// Copyright (c) 2017 Thomas Fussell // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, WRISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE // // @license: http://www.opensource.org/licenses/mit-license.php // @author: see AUTHORS file #include #include #include #include #include #include namespace { class SHA1 { public: SHA1(); void update(const std::string &s); void update(std::istream &is); std::string final_(); private: uint32_t digest[5]; std::string buffer; uint64_t transforms; }; static const size_t BLOCK_INTS = 16; /* number of 32bit integers per SHA1 block */ static const size_t BLOCK_BYTES = BLOCK_INTS * 4; static void sha1_reset(uint32_t digest[], std::string &buffer, uint64_t &transforms) { /* SHA1 initialization constants */ digest[0] = 0x67452301; digest[1] = 0xefcdab89; digest[2] = 0x98badcfe; digest[3] = 0x10325476; digest[4] = 0xc3d2e1f0; /* Reset counters */ buffer = ""; transforms = 0; } static uint32_t sha1_rol(const uint32_t value, const size_t bits) { return (value << bits) | (value >> (32 - bits)); } static uint32_t sha1_blk(const uint32_t block[BLOCK_INTS], const size_t i) { return sha1_rol(block[(i+13)&15] ^ block[(i+8)&15] ^ block[(i+2)&15] ^ block[i], 1); } /* * (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ static void sha1_R0(const uint32_t block[BLOCK_INTS], const uint32_t v, uint32_t &w, const uint32_t x, const uint32_t y, uint32_t &z, const size_t i) { z += ((w&(x^y))^y) + block[i] + 0x5a827999 + sha1_rol(v, 5); w = sha1_rol(w, 30); } static void sha1_R1(uint32_t block[BLOCK_INTS], const uint32_t v, uint32_t &w, const uint32_t x, const uint32_t y, uint32_t &z, const size_t i) { block[i] = sha1_blk(block, i); z += ((w&(x^y))^y) + block[i] + 0x5a827999 + sha1_rol(v, 5); w = sha1_rol(w, 30); } static void sha1_R2(uint32_t block[BLOCK_INTS], const uint32_t v, uint32_t &w, const uint32_t x, const uint32_t y, uint32_t &z, const size_t i) { block[i] = sha1_blk(block, i); z += (w^x^y) + block[i] + 0x6ed9eba1 + sha1_rol(v, 5); w = sha1_rol(w, 30); } static void sha1_R3(uint32_t block[BLOCK_INTS], const uint32_t v, uint32_t &w, const uint32_t x, const uint32_t y, uint32_t &z, const size_t i) { block[i] = sha1_blk(block, i); z += (((w|x)&y)|(w&x)) + block[i] + 0x8f1bbcdc + sha1_rol(v, 5); w = sha1_rol(w, 30); } static void sha1_R4(uint32_t block[BLOCK_INTS], const uint32_t v, uint32_t &w, const uint32_t x, const uint32_t y, uint32_t &z, const size_t i) { block[i] = sha1_blk(block, i); z += (w^x^y) + block[i] + 0xca62c1d6 + sha1_rol(v, 5); w = sha1_rol(w, 30); } /* * Hash a single 512-bit block. This is the core of the algorithm. */ static void sha1_transform(uint32_t digest[], uint32_t block[BLOCK_INTS], uint64_t &transforms) { /* Copy digest[] to working vars */ uint32_t a = digest[0]; uint32_t b = digest[1]; uint32_t c = digest[2]; uint32_t d = digest[3]; uint32_t e = digest[4]; /* 4 rounds of 20 operations each. Loop unrolled. */ sha1_R0(block, a, b, c, d, e, 0); sha1_R0(block, e, a, b, c, d, 1); sha1_R0(block, d, e, a, b, c, 2); sha1_R0(block, c, d, e, a, b, 3); sha1_R0(block, b, c, d, e, a, 4); sha1_R0(block, a, b, c, d, e, 5); sha1_R0(block, e, a, b, c, d, 6); sha1_R0(block, d, e, a, b, c, 7); sha1_R0(block, c, d, e, a, b, 8); sha1_R0(block, b, c, d, e, a, 9); sha1_R0(block, a, b, c, d, e, 10); sha1_R0(block, e, a, b, c, d, 11); sha1_R0(block, d, e, a, b, c, 12); sha1_R0(block, c, d, e, a, b, 13); sha1_R0(block, b, c, d, e, a, 14); sha1_R0(block, a, b, c, d, e, 15); sha1_R1(block, e, a, b, c, d, 0); sha1_R1(block, d, e, a, b, c, 1); sha1_R1(block, c, d, e, a, b, 2); sha1_R1(block, b, c, d, e, a, 3); sha1_R2(block, a, b, c, d, e, 4); sha1_R2(block, e, a, b, c, d, 5); sha1_R2(block, d, e, a, b, c, 6); sha1_R2(block, c, d, e, a, b, 7); sha1_R2(block, b, c, d, e, a, 8); sha1_R2(block, a, b, c, d, e, 9); sha1_R2(block, e, a, b, c, d, 10); sha1_R2(block, d, e, a, b, c, 11); sha1_R2(block, c, d, e, a, b, 12); sha1_R2(block, b, c, d, e, a, 13); sha1_R2(block, a, b, c, d, e, 14); sha1_R2(block, e, a, b, c, d, 15); sha1_R2(block, d, e, a, b, c, 0); sha1_R2(block, c, d, e, a, b, 1); sha1_R2(block, b, c, d, e, a, 2); sha1_R2(block, a, b, c, d, e, 3); sha1_R2(block, e, a, b, c, d, 4); sha1_R2(block, d, e, a, b, c, 5); sha1_R2(block, c, d, e, a, b, 6); sha1_R2(block, b, c, d, e, a, 7); sha1_R3(block, a, b, c, d, e, 8); sha1_R3(block, e, a, b, c, d, 9); sha1_R3(block, d, e, a, b, c, 10); sha1_R3(block, c, d, e, a, b, 11); sha1_R3(block, b, c, d, e, a, 12); sha1_R3(block, a, b, c, d, e, 13); sha1_R3(block, e, a, b, c, d, 14); sha1_R3(block, d, e, a, b, c, 15); sha1_R3(block, c, d, e, a, b, 0); sha1_R3(block, b, c, d, e, a, 1); sha1_R3(block, a, b, c, d, e, 2); sha1_R3(block, e, a, b, c, d, 3); sha1_R3(block, d, e, a, b, c, 4); sha1_R3(block, c, d, e, a, b, 5); sha1_R3(block, b, c, d, e, a, 6); sha1_R3(block, a, b, c, d, e, 7); sha1_R3(block, e, a, b, c, d, 8); sha1_R3(block, d, e, a, b, c, 9); sha1_R3(block, c, d, e, a, b, 10); sha1_R3(block, b, c, d, e, a, 11); sha1_R4(block, a, b, c, d, e, 12); sha1_R4(block, e, a, b, c, d, 13); sha1_R4(block, d, e, a, b, c, 14); sha1_R4(block, c, d, e, a, b, 15); sha1_R4(block, b, c, d, e, a, 0); sha1_R4(block, a, b, c, d, e, 1); sha1_R4(block, e, a, b, c, d, 2); sha1_R4(block, d, e, a, b, c, 3); sha1_R4(block, c, d, e, a, b, 4); sha1_R4(block, b, c, d, e, a, 5); sha1_R4(block, a, b, c, d, e, 6); sha1_R4(block, e, a, b, c, d, 7); sha1_R4(block, d, e, a, b, c, 8); sha1_R4(block, c, d, e, a, b, 9); sha1_R4(block, b, c, d, e, a, 10); sha1_R4(block, a, b, c, d, e, 11); sha1_R4(block, e, a, b, c, d, 12); sha1_R4(block, d, e, a, b, c, 13); sha1_R4(block, c, d, e, a, b, 14); sha1_R4(block, b, c, d, e, a, 15); /* Add the working vars back into digest[] */ digest[0] += a; digest[1] += b; digest[2] += c; digest[3] += d; digest[4] += e; /* Count the number of transformations */ transforms++; } static void sha1_buffer_to_block(const std::string &buffer, uint32_t block[BLOCK_INTS]) { /* Convert the std::string (byte buffer) to a uint32_t array (MSB) */ for (size_t i = 0; i < BLOCK_INTS; i++) { block[i] = static_cast((buffer[4*i+3] & 0xff) | (buffer[4*i+2] & 0xff)<<8 | (buffer[4*i+1] & 0xff)<<16 | (buffer[4*i+0] & 0xff)<<24); } } SHA1::SHA1() { sha1_reset(digest, buffer, transforms); } void SHA1::update(const std::string &s) { std::istringstream is(s); update(is); } void SHA1::update(std::istream &is) { while (true) { char sbuf[BLOCK_BYTES]; is.read(sbuf, static_cast(BLOCK_BYTES - buffer.size())); buffer.append(sbuf, static_cast(is.gcount())); if (buffer.size() != BLOCK_BYTES) { return; } uint32_t block[BLOCK_INTS]; sha1_buffer_to_block(buffer, block); sha1_transform(digest, block, transforms); buffer.clear(); } } /* * Add padding and return the message digest. */ std::string SHA1::final_() { /* Total number of hashed bits */ uint64_t total_bits = (transforms*BLOCK_BYTES + buffer.size()) * 8; /* Padding */ buffer += static_cast(0x80); size_t orig_size = buffer.size(); while (buffer.size() < BLOCK_BYTES) { buffer += static_cast(0x00); } uint32_t block[BLOCK_INTS]; sha1_buffer_to_block(buffer, block); if (orig_size > BLOCK_BYTES - 8) { sha1_transform(digest, block, transforms); for (size_t i = 0; i < BLOCK_INTS - 2; i++) { block[i] = 0; } } /* Append total_bits, split this uint64_t into two uint32_t */ block[BLOCK_INTS - 1] = static_cast(total_bits); block[BLOCK_INTS - 2] = static_cast(total_bits >> 32); sha1_transform(digest, block, transforms); /* Hex std::string */ std::ostringstream result; for (size_t i = 0; i < sizeof(digest) / sizeof(digest[0]); i++) { result << std::hex << std::setfill('0') << std::setw(8); result << digest[i]; } /* Reset for next run */ sha1_reset(digest, buffer, transforms); return result.str(); } struct sha512_state { std::uint64_t length; std::uint64_t state[8]; std::uint32_t curlen; unsigned char buf[128]; }; typedef std::uint32_t u32; typedef std::uint64_t u64; static const u64 K[80] = { 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL }; static u32 min(u32 x, u32 y) { return x < y ? x : y; } static void store64(u64 x, unsigned char* y) { for(int i = 0; i != 8; ++i) y[i] = (x >> ((7-i) * 8)) & 255; } static u64 load64(const unsigned char* y) { u64 res = 0; for(int i = 0; i != 8; ++i) res |= u64(y[i]) << ((7-i) * 8); return res; } static u64 Ch(u64 x, u64 y, u64 z) { return z ^ (x & (y ^ z)); } static u64 Maj(u64 x, u64 y, u64 z) { return ((x | y) & z) | (x & y); } static u64 Rot(u64 x, u64 n) { return (x >> (n & 63)) | (x << (64 - (n & 63))); } static u64 Sh(u64 x, u64 n) { return x >> n; } static u64 Sigma0(u64 x) { return Rot(x, 28) ^ Rot(x, 34) ^ Rot(x, 39); } static u64 Sigma1(u64 x) { return Rot(x, 14) ^ Rot(x, 18) ^ Rot(x, 41); } static u64 Gamma0(u64 x) { return Rot(x, 1) ^ Rot(x, 8) ^ Sh(x, 7); } static u64 Gamma1(u64 x) { return Rot(x, 19) ^ Rot(x, 61) ^ Sh(x, 6); } static void sha_compress(sha512_state& md, const unsigned char *buf) { u64 S[8], W[80], t0, t1; // Copy state into S for(int i = 0; i < 8; i++) S[i] = md.state[i]; // Copy the state into 1024-bits into W[0..15] for(int i = 0; i < 16; i++) W[i] = load64(buf + (8*i)); // Fill W[16..79] for(int i = 16; i < 80; i++) W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16]; // Compress auto RND = [&](u64 a, u64 b, u64 c, u64& d, u64 e, u64 f, u64 g, u64& h, u64 i) { t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; t1 = Sigma0(a) + Maj(a, b, c); d += t0; h = t0 + t1; }; for(auto i = std::uint64_t(0); i < 80; i += 8) { RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i+0); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],i+1); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],i+2); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],i+3); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],i+4); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],i+5); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],i+6); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],i+7); } // Feedback for(int i = 0; i < 8; i++) md.state[i] = md.state[i] + S[i]; } static void sha_init(sha512_state& md) { md.curlen = 0; md.length = 0; md.state[0] = 0x6a09e667f3bcc908ULL; md.state[1] = 0xbb67ae8584caa73bULL; md.state[2] = 0x3c6ef372fe94f82bULL; md.state[3] = 0xa54ff53a5f1d36f1ULL; md.state[4] = 0x510e527fade682d1ULL; md.state[5] = 0x9b05688c2b3e6c1fULL; md.state[6] = 0x1f83d9abfb41bd6bULL; md.state[7] = 0x5be0cd19137e2179ULL; } static void sha_process(sha512_state& md, const void* src, u32 inlen) { const u32 block_size = sizeof(sha512_state::buf); auto in = static_cast(src); while(inlen > 0) { if(md.curlen == 0 && inlen >= block_size) { sha_compress(md, in); md.length += block_size * 8; in += block_size; inlen -= block_size; } else { u32 n = min(inlen, (block_size - md.curlen)); std::memcpy(md.buf + md.curlen, in, n); md.curlen += n; in += n; inlen -= n; if(md.curlen == block_size) { sha_compress(md, md.buf); md.length += 8*block_size; md.curlen = 0; } } } } static void sha_done(sha512_state& md, void *out) { // Increase the length of the message md.length += md.curlen * 8ULL; // Append the '1' bit md.buf[md.curlen++] = static_cast(0x80); // If the length is currently above 112 bytes we append zeros then compress. // Then we can fall back to padding zeros and length encoding like normal. if(md.curlen > 112) { while(md.curlen < 128) md.buf[md.curlen++] = 0; sha_compress(md, md.buf); md.curlen = 0; } // Pad upto 120 bytes of zeroes // note: that from 112 to 120 is the 64 MSB of the length. We assume that // you won't hash 2^64 bits of data... :-) while(md.curlen < 120) md.buf[md.curlen++] = 0; // Store length store64(md.length, md.buf+120); sha_compress(md, md.buf); // Copy output for(int i = 0; i < 8; i++) store64(md.state[i], static_cast(out)+(8*i)); } } // namespace SHA512 namespace xlnt { namespace detail { std::vector sha1(const std::vector &data) { auto s = SHA1(); s.update(std::string(data.begin(), data.end())); auto hex = s.final_(); std::vector bytes; for (unsigned int i = 0; i < hex.length(); i += 2) { std::string byteString = hex.substr(i, 2); auto byte = static_cast(strtol(byteString.c_str(), NULL, 16)); bytes.push_back(byte); } return bytes; } std::vector sha512(const std::vector &data) { sha512_state md; sha_init(md); sha_process(md, data.data(), static_cast(data.size())); std::vector result(512 / 8, 0); sha_done(md, result.data()); return result; } } // namespace detail } // namespace xlnt