xlnt/source/detail/cryptography/xlsx_crypto_consumer.cpp
2017-04-23 18:18:35 -04:00

365 lines
14 KiB
C++

// Copyright (c) 2014-2017 Thomas Fussell
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, WRISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE
//
// @license: http://www.opensource.org/licenses/mit-license.php
// @author: see AUTHORS file
#include <array>
#include <cstdint>
#include <vector>
#include <detail/binary.hpp>
#include <detail/constants.hpp>
#include <detail/unicode.hpp>
#include <detail/cryptography/encryption_info.hpp>
#include <detail/cryptography/aes.hpp>
#include <detail/cryptography/base64.hpp>
#include <detail/cryptography/compound_document.hpp>
#include <detail/cryptography/value_traits.hpp>
#include <detail/cryptography/xlsx_crypto_consumer.hpp>
#include <detail/external/include_libstudxml.hpp>
#include <detail/serialization/vector_streambuf.hpp>
#include <detail/serialization/xlsx_consumer.hpp>
#include <xlnt/utils/exceptions.hpp>
namespace {
using xlnt::detail::byte;
using xlnt::detail::binary_reader;
using xlnt::detail::encryption_info;
std::vector<std::uint8_t> decrypt_xlsx_standard(
encryption_info info,
const std::vector<std::uint8_t> &encrypted_package)
{
const auto key = info.calculate_key();
auto reader = binary_reader(encrypted_package);
auto decrypted_size = reader.read<std::uint64_t>();
auto decrypted = xlnt::detail::aes_ecb_decrypt(encrypted_package, key, reader.offset());
decrypted.resize(static_cast<std::size_t>(decrypted_size));
return decrypted;
}
std::vector<std::uint8_t> decrypt_xlsx_agile(
const encryption_info &info,
const std::vector<std::uint8_t> &encrypted_package)
{
static const auto segment_length = std::size_t(4096);
const auto key = info.calculate_key();
auto salt_size = info.agile.key_data.salt_size;
auto salt_with_block_key = info.agile.key_data.salt_value;
salt_with_block_key.resize(salt_size + sizeof(std::uint32_t), 0);
auto &segment = *reinterpret_cast<std::uint32_t *>(salt_with_block_key.data() + salt_size);
auto total_size = static_cast<std::size_t>(*reinterpret_cast<const std::uint64_t *>(encrypted_package.data()));
std::vector<std::uint8_t> encrypted_segment(segment_length, 0);
std::vector<std::uint8_t> decrypted_package;
decrypted_package.reserve(encrypted_package.size() - 8);
for (std::size_t i = 8; i < encrypted_package.size(); i += segment_length)
{
auto iv = hash(info.agile.key_encryptor.hash, salt_with_block_key);
iv.resize(16);
auto segment_begin = encrypted_package.begin() + static_cast<std::ptrdiff_t>(i);
auto current_segment_length = std::min(segment_length, encrypted_package.size() - i);
auto segment_end = encrypted_package.begin() + static_cast<std::ptrdiff_t>(i + current_segment_length);
encrypted_segment.assign(segment_begin, segment_end);
auto decrypted_segment = xlnt::detail::aes_cbc_decrypt(encrypted_segment, key, iv);
decrypted_segment.resize(current_segment_length);
decrypted_package.insert(
decrypted_package.end(),
decrypted_segment.begin(),
decrypted_segment.end());
++segment;
}
decrypted_package.resize(total_size);
return decrypted_package;
}
encryption_info::standard_encryption_info read_standard_encryption_info(const std::vector<std::uint8_t> &info_bytes)
{
encryption_info::standard_encryption_info result;
auto reader = binary_reader(info_bytes);
// skip version info
reader.read<std::uint32_t>();
reader.read<std::uint32_t>();
auto header_length = reader.read<std::uint32_t>();
auto index_at_start = reader.offset();
/*auto skip_flags = */ reader.read<std::uint32_t>();
/*auto size_extra = */ reader.read<std::uint32_t>();
auto alg_id = reader.read<std::uint32_t>();
if (alg_id == 0 || alg_id == 0x0000660E || alg_id == 0x0000660F || alg_id == 0x00006610)
{
result.cipher = xlnt::detail::cipher_algorithm::aes;
}
else
{
throw xlnt::exception("invalid cipher algorithm");
}
auto alg_id_hash = reader.read<std::uint32_t>();
if (alg_id_hash != 0x00008004 && alg_id_hash == 0)
{
throw xlnt::exception("invalid hash algorithm");
}
result.key_bits = reader.read<std::uint32_t>();
result.key_bytes = result.key_bits / 8;
auto provider_type = reader.read<std::uint32_t>();
if (provider_type != 0 && provider_type != 0x00000018)
{
throw xlnt::exception("invalid provider type");
}
reader.read<std::uint32_t>(); // reserved 1
if (reader.read<std::uint32_t>() != 0) // reserved 2
{
throw xlnt::exception("invalid header");
}
const auto csp_name_length = header_length - (reader.offset() - index_at_start);
std::vector<std::uint16_t> csp_name_wide(
reinterpret_cast<const std::uint16_t *>(&*(info_bytes.begin() + static_cast<std::ptrdiff_t>(reader.offset()))),
reinterpret_cast<const std::uint16_t *>(
&*(info_bytes.begin() + static_cast<std::ptrdiff_t>(reader.offset() + csp_name_length))));
std::string csp_name(csp_name_wide.begin(), csp_name_wide.end() - 1); // without trailing null
if (csp_name != "Microsoft Enhanced RSA and AES Cryptographic Provider (Prototype)"
&& csp_name != "Microsoft Enhanced RSA and AES Cryptographic Provider")
{
throw xlnt::exception("invalid cryptographic provider");
}
reader.offset(reader.offset() + csp_name_length);
const auto salt_size = reader.read<std::uint32_t>();
result.salt = std::vector<std::uint8_t>(
info_bytes.begin() + static_cast<std::ptrdiff_t>(reader.offset()),
info_bytes.begin() + static_cast<std::ptrdiff_t>(reader.offset() + salt_size));
reader.offset(reader.offset() + salt_size);
static const auto verifier_size = std::size_t(16);
result.encrypted_verifier = std::vector<std::uint8_t>(
info_bytes.begin() + static_cast<std::ptrdiff_t>(reader.offset()),
info_bytes.begin() + static_cast<std::ptrdiff_t>(reader.offset() + verifier_size));
reader.offset(reader.offset() + verifier_size);
/*const auto verifier_hash_size = */reader.read<std::uint32_t>();
const auto encrypted_verifier_hash_size = std::size_t(32);
result.encrypted_verifier_hash = std::vector<std::uint8_t>(
info_bytes.begin() + static_cast<std::ptrdiff_t>(reader.offset()),
info_bytes.begin() + static_cast<std::ptrdiff_t>(reader.offset() + encrypted_verifier_hash_size));
reader.offset(reader.offset() + encrypted_verifier_hash_size);
if (reader.offset() != info_bytes.size())
{
throw xlnt::exception("extra data after encryption info");
}
return result;
}
encryption_info::agile_encryption_info read_agile_encryption_info(const std::vector<std::uint8_t> &info_bytes)
{
using xlnt::detail::decode_base64;
static const auto &xmlns = xlnt::constants::ns("encryption");
static const auto &xmlns_p = xlnt::constants::ns("encryption-password");
// static const auto &xmlns_c = xlnt::constants::namespace_("encryption-certificate");
encryption_info::agile_encryption_info result;
auto header_size = std::size_t(8);
xml::parser parser(info_bytes.data() + header_size, info_bytes.size() - header_size, "EncryptionInfo");
parser.next_expect(xml::parser::event_type::start_element, xmlns, "encryption");
auto &key_data = result.key_data;
parser.next_expect(xml::parser::event_type::start_element, xmlns, "keyData");
key_data.salt_size = parser.attribute<std::size_t>("saltSize");
key_data.block_size = parser.attribute<std::size_t>("blockSize");
key_data.key_bits = parser.attribute<std::size_t>("keyBits");
key_data.hash_size = parser.attribute<std::size_t>("hashSize");
key_data.cipher_algorithm = parser.attribute("cipherAlgorithm");
key_data.cipher_chaining = parser.attribute("cipherChaining");
key_data.hash_algorithm = parser.attribute("hashAlgorithm");
key_data.salt_value = decode_base64(parser.attribute("saltValue"));
parser.next_expect(xml::parser::event_type::end_element, xmlns, "keyData");
auto &data_integrity = result.data_integrity;
parser.next_expect(xml::parser::event_type::start_element, xmlns, "dataIntegrity");
data_integrity.hmac_key = decode_base64(parser.attribute("encryptedHmacKey"));
data_integrity.hmac_value = decode_base64(parser.attribute("encryptedHmacValue"));
parser.next_expect(xml::parser::event_type::end_element, xmlns, "dataIntegrity");
auto &key_encryptor = result.key_encryptor;
parser.next_expect(xml::parser::event_type::start_element, xmlns, "keyEncryptors");
parser.next_expect(xml::parser::event_type::start_element, xmlns, "keyEncryptor");
parser.attribute("uri");
bool any_password_key = false;
while (parser.peek() != xml::parser::event_type::end_element)
{
parser.next_expect(xml::parser::event_type::start_element);
if (parser.namespace_() == xmlns_p && parser.name() == "encryptedKey")
{
any_password_key = true;
key_encryptor.spin_count = parser.attribute<std::size_t>("spinCount");
key_encryptor.salt_size = parser.attribute<std::size_t>("saltSize");
key_encryptor.block_size = parser.attribute<std::size_t>("blockSize");
key_encryptor.key_bits = parser.attribute<std::size_t>("keyBits");
key_encryptor.hash_size = parser.attribute<std::size_t>("hashSize");
key_encryptor.cipher_algorithm = parser.attribute("cipherAlgorithm");
key_encryptor.cipher_chaining = parser.attribute("cipherChaining");
key_encryptor.hash = parser.attribute<xlnt::detail::hash_algorithm>("hashAlgorithm");
key_encryptor.salt_value = decode_base64(parser.attribute("saltValue"));
key_encryptor.verifier_hash_input = decode_base64(parser.attribute("encryptedVerifierHashInput"));
key_encryptor.verifier_hash_value = decode_base64(parser.attribute("encryptedVerifierHashValue"));
key_encryptor.encrypted_key_value = decode_base64(parser.attribute("encryptedKeyValue"));
}
else
{
throw xlnt::unsupported("other encryption key types not supported");
}
parser.next_expect(xml::parser::event_type::end_element);
}
if (!any_password_key)
{
throw xlnt::exception("no password key in keyEncryptors");
}
parser.next_expect(xml::parser::event_type::end_element, xmlns, "keyEncryptor");
parser.next_expect(xml::parser::event_type::end_element, xmlns, "keyEncryptors");
parser.next_expect(xml::parser::event_type::end_element, xmlns, "encryption");
return result;
}
encryption_info read_encryption_info(const std::vector<std::uint8_t> &info_bytes, const std::u16string &password)
{
encryption_info info;
info.password = password;
auto reader = binary_reader(info_bytes);
auto version_major = reader.read<std::uint16_t>();
auto version_minor = reader.read<std::uint16_t>();
auto encryption_flags = reader.read<std::uint32_t>();
info.is_agile = version_major == 4 && version_minor == 4;
if (info.is_agile)
{
if (encryption_flags != 0x40)
{
throw xlnt::exception("bad header");
}
info.agile = read_agile_encryption_info(info_bytes);
}
else
{
if (version_minor != 2 || (version_major != 2 && version_major != 3 && version_major != 4))
{
throw xlnt::exception("unsupported encryption version");
}
if ((encryption_flags & 0b00000011) != 0) // Reserved1 and Reserved2, MUST be 0
{
throw xlnt::exception("bad header");
}
if ((encryption_flags & 0b00000100) == 0 // fCryptoAPI
|| (encryption_flags & 0b00010000) != 0) // fExternal
{
throw xlnt::exception("extensible encryption is not supported");
}
if ((encryption_flags & 0b00100000) == 0) // fAES
{
throw xlnt::exception("not an OOXML document");
}
info.standard = read_standard_encryption_info(info_bytes);
}
return info;
}
std::vector<std::uint8_t> decrypt_xlsx(
const std::vector<std::uint8_t> &bytes,
const std::u16string &password)
{
if (bytes.empty())
{
throw xlnt::exception("empty file");
}
xlnt::detail::compound_document_reader document(bytes);
auto encryption_info = read_encryption_info(
document.read_stream(u"EncryptionInfo"), password);
auto encrypted_package = document.read_stream(u"EncryptedPackage");
return encryption_info.is_agile
? decrypt_xlsx_agile(encryption_info, encrypted_package)
: decrypt_xlsx_standard(encryption_info, encrypted_package);
}
} // namespace
namespace xlnt {
namespace detail {
std::vector<std::uint8_t> XLNT_API decrypt_xlsx(const std::vector<std::uint8_t> &data, const std::string &password)
{
return ::decrypt_xlsx(data, utf8_to_utf16(password));
}
void xlsx_consumer::read(std::istream &source, const std::string &password)
{
std::vector<std::uint8_t> data((std::istreambuf_iterator<char>(source)), (std::istreambuf_iterator<char>()));
const auto decrypted = decrypt_xlsx(data, password);
vector_istreambuf decrypted_buffer(decrypted);
std::istream decrypted_stream(&decrypted_buffer);
read(decrypted_stream);
}
} // namespace detail
} // namespace xlnt