/* POLE - Portable C++ library to access OLE Storage Copyright (C) 2002-2007 Ariya Hidayat (ariya@kde.org). Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include "pole.h" // enable to activate debugging output // #define POLE_DEBUG namespace POLE { } // namespace POLE using namespace POLE; static inline std::uint16_t readU16( const std::uint8_t* ptr ) { return ptr[0]+(ptr[1]<<8); } static inline std::uint32_t readU32( const std::uint8_t* ptr ) { return ptr[0]+(ptr[1]<<8)+(ptr[2]<<16)+(ptr[3]<<24); } static inline void writeU16( std::uint8_t* ptr, std::uint16_t data ) { ptr[0] = (std::uint8_t)(data & 0xff); ptr[1] = (std::uint8_t)((data >> 8) & 0xff); } static inline void writeU32( std::uint8_t* ptr, std::uint32_t data ) { ptr[0] = (std::uint8_t)(data & 0xff); ptr[1] = (std::uint8_t)((data >> 8) & 0xff); ptr[2] = (std::uint8_t)((data >> 16) & 0xff); ptr[3] = (std::uint8_t)((data >> 24) & 0xff); } static const std::uint8_t pole_magic[] = { 0xd0, 0xcf, 0x11, 0xe0, 0xa1, 0xb1, 0x1a, 0xe1 }; // =========== Header ========== Header::Header(): b_shift( 9 ), s_shift( 6 ), num_bat( 0 ), dirent_start( 0 ), threshold( 4096 ), sbat_start( 0 ), num_sbat( 0 ), mbat_start( 0 ), num_mbat( 0 ) { for( std::size_t i = 0; i < 8; i++ ) id[i] = pole_magic[i]; for( std::size_t i=0; i<109; i++ ) bb_blocks[i] = AllocTable::Avail; } bool Header::valid() { if( threshold != 4096 ) return false; if( num_bat == 0 ) return false; if( (num_bat > 109) && (num_bat > (num_mbat * 127) + 109)) return false; if( (num_bat < 109) && (num_mbat != 0) ) return false; if( s_shift > b_shift ) return false; if( b_shift <= 6 ) return false; if( b_shift >=31 ) return false; return true; } void Header::load( const std::uint8_t* buffer ) { b_shift = readU16( buffer + 0x1e ); s_shift = readU16( buffer + 0x20 ); num_bat = readU32( buffer + 0x2c ); dirent_start = readU32( buffer + 0x30 ); threshold = readU32( buffer + 0x38 ); sbat_start = readU32( buffer + 0x3c ); num_sbat = readU32( buffer + 0x40 ); mbat_start = readU32( buffer + 0x44 ); num_mbat = readU32( buffer + 0x48 ); for( std::size_t i = 0; i < 8; i++ ) id[i] = buffer[i]; for( std::size_t i=0; i<109; i++ ) bb_blocks[i] = readU32( buffer + 0x4C+i*4 ); } void Header::save( std::uint8_t* buffer ) { memset( buffer, 0, 0x4c ); memcpy( buffer, pole_magic, 8 ); // ole signature writeU32( buffer + 8, 0 ); // unknown writeU32( buffer + 12, 0 ); // unknown writeU32( buffer + 16, 0 ); // unknown writeU16( buffer + 24, 0x003e ); // revision ? writeU16( buffer + 26, 3 ); // version ? writeU16( buffer + 28, 0xfffe ); // unknown writeU16( buffer + 0x1e, b_shift ); writeU16( buffer + 0x20, s_shift ); writeU32( buffer + 0x2c, num_bat ); writeU32( buffer + 0x30, dirent_start ); writeU32( buffer + 0x38, threshold ); writeU32( buffer + 0x3c, sbat_start ); writeU32( buffer + 0x40, num_sbat ); writeU32( buffer + 0x44, mbat_start ); writeU32( buffer + 0x48, num_mbat ); for( std::size_t i=0; i<109; i++ ) writeU32( buffer + 0x4C+i*4, bb_blocks[i] ); } void Header::debug() { std::cout << std::endl; std::cout << "b_shift " << b_shift << std::endl; std::cout << "s_shift " << s_shift << std::endl; std::cout << "num_bat " << num_bat << std::endl; std::cout << "dirent_start " << dirent_start << std::endl; std::cout << "threshold " << threshold << std::endl; std::cout << "sbat_start " << sbat_start << std::endl; std::cout << "num_sbat " << num_sbat << std::endl; std::cout << "mbat_start " << mbat_start << std::endl; std::cout << "num_mbat " << num_mbat << std::endl; std::size_t s = (num_bat<=109) ? num_bat : 109; std::cout << "bat blocks: "; for( std::size_t i = 0; i < s; i++ ) std::cout << bb_blocks[i] << " "; std::cout << std::endl; } // =========== AllocTable ========== const std::uint32_t AllocTable::Avail = 0xffffffff; const std::uint32_t AllocTable::Eof = 0xfffffffe; const std::uint32_t AllocTable::Bat = 0xfffffffd; const std::uint32_t AllocTable::MetaBat = 0xfffffffc; AllocTable::AllocTable(): blockSize( 4096 ), data() { // initial size resize( 128 ); } std::size_t AllocTable::count() { return data.size(); } void AllocTable::resize( std::size_t newsize ) { std::size_t oldsize = data.size(); data.resize( newsize ); if( newsize > oldsize ) for( std::size_t i = oldsize; i pre; for( std::size_t i=0; i < n; i++ ) pre.push_back( unused() ); } std::size_t AllocTable::operator[]( std::size_t index ) { std::size_t result; result = data[index]; return result; } void AllocTable::set( std::size_t index, std::uint32_t value ) { if( index >= count() ) resize( index + 1); data[ index ] = value; } void AllocTable::setChain( std::vector chain ) { if( chain.size() ) { for( std::size_t i=0; i& chain, std::size_t item) { for(std::size_t i = 0; i < chain.size(); i++) if(chain[i] == item) return true; return false; } // follow std::vector AllocTable::follow( std::size_t start ) { std::vector chain; if( start >= count() ) return chain; std::size_t p = start; while( p < count() ) { if( p == (std::size_t)Eof ) break; if( p == (std::size_t)Bat ) break; if( p == (std::size_t)MetaBat ) break; if( already_exist(chain, p) ) break; chain.push_back(p); if( data[p] >= count() ) break; p = data[ p ]; } return chain; } std::size_t AllocTable::unused() { // find first available block for( std::size_t i = 0; i < data.size(); i++ ) if( data[i] == Avail ) return i; // completely full, so enlarge the table std::size_t block = data.size(); resize( data.size()+10 ); return block; } void AllocTable::load( const std::uint8_t* buffer, std::size_t len ) { resize( len / 4 ); for( std::size_t i = 0; i < count(); i++ ) set( i, readU32( buffer + i*4 ) ); } // return space required to save this dirtree std::size_t AllocTable::size() { return count() * 4; } void AllocTable::save( std::uint8_t* buffer ) { for( std::size_t i = 0; i < count(); i++ ) writeU32( buffer + i*4, data[i] ); } void AllocTable::debug() { std::cout << "block size " << data.size() << std::endl; for( std::size_t i=0; i< data.size(); i++ ) { if( data[i] == Avail ) continue; std::cout << i << ": "; if( data[i] == Eof ) std::cout << "[eof]"; else if( data[i] == Bat ) std::cout << "[bat]"; else if( data[i] == MetaBat ) std::cout << "[metabat]"; else std::cout << data[i]; std::cout << std::endl; } } // =========== DirTree ========== const std::uint32_t DirTree::End = 0xffffffff; DirTree::DirTree(): entries() { clear(); } void DirTree::clear() { // leave only root entry entries.resize( 1 ); entries[0].valid = true; entries[0].name = "Root Entry"; entries[0].dir = true; entries[0].size = 0; entries[0].start = End; entries[0].prev = End; entries[0].next = End; entries[0].child = End; } std::size_t DirTree::entryCount() { return entries.size(); } DirEntry* DirTree::entry( std::size_t index ) { if( index >= entryCount() ) return (DirEntry*) 0; return &entries[ index ]; } std::ptrdiff_t DirTree::indexOf( DirEntry* e ) { for( std::size_t i = 0; i < entryCount(); i++ ) if( entry( i ) == e ) return i; return -1; } std::ptrdiff_t DirTree::parent( std::size_t index ) { // brute-force, basically we iterate for each entries, find its children // and check if one of the children is 'index' for( std::size_t j=0; j chi = children( j ); for( std::size_t i=0; iname; result.insert( 0, "/" ); auto p = parent( index ); DirEntry * _entry = 0; while( p > 0 ) { _entry = entry( p ); if (_entry->dir && _entry->valid) { result.insert( 0, _entry->name); result.insert( 0, "/" ); } --p; index = p; if( index <= 0 ) break; } return result; } // given a fullname (e.g "/ObjectPool/_1020961869"), find the entry // if not found and create is false, return 0 // if create is true, a new entry is returned DirEntry* DirTree::entry( const std::string& name, bool create ) { if( !name.length() ) return (DirEntry*)0; // quick check for "/" (that's root) if( name == "/" ) return entry( 0 ); // split the names, e.g "/ObjectPool/_1020961869" will become: // "ObjectPool" and "_1020961869" std::list names; std::string::size_type start = 0, end = 0; if( name[0] == '/' ) start++; while( start < name.length() ) { end = name.find_first_of( '/', start ); if( end == std::string::npos ) end = name.length(); names.push_back( name.substr( start, end-start ) ); start = end+1; } // start from root std::size_t index = 0 ; // trace one by one std::list::iterator it; for( it = names.begin(); it != names.end(); ++it ) { // find among the children of index std::vector chi = children( index ); std::ptrdiff_t child = 0; for( std::size_t i = 0; i < chi.size(); i++ ) { DirEntry* ce = entry( chi[i] ); if( ce ) if( ce->valid && ( ce->name.length()>1 ) ) if( ce->name == *it ) child = chi[i]; } // traverse to the child if( child > 0 ) index = child; else { // not found among children if( !create ) return (DirEntry*)0; // create a new entry std::size_t parent = index; entries.push_back( DirEntry() ); index = entryCount()-1; DirEntry* e = entry( index ); e->valid = true; e->name = *it; e->dir = false; e->size = 0; e->start = 0; e->child = End; e->prev = End; e->next = entry(parent)->child; entry(parent)->child = static_cast(index); } } return entry( index ); } // helper function: recursively find siblings of index void dirtree_find_siblings( DirTree* dirtree, std::vector& result, std::size_t index ) { DirEntry* e = dirtree->entry( index ); if( !e ) return; if( !e->valid ) return; // prevent infinite loop for( std::size_t i = 0; i < result.size(); i++ ) if( result[i] == index ) return; // add myself result.push_back( index ); // visit previous sibling, don't go infinitely std::size_t prev = e->prev; if( ( prev > 0 ) && ( prev < dirtree->entryCount() ) ) { for( std::size_t i = 0; i < result.size(); i++ ) if( result[i] == prev ) prev = 0; if( prev ) dirtree_find_siblings( dirtree, result, prev ); } // visit next sibling, don't go infinitely std::size_t next = e->next; if( ( next > 0 ) && ( next < dirtree->entryCount() ) ) { for( std::size_t i = 0; i < result.size(); i++ ) if( result[i] == next ) next = 0; if( next ) dirtree_find_siblings( dirtree, result, next ); } } std::vector DirTree::children( std::size_t index ) { std::vector result; DirEntry* e = entry( index ); if( e ) if( e->valid && e->child < entryCount() ) dirtree_find_siblings( this, result, e->child ); return result; } void DirTree::load( std::uint8_t* buffer, std::size_t size ) { entries.clear(); for( std::size_t i = 0; i < size/128; i++ ) { std::size_t p = i * 128; // would be < 32 if first char in the name isn't printable std::size_t prefix = 32; // parse name of this entry, which stored as Unicode 16-bit std::string name; int name_len = readU16( buffer + 0x40+p ); if( name_len > 64 ) name_len = 64; for( int j=0; ( buffer[j+p]) && (j(name.length()*2 + 2) ); writeU32( buffer + 0x74, 0xffffffff ); writeU32( buffer + 0x78, 0 ); writeU32( buffer + 0x44, 0xffffffff ); writeU32( buffer + 0x48, 0xffffffff ); writeU32( buffer + 0x4c, root->child ); buffer[ 0x42 ] = 5; buffer[ 0x43 ] = 1; for( std::size_t i = 1; i < entryCount(); i++ ) { DirEntry* e = entry( i ); if( !e ) continue; if( e->dir ) { e->start = 0xffffffff; e->size = 0; } // max length for name is 32 chars std::string name = e->name; if( name.length() > 32 ) name.erase( 32, name.length() ); // write name as Unicode 16-bit for( std::size_t j = 0; j < name.length(); j++ ) buffer[ i*128 + j*2 ] = name[j]; writeU16( buffer + i*128 + 0x40, static_cast(name.length()*2 + 2) ); writeU32( buffer + i*128 + 0x74, e->start ); writeU32( buffer + i*128 + 0x78, e->size ); writeU32( buffer + i*128 + 0x44, e->prev ); writeU32( buffer + i*128 + 0x48, e->next ); writeU32( buffer + i*128 + 0x4c, e->child ); buffer[ i*128 + 0x42 ] = e->dir ? 1 : 2; buffer[ i*128 + 0x43 ] = 1; // always black } } void DirTree::debug() { for( std::size_t i = 0; i < entryCount(); i++ ) { DirEntry* e = entry( i ); if( !e ) continue; std::cout << i << ": "; if( !e->valid ) std::cout << "INVALID "; std::cout << e->name << " "; if( e->dir ) std::cout << "(Dir) "; else std::cout << "(File) "; std::cout << e->size << " "; std::cout << "s:" << e->start << " "; std::cout << "("; if( e->child == End ) std::cout << "-"; else std::cout << e->child; std::cout << " "; if( e->prev == End ) std::cout << "-"; else std::cout << e->prev; std::cout << ":"; if( e->next == End ) std::cout << "-"; else std::cout << e->next; std::cout << ")"; std::cout << std::endl; } } // =========== StorageIO ========== StorageIO::StorageIO( Storage* st, char* bytes, std::size_t length ): storage( st ), filedata((std::uint8_t *)bytes), dataLength(length), result( Storage::Ok ), opened( false ), filesize( 0 ), header( new Header() ), dirtree( new DirTree() ), bbat ( new AllocTable() ), sbat ( new AllocTable() ), sb_blocks(), streams() { bbat->blockSize = static_cast(1) << header->b_shift; sbat->blockSize = static_cast(1) << header->s_shift; } StorageIO::~StorageIO() { if( opened ) close(); delete sbat; delete bbat; delete dirtree; delete header; } bool StorageIO::open() { // already opened ? close first if( opened ) close(); load(); return result == Storage::Ok; } void StorageIO::load() { std::uint8_t* buffer = 0; std::size_t buflen = 0; std::vector blocks; // open the file, check for error result = Storage::OpenFailed; //FSTREAM file.open( filename.c_str(), std::ios::binary | std::ios::in ); //FSTREAM if( !file.good() ) return; // find size of input file //FSTREAM file.seekg( 0, std::ios::end ); //FSTREAM filesize = file.tellg(); filesize = dataLength; // load header buffer = new std::uint8_t[512]; //FSTREAM file.seekg( 0 ); //FSTREAM file.read( (char*)buffer, 512 ); memcpy(buffer, filedata, 512); header->load( buffer ); delete[] buffer; // check OLE magic id result = Storage::NotOLE; for( std::size_t i=0; i<8; i++ ) if( header->id[i] != pole_magic[i] ) return; // sanity checks result = Storage::BadOLE; if( !header->valid() ) return; if( header->threshold != 4096 ) return; // important block size bbat->blockSize = static_cast(1) << header->b_shift; sbat->blockSize = static_cast(1) << header->s_shift; // find blocks allocated to store big bat // the first 109 blocks are in header, the rest in meta bat blocks.clear(); blocks.resize( header->num_bat ); for( std::size_t i = 0; i < 109; i++ ) if( i >= header->num_bat ) break; else blocks[i] = header->bb_blocks[i]; if( (header->num_bat > 109) && (header->num_mbat > 0) ) { std::uint8_t* buffer2 = new std::uint8_t[ bbat->blockSize ]; memset(buffer2, 0, bbat->blockSize); std::size_t k = 109; std::size_t mblock = header->mbat_start; for( std::size_t r = 0; r < header->num_mbat; r++ ) { loadBigBlock( mblock, buffer2, bbat->blockSize ); for( std::size_t s=0; s < bbat->blockSize-4; s+=4 ) { if( k >= header->num_bat ) break; else blocks[k++] = readU32( buffer2 + s ); } mblock = readU32( buffer2 + bbat->blockSize-4 ); } delete[] buffer2; } // load big bat buflen = blocks.size()*bbat->blockSize; if( buflen > 0 ) { buffer = new std::uint8_t[ buflen ]; memset(buffer, 0, buflen); loadBigBlocks( blocks, buffer, buflen ); bbat->load( buffer, buflen ); delete[] buffer; } // load small bat blocks.clear(); blocks = bbat->follow( header->sbat_start ); buflen = blocks.size()*bbat->blockSize; if( buflen > 0 ) { buffer = new std::uint8_t[ buflen ]; memset(buffer, 0, buflen); loadBigBlocks( blocks, buffer, buflen ); sbat->load( buffer, buflen ); delete[] buffer; } // load directory tree blocks.clear(); blocks = bbat->follow( header->dirent_start ); buflen = blocks.size()*bbat->blockSize; buffer = new std::uint8_t[ buflen ]; memset(buffer, 0, buflen); loadBigBlocks( blocks, buffer, buflen ); dirtree->load( buffer, buflen ); std::size_t sb_start = readU32( buffer + 0x74 ); delete[] buffer; // fetch block chain as data for small-files sb_blocks = bbat->follow( sb_start ); // small files // for troubleshooting, just enable this block #if 0 header->debug(); sbat->debug(); bbat->debug(); dirtree->debug(); #endif // so far so good result = Storage::Ok; opened = true; } void StorageIO::create() { // std::cout << "Creating " << filename << std::endl; /*FSTREAM file.open( filename.c_str(), std::ios::out|std::ios::binary ); if( !file.good() ) { std::cerr << "Can't create " << filename << std::endl; result = Storage::OpenFailed; return; }*/ // so far so good opened = true; result = Storage::Ok; } void StorageIO::flush() { /* Note on Microsoft implementation: - directory entries are stored in the last block(s) - BATs are as second to the last - Meta BATs are third to the last */ } void StorageIO::close() { if( !opened ) return; //FSTREAM file.close(); opened = false; std::list::iterator it; for( it = streams.begin(); it != streams.end(); ++it ) delete *it; } StreamIO* StorageIO::streamIO( const std::string& name ) { // sanity check if( !name.length() ) return (StreamIO*)0; // search in the entries DirEntry* entry = dirtree->entry( name ); //if( entry) std::cout << "FOUND\n"; if( !entry ) return (StreamIO*)0; //if( !entry->dir ) std::cout << " NOT DIR\n"; if( entry->dir ) return (StreamIO*)0; StreamIO* result = new StreamIO( this, entry ); result->fullName = name; return result; } std::size_t StorageIO::loadBigBlocks( std::vector blocks, std::uint8_t* data, std::size_t maxlen ) { // sentinel if( !data ) return 0; if( blocks.size() < 1 ) return 0; if( maxlen == 0 ) return 0; // read block one by one, seems fast enough std::size_t bytes = 0; for( std::size_t i=0; (i < blocks.size() ) && ( bytesblockSize * ( block+1 ); std::size_t p = (bbat->blockSize < maxlen-bytes) ? bbat->blockSize : maxlen-bytes; if( pos + p > filesize ) p = filesize - pos; //FSTREAM file.seekg( pos ); //FSTREAM file.read( (char*)data + bytes, p ); memcpy((char*)data + bytes, filedata + pos, p); bytes += p; } return bytes; } std::size_t StorageIO::loadBigBlock( std::size_t block, std::uint8_t* data, std::size_t maxlen ) { // sentinel if( !data ) return 0; // wraps call for loadBigBlocks std::vector blocks; blocks.resize( 1 ); blocks[ 0 ] = block; return loadBigBlocks( blocks, data, maxlen ); } // return number of bytes which has been read std::size_t StorageIO::loadSmallBlocks( std::vector blocks, std::uint8_t* data, std::size_t maxlen ) { // sentinel if( !data ) return 0; if( blocks.size() < 1 ) return 0; if( maxlen == 0 ) return 0; // our own local buffer std::uint8_t* buf = new std::uint8_t[ bbat->blockSize ]; // read small block one by one std::size_t bytes = 0; for( std::size_t i=0; ( iblockSize; std::size_t bbindex = pos / bbat->blockSize; if( bbindex >= sb_blocks.size() ) break; loadBigBlock( sb_blocks[ bbindex ], buf, bbat->blockSize ); // copy the data std::size_t offset = pos % bbat->blockSize; std::size_t p = (maxlen-bytes < bbat->blockSize-offset ) ? maxlen-bytes : bbat->blockSize-offset; p = (sbat->blockSize

blockSize : p; memcpy( data + bytes, buf + offset, p ); bytes += p; } delete[] buf; return bytes; } std::size_t StorageIO::loadSmallBlock( std::size_t block, std::uint8_t* data, std::size_t maxlen ) { // sentinel if( !data ) return 0; // wraps call for loadSmallBlocks std::vector blocks; blocks.resize( 1 ); blocks.assign( 1, block ); return loadSmallBlocks( blocks, data, maxlen ); } // =========== StreamIO ========== StreamIO::StreamIO( StorageIO* s, DirEntry* e ): io( s ), entry( e ), fullName(), eof( false ), fail( false ), blocks(), m_pos( 0 ), cache_data( 0 ), cache_size( 4096 ), // optimal ? cache_pos( 0 ) { if( entry->size >= io->header->threshold ) blocks = io->bbat->follow( entry->start ); else blocks = io->sbat->follow( entry->start ); // prepare cache cache_data = new std::uint8_t[cache_size]; updateCache(); } // FIXME tell parent we're gone StreamIO::~StreamIO() { delete[] cache_data; } void StreamIO::seek( std::size_t pos ) { m_pos = pos; } std::size_t StreamIO::tell() { return m_pos; } int StreamIO::getch() { // past end-of-file ? if( m_pos > entry->size ) return -1; // need to update cache ? if( !cache_size || ( m_pos < cache_pos ) || ( m_pos >= cache_pos + cache_size ) ) updateCache(); // something bad if we don't get good cache if( !cache_size ) return -1; int data = cache_data[m_pos - cache_pos]; m_pos++; return data; } std::size_t StreamIO::read( std::size_t pos, std::uint8_t* data, std::size_t maxlen ) { // sanity checks if( !data ) return 0; if( maxlen == 0 ) return 0; std::size_t totalbytes = 0; if ( entry->size < io->header->threshold ) { // small file std::size_t index = pos / io->sbat->blockSize; if( index >= blocks.size() ) return 0; std::uint8_t* buf = new std::uint8_t[ io->sbat->blockSize ]; std::size_t offset = pos % io->sbat->blockSize; while( totalbytes < maxlen ) { if( index >= blocks.size() ) break; io->loadSmallBlock( blocks[index], buf, io->bbat->blockSize ); std::size_t count = io->sbat->blockSize - offset; if( count > maxlen-totalbytes ) count = maxlen-totalbytes; memcpy( data+totalbytes, buf + offset, count ); totalbytes += count; offset = 0; index++; } delete[] buf; } else { // big file std::size_t index = pos / io->bbat->blockSize; if( index >= blocks.size() ) return 0; std::uint8_t* buf = new std::uint8_t[ io->bbat->blockSize ]; std::size_t offset = pos % io->bbat->blockSize; while( totalbytes < maxlen ) { if( index >= blocks.size() ) break; io->loadBigBlock( blocks[index], buf, io->bbat->blockSize ); std::size_t count = io->bbat->blockSize - offset; if( count > maxlen-totalbytes ) count = maxlen-totalbytes; memcpy( data+totalbytes, buf + offset, count ); totalbytes += count; index++; offset = 0; } delete [] buf; } return totalbytes; } std::size_t StreamIO::read( std::uint8_t* data, std::size_t maxlen ) { std::size_t bytes = read( tell(), data, maxlen ); m_pos += bytes; return bytes; } void StreamIO::updateCache() { // sanity check if( !cache_data ) return; cache_pos = m_pos - ( m_pos % cache_size ); std::size_t bytes = cache_size; if( cache_pos + bytes > entry->size ) bytes = entry->size - cache_pos; cache_size = read( cache_pos, cache_data, bytes ); } // =========== Storage ========== Storage::Storage( char* bytes, std::size_t length ): io( new StorageIO( this, bytes, length ) ) { } Storage::~Storage() { delete io; } int Storage::result() { return io->result; } bool Storage::open() { return io->open(); } void Storage::close() { io->close(); } std::list Storage::entries( const std::string& path ) { std::list result; DirTree* dt = io->dirtree; DirEntry* e = dt->entry( path, false ); if( e && e->dir ) { std::size_t parent = dt->indexOf( e ); std::vector children = dt->children( parent ); for( std::size_t i = 0; i < children.size(); i++ ) result.push_back( dt->entry( children[i] )->name ); } return result; } bool Storage::isDirectory( const std::string& name ) { DirEntry* e = io->dirtree->entry( name, false ); return e ? e->dir : false; } DirTree* Storage::dirTree() { return io->dirtree; } StorageIO* Storage::storageIO() { return io; } std::list Storage::dirEntries( const std::string& path ) { std::list result; DirTree* dt = io->dirtree; DirEntry* e = dt->entry( path, false ); if( e && e->dir ) { std::size_t parent = dt->indexOf( e ); std::vector children = dt->children( parent ); for( std::size_t i = 0; i < children.size(); i++ ) result.push_back( dt->entry( children[i] ) ); } return result; } // =========== Stream ========== Stream::Stream( Storage* storage, const std::string& name ): io( storage->io->streamIO( name ) ) { } // FIXME tell parent we're gone Stream::~Stream() { delete io; } std::string Stream::fullName() { return io ? io->fullName : std::string(); } std::size_t Stream::tell() { return io ? io->tell() : 0; } void Stream::seek( std::size_t newpos ) { if( io ) io->seek( newpos ); } std::size_t Stream::size() { return io ? io->entry->size : 0; } int Stream::getch() { return io ? io->getch() : 0; } std::size_t Stream::read( std::uint8_t* data, std::size_t maxlen ) { return io ? io->read( data, maxlen ) : 0; } bool Stream::eof() { return io ? io->eof : false; } bool Stream::fail() { return io ? io->fail : true; }