// Copyright (c) 2014-2017 Thomas Fussell // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, WRISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE // // @license: http://www.opensource.org/licenses/mit-license.php // @author: see AUTHORS file #include #include #include #include #include #include #include #include #include #include #include namespace { enum class hash_algorithm { sha1, sha256, sha384, sha512, md5, md4, md2, ripemd128, ripemd160, whirlpool }; struct XLNT_API crypto_helper { static const std::size_t segment_length; enum class cipher_algorithm { aes, rc2, rc4, des, desx, triple_des, triple_des_112 }; enum class cipher_chaining { ecb, // electronic code book cbc, // cipher block chaining cfb // cipher feedback chaining }; enum class cipher_direction { encryption, decryption }; static std::vector aes(const std::vector &key, const std::vector &iv, const std::vector &source, cipher_chaining chaining, cipher_direction direction); static std::vector hash(hash_algorithm algorithm, const std::vector &input); static std::vector file(POLE::Storage &storage, const std::string &name); struct standard_encryption_info { const std::size_t spin_count = 50000; std::size_t block_size; std::size_t key_bits; std::size_t key_bytes; std::size_t hash_size; cipher_algorithm cipher; cipher_chaining chaining; const hash_algorithm hash = hash_algorithm::sha1; std::vector salt_value; std::vector verifier_hash_input; std::vector verifier_hash_value; std::vector encrypted_key_value; }; static std::vector decrypt_xlsx_standard(const std::vector &encryption_info, const std::string &password, const std::vector &encrypted_package); struct agile_encryption_info { // key data struct { std::size_t salt_size; std::size_t block_size; std::size_t key_bits; std::size_t hash_size; std::string cipher_algorithm; std::string cipher_chaining; std::string hash_algorithm; std::vector salt_value; } key_data; struct { std::vector hmac_key; std::vector hmac_value; } data_integrity; struct { std::size_t spin_count; std::size_t salt_size; std::size_t block_size; std::size_t key_bits; std::size_t hash_size; std::string cipher_algorithm; std::string cipher_chaining; hash_algorithm hash; std::vector salt_value; std::vector verifier_hash_input; std::vector verifier_hash_value; std::vector encrypted_key_value; } key_encryptor; }; static agile_encryption_info generate_agile_encryption_info(const std::string &password); //static std::vector write_agile_encryption_info(const std::string &password); static std::vector decrypt_xlsx_agile(const std::vector &encryption_info, const std::string &password, const std::vector &encrypted_package); static std::vector decrypt_xlsx(const std::vector &bytes, const std::string &password); static std::vector encrypt_xlsx(const std::vector &bytes, const std::string &password); }; template auto read_int(std::size_t &index, const std::vector &raw_data) { auto result = *reinterpret_cast(&raw_data[index]); index += sizeof(T); return result; } std::vector hash_sha1(const std::vector &input) { return SHA::sha1(input); } std::vector hash_sha512(const std::vector &input) { return SHA::sha512(input); } std::vector decode_base64(const std::string &encoded) { std::vector decoded(static_cast(Base64::DecodedLength(encoded)), 0); Base64::Decode(encoded.data(), encoded.size(), reinterpret_cast(&decoded.data()[0]), decoded.size()); return decoded; } /* std::string encode_base64(const std::vector &decoded) { std::string encoded(static_cast(Base64::EncodedLength(decoded.size())), 0); Base64::Encode(reinterpret_cast(decoded.data()), decoded.size(), &encoded[0], encoded.size()); return encoded; } */ std::vector crypto_helper::aes( const std::vector &key, const std::vector &iv, const std::vector &source, cipher_chaining chaining, cipher_direction direction) { if (direction == cipher_direction::encryption && chaining == cipher_chaining::cbc) { return xlnt::detail::aes_cbc_encrypt(source, key, iv); } else if (direction == cipher_direction::decryption && chaining == cipher_chaining::cbc) { return xlnt::detail::aes_cbc_decrypt(source, key, iv); } else if (direction == cipher_direction::encryption && chaining == cipher_chaining::ecb) { return xlnt::detail::aes_ecb_encrypt(source, key); } else if (direction == cipher_direction::decryption && chaining == cipher_chaining::ecb) { return xlnt::detail::aes_ecb_decrypt(source, key); } throw xlnt::exception("unsupported encryption algorithm"); } std::vector crypto_helper::hash(hash_algorithm algorithm, const std::vector &input) { if (algorithm == hash_algorithm::sha512) { return hash_sha512(input); } else if (algorithm == hash_algorithm::sha1) { return hash_sha1(input); } throw xlnt::exception("unsupported hash algorithm"); } std::vector crypto_helper::file(POLE::Storage &storage, const std::string &name) { POLE::Stream stream(&storage, name.c_str()); if (stream.fail()) return {}; std::vector bytes(stream.size(), 0); stream.read(bytes.data(), static_cast(bytes.size())); return bytes; } std::vector crypto_helper::decrypt_xlsx_standard( const std::vector &encryption_info, const std::string &password, const std::vector &encrypted_package) { std::size_t offset = 0; standard_encryption_info info; auto header_length = read_int(offset, encryption_info); auto index_at_start = offset; /*auto skip_flags = */ read_int(offset, encryption_info); /*auto size_extra = */ read_int(offset, encryption_info); auto alg_id = read_int(offset, encryption_info); if (alg_id == 0 || alg_id == 0x0000660E || alg_id == 0x0000660F || alg_id == 0x00006610) { info.cipher = cipher_algorithm::aes; } else { throw xlnt::exception("invalid cipher algorithm"); } auto alg_id_hash = read_int(offset, encryption_info); if (alg_id_hash != 0x00008004 && alg_id_hash == 0) { throw xlnt::exception("invalid hash algorithm"); } info.key_bits = read_int(offset, encryption_info); info.key_bytes = info.key_bits / 8; auto provider_type = read_int(offset, encryption_info); if (provider_type != 0 && provider_type != 0x00000018) { throw xlnt::exception("invalid provider type"); } read_int(offset, encryption_info); // reserved 1 if (read_int(offset, encryption_info) != 0) // reserved 2 { throw xlnt::exception("invalid header"); } const auto csp_name_length = header_length - (offset - index_at_start); std::vector csp_name_wide( reinterpret_cast(&*(encryption_info.begin() + static_cast(offset))), reinterpret_cast( &*(encryption_info.begin() + static_cast(offset + csp_name_length)))); std::string csp_name(csp_name_wide.begin(), csp_name_wide.end() - 1); // without trailing null if (csp_name != "Microsoft Enhanced RSA and AES Cryptographic Provider (Prototype)" && csp_name != "Microsoft Enhanced RSA and AES Cryptographic Provider") { throw xlnt::exception("invalid cryptographic provider"); } offset += csp_name_length; const auto salt_size = read_int(offset, encryption_info); std::vector salt(encryption_info.begin() + static_cast(offset), encryption_info.begin() + static_cast(offset + salt_size)); offset += salt_size; static const auto verifier_size = std::size_t(16); std::vector verifier_hash_input(encryption_info.begin() + static_cast(offset), encryption_info.begin() + static_cast(offset + verifier_size)); offset += verifier_size; const auto verifier_hash_size = read_int(offset, encryption_info); std::vector verifier_hash_value(encryption_info.begin() + static_cast(offset), encryption_info.begin() + static_cast(offset + verifier_hash_size)); offset += verifier_hash_size; // begin key generation algorithm // H_0 = H(salt + password) auto salt_plus_password = salt; std::vector password_wide(password.begin(), password.end()); std::for_each(password_wide.begin(), password_wide.end(), [&salt_plus_password](std::uint16_t c) { salt_plus_password.insert(salt_plus_password.end(), reinterpret_cast(&c), reinterpret_cast(&c) + sizeof(std::uint16_t)); }); std::vector h_0 = hash(info.hash, salt_plus_password); // H_n = H(iterator + H_n-1) std::vector iterator_plus_h_n(4, 0); iterator_plus_h_n.insert(iterator_plus_h_n.end(), h_0.begin(), h_0.end()); std::uint32_t &iterator = *reinterpret_cast(iterator_plus_h_n.data()); std::vector h_n; for (iterator = 0; iterator < info.spin_count; ++iterator) { h_n = hash(info.hash, iterator_plus_h_n); std::copy(h_n.begin(), h_n.end(), iterator_plus_h_n.begin() + 4); } // H_final = H(H_n + block) auto h_n_plus_block = h_n; const std::uint32_t block_number = 0; h_n_plus_block.insert(h_n_plus_block.end(), reinterpret_cast(&block_number), reinterpret_cast(&block_number) + sizeof(std::uint32_t)); auto h_final = hash(info.hash, h_n_plus_block); // X1 = H(h_final ^ 0x36) std::vector buffer(64, 0x36); for (std::size_t i = 0; i < h_final.size(); ++i) { buffer[i] = static_cast(0x36 ^ h_final[i]); } auto X1 = hash(info.hash, buffer); // X2 = H(h_final ^ 0x5C) buffer.assign(64, 0x5c); for (std::size_t i = 0; i < h_final.size(); ++i) { buffer[i] = static_cast(0x5c ^ h_final[i]); } auto X2 = hash(info.hash, buffer); auto X3 = X1; X3.insert(X3.end(), X2.begin(), X2.end()); auto key_derived = std::vector(X3.begin(), X3.begin() + static_cast(info.key_bytes)); // todo: verify here std::size_t package_offset = 0; auto decrypted_size = static_cast(read_int(package_offset, encrypted_package)); auto decrypted = aes(key_derived, {}, std::vector(encrypted_package.begin() + 8, encrypted_package.end()), cipher_chaining::ecb, cipher_direction::decryption); decrypted.resize(decrypted_size); return decrypted; } crypto_helper::agile_encryption_info crypto_helper::generate_agile_encryption_info(const std::string &password) { agile_encryption_info result; result.key_data.salt_value.assign(password.begin(), password.end()); return result; } /* std::vector crypto_helper::write_agile_encryption_info(const std::string &password) { static const auto &xmlns = xlnt::constants::ns("encryption"); static const auto &xmlns_p = xlnt::constants::ns("encryption-password"); std::vector encryption_info; xlnt::detail::vector_ostreambuf encryption_info_buffer(encryption_info); std::ostream encryption_info_stream(&encryption_info_buffer); xml::serializer serializer(encryption_info_stream, "EncryptionInfo"); agile_encryption_info result = generate_agile_encryption_info(password); serializer.start_element(xmlns, "encryption"); serializer.start_element(xmlns, "keyData"); serializer.attribute("saltSize", result.key_data.salt_size); serializer.attribute("blockSize", result.key_data.block_size); serializer.attribute("keyBits", result.key_data.key_bits); serializer.attribute("hashSize", result.key_data.hash_size); serializer.attribute("cipherAlgorithm", result.key_data.cipher_algorithm); serializer.attribute("cipherChaining", result.key_data.cipher_chaining); serializer.attribute("hashAlgorithm", result.key_data.hash_algorithm); serializer.attribute("saltValue", encode_base64(result.key_data.salt_value)); serializer.end_element(xmlns, "keyData"); serializer.start_element(xmlns, "dataIntegrity"); serializer.attribute("encryptedHmacKey", encode_base64(result.data_integrity.hmac_key)); serializer.attribute("encryptedHmacValue", encode_base64(result.data_integrity.hmac_value)); serializer.end_element(xmlns, "dataIntegrity"); serializer.start_element(xmlns, "keyEncryptors"); serializer.start_element(xmlns, "keyEncryptor"); serializer.attribute("uri", ""); serializer.start_element(xmlns_p, "encryptedKey"); serializer.attribute("spinCount", result.key_encryptor.spin_count); serializer.attribute("saltSize", result.key_encryptor.salt_size); serializer.attribute("blockSize", result.key_encryptor.block_size); serializer.attribute("keyBits", result.key_encryptor.key_bits); serializer.attribute("hashSize", result.key_encryptor.hash_size); serializer.attribute("cipherAlgorithm", result.key_encryptor.cipher_algorithm); serializer.attribute("cipherChaining", result.key_encryptor.cipher_chaining); serializer.attribute("hashAlgorithm", result.key_encryptor.hash); serializer.attribute("saltValue", encode_base64(result.key_encryptor.salt_value)); serializer.attribute("encryptedVerifierHashInput", encode_base64(result.key_encryptor.verifier_hash_input)); serializer.attribute("encryptedVerifierHashValue", encode_base64(result.key_encryptor.verifier_hash_value)); serializer.attribute("encryptedKeyValue", encode_base64(result.key_encryptor.encrypted_key_value)); serializer.end_element(xmlns_p, "encryptedKey"); serializer.end_element(xmlns, "keyEncryptor"); serializer.end_element(xmlns, "keyEncryptors"); serializer.end_element(xmlns, "encryption"); return encryption_info; } */ std::vector crypto_helper::decrypt_xlsx_agile( const std::vector &encryption_info, const std::string &password, const std::vector &encrypted_package) { static const auto &xmlns = xlnt::constants::ns("encryption"); static const auto &xmlns_p = xlnt::constants::ns("encryption-password"); // static const auto &xmlns_c = xlnt::constants::namespace_("encryption-certificate"); agile_encryption_info result; xml::parser parser(encryption_info.data(), encryption_info.size(), "EncryptionInfo"); parser.next_expect(xml::parser::event_type::start_element, xmlns, "encryption"); parser.next_expect(xml::parser::event_type::start_element, xmlns, "keyData"); result.key_data.salt_size = parser.attribute("saltSize"); result.key_data.block_size = parser.attribute("blockSize"); result.key_data.key_bits = parser.attribute("keyBits"); result.key_data.hash_size = parser.attribute("hashSize"); result.key_data.cipher_algorithm = parser.attribute("cipherAlgorithm"); result.key_data.cipher_chaining = parser.attribute("cipherChaining"); result.key_data.hash_algorithm = parser.attribute("hashAlgorithm"); result.key_data.salt_value = decode_base64(parser.attribute("saltValue")); parser.next_expect(xml::parser::event_type::end_element, xmlns, "keyData"); parser.next_expect(xml::parser::event_type::start_element, xmlns, "dataIntegrity"); result.data_integrity.hmac_key = decode_base64(parser.attribute("encryptedHmacKey")); result.data_integrity.hmac_value = decode_base64(parser.attribute("encryptedHmacValue")); parser.next_expect(xml::parser::event_type::end_element, xmlns, "dataIntegrity"); parser.next_expect(xml::parser::event_type::start_element, xmlns, "keyEncryptors"); parser.next_expect(xml::parser::event_type::start_element, xmlns, "keyEncryptor"); parser.attribute("uri"); bool any_password_key = false; while (parser.peek() != xml::parser::event_type::end_element) { parser.next_expect(xml::parser::event_type::start_element); if (parser.namespace_() == xmlns_p && parser.name() == "encryptedKey") { any_password_key = true; result.key_encryptor.spin_count = parser.attribute("spinCount"); result.key_encryptor.salt_size = parser.attribute("saltSize"); result.key_encryptor.block_size = parser.attribute("blockSize"); result.key_encryptor.key_bits = parser.attribute("keyBits"); result.key_encryptor.hash_size = parser.attribute("hashSize"); result.key_encryptor.cipher_algorithm = parser.attribute("cipherAlgorithm"); result.key_encryptor.cipher_chaining = parser.attribute("cipherChaining"); auto hash_algorithm_string = parser.attribute("hashAlgorithm"); if (hash_algorithm_string == "SHA512") { result.key_encryptor.hash = hash_algorithm::sha512; } else if (hash_algorithm_string == "SHA1") { result.key_encryptor.hash = hash_algorithm::sha1; } else if (hash_algorithm_string == "SHA256") { result.key_encryptor.hash = hash_algorithm::sha256; } else if (hash_algorithm_string == "SHA384") { result.key_encryptor.hash = hash_algorithm::sha384; } result.key_encryptor.salt_value = decode_base64(parser.attribute("saltValue")); result.key_encryptor.verifier_hash_input = decode_base64(parser.attribute("encryptedVerifierHashInput")); result.key_encryptor.verifier_hash_value = decode_base64(parser.attribute("encryptedVerifierHashValue")); result.key_encryptor.encrypted_key_value = decode_base64(parser.attribute("encryptedKeyValue")); } else { throw xlnt::unsupported("other encryption key types not supported"); } parser.next_expect(xml::parser::event_type::end_element); } if (!any_password_key) { throw "no password key in keyEncryptors"; } parser.next_expect(xml::parser::event_type::end_element, xmlns, "keyEncryptor"); parser.next_expect(xml::parser::event_type::end_element, xmlns, "keyEncryptors"); parser.next_expect(xml::parser::event_type::end_element, xmlns, "encryption"); // begin key generation algorithm // H_0 = H(salt + password) auto salt_plus_password = result.key_encryptor.salt_value; std::vector password_wide(password.begin(), password.end()); std::for_each(password_wide.begin(), password_wide.end(), [&salt_plus_password](std::uint16_t c) { salt_plus_password.insert(salt_plus_password.end(), reinterpret_cast(&c), reinterpret_cast(&c) + sizeof(std::uint16_t)); }); auto h_0 = hash(result.key_encryptor.hash, salt_plus_password); // H_n = H(iterator + H_n-1) std::vector iterator_plus_h_n(4, 0); iterator_plus_h_n.insert(iterator_plus_h_n.end(), h_0.begin(), h_0.end()); std::uint32_t &iterator = *reinterpret_cast(iterator_plus_h_n.data()); std::vector h_n; for (iterator = 0; iterator < result.key_encryptor.spin_count; ++iterator) { h_n = hash(result.key_encryptor.hash, iterator_plus_h_n); std::copy(h_n.begin(), h_n.end(), iterator_plus_h_n.begin() + 4); } static const std::size_t block_size = 8; auto calculate_block = [&result](const std::vector &raw_key, const std::array &block, const std::vector &encrypted) { auto combined = raw_key; combined.insert(combined.end(), block.begin(), block.end()); auto key = hash(result.key_encryptor.hash, combined); key.resize(result.key_encryptor.key_bits / 8); return aes(key, result.key_encryptor.salt_value, encrypted, cipher_chaining::cbc, cipher_direction::decryption); }; const std::array input_block_key = {{0xfe, 0xa7, 0xd2, 0x76, 0x3b, 0x4b, 0x9e, 0x79}}; auto hash_input = calculate_block(h_n, input_block_key, result.key_encryptor.verifier_hash_input); auto calculated_verifier = hash(result.key_encryptor.hash, hash_input); const std::array verifier_block_key = { {0xd7, 0xaa, 0x0f, 0x6d, 0x30, 0x61, 0x34, 0x4e}}; auto expected_verifier = calculate_block(h_n, verifier_block_key, result.key_encryptor.verifier_hash_value); expected_verifier.resize(calculated_verifier.size()); if (calculated_verifier.size() != expected_verifier.size() || std::mismatch(calculated_verifier.begin(), calculated_verifier.end(), expected_verifier.begin(), expected_verifier.end()) != std::make_pair(calculated_verifier.end(), expected_verifier.end())) { throw xlnt::exception("bad password"); } const std::array key_value_block_key = { {0x14, 0x6e, 0x0b, 0xe7, 0xab, 0xac, 0xd0, 0xd6}}; auto key = calculate_block(h_n, key_value_block_key, result.key_encryptor.encrypted_key_value); auto salt_size = result.key_data.salt_size; auto salt_with_block_key = result.key_data.salt_value; salt_with_block_key.resize(salt_size + sizeof(std::uint32_t), 0); auto &segment = *reinterpret_cast(salt_with_block_key.data() + salt_size); auto total_size = static_cast(*reinterpret_cast(encrypted_package.data())); std::vector encrypted_segment(segment_length, 0); std::vector decrypted_package; decrypted_package.reserve(encrypted_package.size() - 8); for (std::size_t i = 8; i < encrypted_package.size(); i += segment_length) { auto iv = hash(result.key_encryptor.hash, salt_with_block_key); iv.resize(16); auto segment_begin = encrypted_package.begin() + static_cast(i); auto current_segment_length = std::min(segment_length, encrypted_package.size() - i); auto segment_end = encrypted_package.begin() + static_cast(i + current_segment_length); encrypted_segment.assign(segment_begin, segment_end); auto decrypted_segment = aes(key, iv, encrypted_segment, cipher_chaining::cbc, cipher_direction::decryption); decrypted_segment.resize(current_segment_length); decrypted_package.insert(decrypted_package.end(), decrypted_segment.begin(), decrypted_segment.end()); ++segment; } decrypted_package.resize(total_size); return decrypted_package; } std::vector crypto_helper::decrypt_xlsx( const std::vector &bytes, const std::string &password) { if (bytes.empty()) { throw xlnt::exception("empty file"); } std::vector as_chars(bytes.begin(), bytes.end()); POLE::Storage storage(as_chars.data(), static_cast(bytes.size())); if (!storage.open()) { throw xlnt::exception("not an ole compound file"); } auto encrypted_package = file(storage, "EncryptedPackage"); auto encryption_info = file(storage, "EncryptionInfo"); std::size_t index = 0; auto version_major = read_int(index, encryption_info); auto version_minor = read_int(index, encryption_info); auto encryption_flags = read_int(index, encryption_info); // get rid of header encryption_info.erase(encryption_info.begin(), encryption_info.begin() + static_cast(index)); // version 4.4 is agile if (version_major == 4 && version_minor == 4) { if (encryption_flags != 0x40) { throw xlnt::exception("bad header"); } return decrypt_xlsx_agile(encryption_info, password, encrypted_package); } // not agile, only try to decrypt versions 3.2 and 4.2 if (version_minor != 2 || (version_major != 2 && version_major != 3 && version_major != 4)) { throw xlnt::exception("unsupported encryption version"); } if ((encryption_flags & 0b00000011) != 0) // Reserved1 and Reserved2, MUST be 0 { throw xlnt::exception("bad header"); } if ((encryption_flags & 0b00000100) == 0 // fCryptoAPI || (encryption_flags & 0b00010000) != 0) // fExternal { throw xlnt::exception("extensible encryption is not supported"); } if ((encryption_flags & 0b00100000) == 0) // fAES { throw xlnt::exception("not an OOXML document"); } return decrypt_xlsx_standard(encryption_info, password, encrypted_package); } std::vector crypto_helper::encrypt_xlsx( const std::vector &bytes, const std::string &password) { if (bytes.empty()) { throw xlnt::exception("empty file"); } generate_agile_encryption_info(password); return {}; } const std::size_t crypto_helper::segment_length = 4096; } // namespace namespace xml { template <> struct value_traits { /* static hash_algorithm parse(std::string hash_algorithm_string, const parser &) { if (hash_algorithm_string == "SHA1") return hash_algorithm::sha1; else if (hash_algorithm_string == "SHA256") return hash_algorithm::sha256; else if (hash_algorithm_string == "SHA384") return hash_algorithm::sha384; else if (hash_algorithm_string == "SHA512") return hash_algorithm::sha512; else if (hash_algorithm_string == "MD5") return hash_algorithm::md5; else if (hash_algorithm_string == "MD4") return hash_algorithm::md4; else if (hash_algorithm_string == "MD2") return hash_algorithm::md2; else if (hash_algorithm_string == "Ripemd128") return hash_algorithm::ripemd128; else if (hash_algorithm_string == "Ripemd160") return hash_algorithm::ripemd160; else if (hash_algorithm_string == "Whirlpool") return hash_algorithm::whirlpool; default_case(hash_algorithm::sha1); } static std::string serialize(hash_algorithm algorithm, const serializer &) { switch (algorithm) { case hash_algorithm::sha1: return "SHA1"; case hash_algorithm::sha256: return "SHA256"; case hash_algorithm::sha384: return "SHA384"; case hash_algorithm::sha512: return "SHA512"; case hash_algorithm::md5: return "MD5"; case hash_algorithm::md4: return "MD4"; case hash_algorithm::md2: return "MD2"; case hash_algorithm::ripemd128: return "Ripemd128"; case hash_algorithm::ripemd160: return "Ripemd160"; case hash_algorithm::whirlpool: return "Whirlpool"; } default_case("SHA1"); } */ }; // struct value_traits<> } // namespace xml namespace xlnt { namespace detail { std::vector XLNT_API decrypt_xlsx(const std::vector &data, const std::string &password) { return crypto_helper::decrypt_xlsx(data, password); } void xlsx_consumer::read(std::istream &source, const std::string &password) { std::vector data((std::istreambuf_iterator(source)), (std::istreambuf_iterator())); const auto decrypted = crypto_helper::decrypt_xlsx(data, password); vector_istreambuf decrypted_buffer(decrypted); std::istream decrypted_stream(&decrypted_buffer); read(decrypted_stream); } void xlsx_producer::write(std::ostream &destination, const std::string &password) { std::vector decrypted; { vector_ostreambuf decrypted_buffer(decrypted); std::ostream decrypted_stream(&decrypted_buffer); write(decrypted_stream); } const auto encrypted = crypto_helper::encrypt_xlsx(decrypted, password); vector_istreambuf encrypted_buffer(encrypted); destination << &encrypted_buffer; } } // namespace detail } // namespace xlnt