector)
+ ((static_cast<std::size_t>(id) % entries_per_sector) * sizeof(compound_document_entry));
in_->seekg(static_cast<std::ptrdiff_t>(sector_data_start() + offset), std::ios::beg);
in_->read(reinterpret_cast<char *>(&entries_[static_cast<std::size_t>(id)]), sizeof(compound_document_entry));
}
void compound_document::write_header()
{
out_->seekp(0, std::ios::beg);
out_->write(reinterpret_cast<char *>(&header_), sizeof(compound_document_header));
}
void compound_document::write_msat()
{
auto msat_sector = header_.extra_msat_start;
for (auto i = std::uint32_t(0); i < header_.num_msat_sectors; ++i)
{
if (i < std::uint32_t(109))
{
header_.msat[i] = msat_[i];
}
else
{
auto sector = std::vector<sector_id>();
auto sector_writer = binary_writer<sector_id>(sector);
read_sector(msat_sector, sector_writer);
msat_sector = sector.back();
sector.pop_back();
std::copy(sector.begin(), sector.end(), std::back_inserter(msat_));
}
}
}
void compound_document::write_sat()
{
auto sector_reader = binary_reader<sector_id>(sat_);
for (auto sat_sector : msat_)
{
write_sector(sector_reader, sat_sector);
}
}
void compound_document::write_ssat()
{
auto sector_reader = binary_reader<sector_id>(ssat_);
for (auto ssat_sector : follow_chain(header_.ssat_start, sat_))
{
write_sector(sector_reader, ssat_sector);
}
}
void compound_document::write_entry(directory_id id)
{
const auto directory_chain = follow_chain(header_.directory_start, sat_);
const auto entries_per_sector = sector_size() / sizeof(compound_document_entry);
const auto directory_sector = directory_chain[static_cast<std::size_t>(id) / entries_per_sector];
const auto offset = sector_data_start() + sector_size() * static_cast<std::size_t>(directory_sector)
+ ((static_cast<std::size_t>(id) % entries_per_sector) * sizeof(compound_document_entry));
out_->seekp(static_cast<std::ptrdiff_t>(offset), std::ios::beg);
out_->write(reinterpret_cast<char *>(&entries_[static_cast<std::size_t>(id)]), sizeof(compound_document_entry));
}
} // namespace detail
} // namespace xlnt