use pybind11 instead of raw C Python API, python_streambuffer is broken for now

This commit is contained in:
Thomas Fussell 2017-07-30 09:48:57 -07:00
parent eaaa310cef
commit de0e010056
55 changed files with 13934 additions and 652 deletions

View File

@ -31,7 +31,7 @@ if(TESTS)
add_subdirectory(tests)
endif()
if(ARROW)
if(PYTHON)
add_subdirectory(xlntpyarrow)
endif()

133
cmake/FindArrow.cmake Normal file
View File

@ -0,0 +1,133 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# - Find ARROW (arrow/api.h, libarrow.a, libarrow.so)
# This module defines
# ARROW_INCLUDE_DIR, directory containing headers
# ARROW_LIBS, directory containing arrow libraries
# ARROW_STATIC_LIB, path to libarrow.a
# ARROW_SHARED_LIB, path to libarrow's shared library
# ARROW_SHARED_IMP_LIB, path to libarrow's import library (MSVC only)
# ARROW_FOUND, whether arrow has been found
include(FindPkgConfig)
if ("$ENV{ARROW_HOME}" STREQUAL "")
pkg_check_modules(ARROW arrow)
if (ARROW_FOUND)
pkg_get_variable(ARROW_ABI_VERSION arrow abi_version)
message(STATUS "Arrow ABI version: ${ARROW_ABI_VERSION}")
pkg_get_variable(ARROW_SO_VERSION arrow so_version)
message(STATUS "Arrow SO version: ${ARROW_SO_VERSION}")
set(ARROW_INCLUDE_DIR ${ARROW_INCLUDE_DIRS})
set(ARROW_LIBS ${ARROW_LIBRARY_DIRS})
set(ARROW_SEARCH_LIB_PATH ${ARROW_LIBRARY_DIRS})
endif()
else()
set(ARROW_HOME "$ENV{ARROW_HOME}")
set(ARROW_SEARCH_HEADER_PATHS
${ARROW_HOME}/include
)
set(ARROW_SEARCH_LIB_PATH
${ARROW_HOME}/lib
)
find_path(ARROW_INCLUDE_DIR arrow/array.h PATHS
${ARROW_SEARCH_HEADER_PATHS}
# make sure we don't accidentally pick up a different version
NO_DEFAULT_PATH
)
endif()
find_library(ARROW_LIB_PATH NAMES arrow
PATHS
${ARROW_SEARCH_LIB_PATH}
NO_DEFAULT_PATH)
get_filename_component(ARROW_LIBS ${ARROW_LIB_PATH} DIRECTORY)
find_library(ARROW_PYTHON_LIB_PATH NAMES arrow_python
PATHS
${ARROW_SEARCH_LIB_PATH}
NO_DEFAULT_PATH)
get_filename_component(ARROW_PYTHON_LIBS ${ARROW_PYTHON_LIB_PATH} DIRECTORY)
if (MSVC)
SET(CMAKE_FIND_LIBRARY_SUFFIXES ".lib" ".dll")
if (MSVC AND NOT ARROW_MSVC_STATIC_LIB_SUFFIX)
set(ARROW_MSVC_STATIC_LIB_SUFFIX "_static")
endif()
find_library(ARROW_SHARED_LIBRARIES NAMES arrow
PATHS ${ARROW_HOME} NO_DEFAULT_PATH
PATH_SUFFIXES "bin" )
find_library(ARROW_PYTHON_SHARED_LIBRARIES NAMES arrow_python
PATHS ${ARROW_HOME} NO_DEFAULT_PATH
PATH_SUFFIXES "bin" )
get_filename_component(ARROW_SHARED_LIBS ${ARROW_SHARED_LIBRARIES} PATH )
get_filename_component(ARROW_PYTHON_SHARED_LIBS ${ARROW_PYTHON_SHARED_LIBRARIES} PATH )
endif ()
if (ARROW_INCLUDE_DIR AND ARROW_LIBS)
set(ARROW_FOUND TRUE)
set(ARROW_LIB_NAME arrow)
set(ARROW_PYTHON_LIB_NAME arrow_python)
if (MSVC)
set(ARROW_STATIC_LIB ${ARROW_LIBS}/${ARROW_LIB_NAME}${ARROW_MSVC_STATIC_LIB_SUFFIX}${CMAKE_STATIC_LIBRARY_SUFFIX})
set(ARROW_PYTHON_STATIC_LIB ${ARROW_PYTHON_LIBS}/${ARROW_PYTHON_LIB_NAME}${ARROW_MSVC_STATIC_LIB_SUFFIX}${CMAKE_STATIC_LIBRARY_SUFFIX})
set(ARROW_SHARED_LIB ${ARROW_SHARED_LIBS}/${ARROW_LIB_NAME}${CMAKE_SHARED_LIBRARY_SUFFIX})
set(ARROW_PYTHON_SHARED_LIB ${ARROW_PYTHON_SHARED_LIBS}/${ARROW_PYTHON_LIB_NAME}${CMAKE_SHARED_LIBRARY_SUFFIX})
set(ARROW_SHARED_IMP_LIB ${ARROW_LIBS}/${ARROW_LIB_NAME}.lib)
set(ARROW_PYTHON_SHARED_IMP_LIB ${ARROW_PYTHON_LIBS}/${ARROW_PYTHON_LIB_NAME}.lib)
else()
set(ARROW_STATIC_LIB ${ARROW_PYTHON_LIB_PATH}/lib${ARROW_LIB_NAME}.a)
set(ARROW_PYTHON_STATIC_LIB ${ARROW_PYTHON_LIB_PATH}/lib${ARROW_PYTHON_LIB_NAME}.a)
set(ARROW_SHARED_LIB ${ARROW_LIBS}/lib${ARROW_LIB_NAME}${CMAKE_SHARED_LIBRARY_SUFFIX})
set(ARROW_PYTHON_SHARED_LIB ${ARROW_LIBS}/lib${ARROW_PYTHON_LIB_NAME}${CMAKE_SHARED_LIBRARY_SUFFIX})
endif()
endif()
if (ARROW_FOUND)
if (NOT Arrow_FIND_QUIETLY)
message(STATUS "Found the Arrow core library: ${ARROW_LIB_PATH}")
message(STATUS "Found the Arrow Python library: ${ARROW_PYTHON_LIB_PATH}")
endif ()
else ()
if (NOT Arrow_FIND_QUIETLY)
set(ARROW_ERR_MSG "Could not find the Arrow library. Looked for headers")
set(ARROW_ERR_MSG "${ARROW_ERR_MSG} in ${ARROW_SEARCH_HEADER_PATHS}, and for libs")
set(ARROW_ERR_MSG "${ARROW_ERR_MSG} in ${ARROW_SEARCH_LIB_PATH}")
if (Arrow_FIND_REQUIRED)
message(FATAL_ERROR "${ARROW_ERR_MSG}")
else (Arrow_FIND_REQUIRED)
message(STATUS "${ARROW_ERR_MSG}")
endif (Arrow_FIND_REQUIRED)
endif ()
set(ARROW_FOUND FALSE)
endif ()
mark_as_advanced(
ARROW_INCLUDE_DIR
ARROW_STATIC_LIB
ARROW_SHARED_LIB
ARROW_PYTHON_STATIC_LIB
ARROW_PYTHON_SHARED_LIB
)

View File

@ -530,7 +530,7 @@ struct stylesheet
workbook *parent;
bool garbage_collection_enabled = false;
bool garbage_collection_enabled = true;
std::list<conditional_format_impl> conditional_format_impls;
std::list<format_impl> format_impls;

View File

@ -34,6 +34,7 @@ class cell_test_suite : public test_suite
public:
cell_test_suite()
{
register_test(test_temp);
register_test(test_infer_numeric);
register_test(test_constructor);
register_test(test_null);
@ -69,6 +70,25 @@ public:
}
private:
void test_temp()
{
xlnt::workbook workbook;
xlnt::worksheet worksheet = workbook.active_sheet();
xlnt::alignment center;
center.horizontal(xlnt::horizontal_alignment::center);
center.vertical(xlnt::vertical_alignment::center);
auto style = workbook.create_style("centered");
style.alignment(center);
for (std::uint32_t row = 1; row < 7000; ++row)
for (std::uint32_t column = 1; column < 13; ++column) {
xlnt::cell cell = worksheet.cell(column, row);
cell.value("test");
cell.style(style);
}
workbook.save("test.xlsx");
}
void test_infer_numeric()
{
xlnt::workbook wb;

59
third-party/pybind11/.appveyor.yml vendored Normal file
View File

@ -0,0 +1,59 @@
version: 1.0.{build}
image:
- Visual Studio 2017
- Visual Studio 2015
test: off
build:
parallel: true
platform:
- x64
- x86
environment:
matrix:
- CONDA: 36
CPP: 14
- CONDA: 27
CPP: 14
- CONDA: 36
CPP: latest
matrix:
exclude:
- image: Visual Studio 2015
platform: x86
- image: Visual Studio 2015
CPP: latest
- image: Visual Studio 2017
CPP: latest
platform: x86
install:
- ps: |
if ($env:PLATFORM -eq "x64") { $env:CMAKE_ARCH = "x64" }
if ($env:APPVEYOR_JOB_NAME -like "*Visual Studio 2017*") { $env:CMAKE_GENERATOR = "Visual Studio 15 2017" }
else { $env:CMAKE_GENERATOR = "Visual Studio 14 2015" }
if ($env:PYTHON) {
if ($env:PLATFORM -eq "x64") { $env:PYTHON = "$env:PYTHON-x64" }
$env:PATH = "C:\Python$env:PYTHON\;C:\Python$env:PYTHON\Scripts\;$env:PATH"
pip install --disable-pip-version-check --user --upgrade pip wheel
pip install pytest numpy scipy
} elseif ($env:CONDA) {
if ($env:CONDA -eq "27") { $env:CONDA = "" }
if ($env:PLATFORM -eq "x64") { $env:CONDA = "$env:CONDA-x64" }
$env:PATH = "C:\Miniconda$env:CONDA\;C:\Miniconda$env:CONDA\Scripts\;$env:PATH"
$env:PYTHONHOME = "C:\Miniconda$env:CONDA"
conda install -y -q pytest numpy scipy
}
- ps: |
Start-FileDownload 'http://bitbucket.org/eigen/eigen/get/3.3.3.zip'
7z x 3.3.3.zip -y > $null
$env:CMAKE_INCLUDE_PATH = "eigen-eigen-67e894c6cd8f"
build_script:
- cmake -G "%CMAKE_GENERATOR%" -A "%CMAKE_ARCH%"
-DPYBIND11_CPP_STANDARD=/std:c++%CPP%
-DPYBIND11_WERROR=ON
-DDOWNLOAD_CATCH=ON
-DCMAKE_SUPPRESS_REGENERATION=1
- set MSBuildLogger="C:\Program Files\AppVeyor\BuildAgent\Appveyor.MSBuildLogger.dll"
- cmake --build . --config Release --target pytest -- /v:m /logger:%MSBuildLogger%
- cmake --build . --config Release --target cpptest -- /v:m /logger:%MSBuildLogger%
- cmake --build . --config Release --target test_cmake_build -- /v:m /logger:%MSBuildLogger%
on_failure: if exist "tests\test_cmake_build" type tests\test_cmake_build\*.log*

37
third-party/pybind11/.gitignore vendored Normal file
View File

@ -0,0 +1,37 @@
CMakeCache.txt
CMakeFiles
Makefile
cmake_install.cmake
.DS_Store
*.so
*.pyd
*.dll
*.sln
*.sdf
*.opensdf
*.vcxproj
*.filters
example.dir
Win32
x64
Release
Debug
.vs
CTestTestfile.cmake
Testing
autogen
MANIFEST
/.ninja_*
/*.ninja
/docs/.build
*.py[co]
*.egg-info
*~
.DS_Store
/dist
/build
/cmake/
.cache/
sosize-*.txt
pybind11Config*.cmake
pybind11Targets.cmake

3
third-party/pybind11/.gitmodules vendored Normal file
View File

@ -0,0 +1,3 @@
[submodule "tools/clang"]
path = tools/clang
url = https://github.com/wjakob/clang-cindex-python3

3
third-party/pybind11/.readthedocs.yml vendored Normal file
View File

@ -0,0 +1,3 @@
python:
version: 3
requirements_file: docs/requirements.txt

200
third-party/pybind11/.travis.yml vendored Normal file
View File

@ -0,0 +1,200 @@
language: cpp
dist: trusty
sudo: false
matrix:
include:
- os: linux
env: PYTHON=2.7 CPP=11 GCC=4.8
addons:
apt:
packages: [cmake=2.\*, cmake-data=2.\*]
- os: linux
env: PYTHON=3.6 CPP=11 GCC=4.8
addons:
apt:
sources: [deadsnakes]
packages: [python3.6-dev python3.6-venv, cmake=2.\*, cmake-data=2.\*]
- sudo: true
services: docker
env: PYTHON=2.7 CPP=14 GCC=6
- sudo: true
services: docker
env: PYTHON=3.5 CPP=14 GCC=6 DEBUG=1
- sudo: true
services: docker
env: PYTHON=3.6 CPP=17 GCC=7
- os: linux
env: PYTHON=3.6 CPP=17 CLANG=4.0
addons:
apt:
sources: [deadsnakes, llvm-toolchain-trusty-4.0]
packages: [python3.6-dev python3.6-venv clang-4.0 llvm-4.0-dev, lld-4.0]
- os: osx
osx_image: xcode7.3
env: PYTHON=2.7 CPP=14 CLANG
- os: osx
osx_image: xcode7.3
env: PYTHON=3.6 CPP=14 CLANG
# Test a PyPy 2.7 build
- os: linux
env: PYPY=5.8 PYTHON=2.7 CPP=11 GCC=4.8
addons:
apt:
packages: [libblas-dev, liblapack-dev, gfortran]
- sudo: true
services: docker
env: ARCH=i386 PYTHON=3.5 CPP=14 GCC=6
# This next one does a make install *before* testing, then builds the tests against the installed version:
- sudo: true
services: docker
env: PYTHON=3.5 CPP=14 CLANG=3.9 INSTALL=1
script:
- |
$SCRIPT_RUN_PREFIX sh -c "set -e
cmake ${CMAKE_EXTRA_ARGS} -DPYBIND11_INSTALL=1 -DPYBIND11_TEST=0
make install
cp -a tests /pybind11-tests
mkdir /build-tests && cd /build-tests
cmake ../pybind11-tests ${CMAKE_EXTRA_ARGS} -DPYBIND11_WERROR=ON
make pytest -j 2"
# A barebones build makes sure everything still works without optional deps (numpy/scipy/eigen)
# and also tests the automatic discovery functions in CMake (Python version, C++ standard).
- os: linux
env: BAREBONES PYTHON=3.5
install: $PY_CMD -m pip install --user --upgrade pytest
# Documentation build:
- os: linux
language: docs
env: DOCS STYLE LINT
install:
- export PATH="~/.local/bin:$PATH"
- $PY_CMD -m pip install --user --upgrade sphinx sphinx_rtd_theme breathe flake8 pep8-naming
- |
curl -fsSL ftp://ftp.stack.nl/pub/users/dimitri/doxygen-1.8.12.linux.bin.tar.gz | tar xz
export PATH="$PWD/doxygen-1.8.12/bin:$PATH"
script:
- make -C docs html SPHINX_OPTIONS=-W
- tools/check-style.sh
- flake8
cache:
directories:
- $HOME/.local/bin
- $HOME/.local/lib
- $HOME/.local/include
- $HOME/Library/Python
before_install:
- |
# Configure build variables
if [ "$TRAVIS_OS_NAME" = "linux" ]; then
if [ -n "$CLANG" ]; then
export CXX=clang++-$CLANG CC=clang-$CLANG
COMPILER_PACKAGES="clang-$CLANG llvm-$CLANG-dev"
else
if [ -z "$GCC" ]; then GCC=4.8
else COMPILER_PACKAGES=g++-$GCC
fi
export CXX=g++-$GCC CC=gcc-$GCC
fi
if [ "$GCC" = "6" ] || [ "$CLANG" = "3.9" ]; then DOCKER=${ARCH:+$ARCH/}debian:stretch
elif [ "$GCC" = "7" ]; then DOCKER=debian:buster
fi
elif [ "$TRAVIS_OS_NAME" = "osx" ]; then
export CXX=clang++ CC=clang;
fi
if [ -n "$CPP" ]; then CPP=-std=c++$CPP; fi
if [ "${PYTHON:0:1}" = "3" ]; then PY=3; fi
if [ -n "$DEBUG" ]; then CMAKE_EXTRA_ARGS="${CMAKE_EXTRA_ARGS} -DCMAKE_BUILD_TYPE=Debug"; fi
- |
# Initialize environment
set -e
if [ -n "$DOCKER" ]; then
docker pull $DOCKER
containerid=$(docker run --detach --tty \
--volume="$PWD":/pybind11 --workdir=/pybind11 \
--env="CC=$CC" --env="CXX=$CXX" --env="DEBIAN_FRONTEND=$DEBIAN_FRONTEND" \
--env=GCC_COLORS=\ \
$DOCKER)
SCRIPT_RUN_PREFIX="docker exec --tty $containerid"
$SCRIPT_RUN_PREFIX sh -c 'for s in 0 15; do sleep $s; apt-get update && apt-get -qy dist-upgrade && break; done'
else
if [ "$PYPY" = "5.8" ]; then
curl -fSL https://bitbucket.org/pypy/pypy/downloads/pypy2-v5.8.0-linux64.tar.bz2 | tar xj
PY_CMD=$(echo `pwd`/pypy2-v5.8.0-linux64/bin/pypy)
CMAKE_EXTRA_ARGS="${CMAKE_EXTRA_ARGS} -DPYTHON_EXECUTABLE:FILEPATH=$PY_CMD"
else
PY_CMD=python$PYTHON
if [ "$TRAVIS_OS_NAME" = "osx" ]; then
if [ "$PY" = "3" ]; then
brew update; brew install python$PY;
else
curl -fsSL https://bootstrap.pypa.io/get-pip.py | $PY_CMD - --user
fi
fi
fi
if [ "$PY" = 3 ] || [ -n "$PYPY" ]; then
$PY_CMD -m ensurepip --user
fi
$PY_CMD -m pip install --user --upgrade pip wheel
fi
set +e
install:
- |
# Install dependencies
set -e
if [ -n "$DOCKER" ]; then
if [ -n "$DEBUG" ]; then
PY_DEBUG="python$PYTHON-dbg python$PY-scipy-dbg"
CMAKE_EXTRA_ARGS="${CMAKE_EXTRA_ARGS} -DPYTHON_EXECUTABLE=/usr/bin/python${PYTHON}dm"
fi
$SCRIPT_RUN_PREFIX sh -c "for s in 0 15; do sleep \$s; \
apt-get -qy --no-install-recommends install \
$PY_DEBUG python$PYTHON-dev python$PY-pytest python$PY-scipy \
libeigen3-dev cmake make ${COMPILER_PACKAGES} && break; done"
else
if [ "$CLANG" = "4.0" ]; then
if ! [ -d ~/.local/include/c++/v1 ]; then
# Neither debian nor llvm provide a libc++ 4.0 deb; luckily it's fairly quick
# to build, install (and cache), so do it ourselves:
git clone --depth=1 https://github.com/llvm-mirror/llvm.git llvm-source
git clone https://github.com/llvm-mirror/libcxx.git llvm-source/projects/libcxx -b release_40
git clone https://github.com/llvm-mirror/libcxxabi.git llvm-source/projects/libcxxabi -b release_40
mkdir llvm-build && cd llvm-build
# Building llvm requires a newer cmake than is provided by the trusty container:
CMAKE=cmake-3.8.0-Linux-x86_64
curl https://cmake.org/files/v3.8/$CMAKE.tar.gz | tar xz
./$CMAKE/bin/cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=~/.local ../llvm-source
make -j2 install-cxxabi install-cxx
cp -a include/c++/v1/*cxxabi*.h ~/.local/include/c++/v1
cd ..
fi
export CXXFLAGS="-isystem $HOME/.local/include/c++/v1 -stdlib=libc++"
export LDFLAGS="-L$HOME/.local/lib -fuse-ld=lld-$CLANG"
export LD_LIBRARY_PATH="$HOME/.local/lib${LD_LIBRARY_PATH:+:$LD_LIBRARY_PATH}"
if [ "$CPP" = "-std=c++17" ]; then CPP="-std=c++1z"; fi
fi
export NPY_NUM_BUILD_JOBS=2
echo "Installing pytest, numpy, scipy..."
${PYPY:+travis_wait 30} $PY_CMD -m pip install --user --upgrade pytest numpy scipy \
${PYPY:+--extra-index-url https://imaginary.ca/trusty-pypi}
echo "done."
wget -q -O eigen.tar.gz https://bitbucket.org/eigen/eigen/get/3.3.3.tar.gz
tar xzf eigen.tar.gz
export CMAKE_INCLUDE_PATH="${CMAKE_INCLUDE_PATH:+:}$PWD/eigen-eigen-67e894c6cd8f"
fi
set +e
script:
- $SCRIPT_RUN_PREFIX cmake ${CMAKE_EXTRA_ARGS}
-DPYBIND11_PYTHON_VERSION=$PYTHON
-DPYBIND11_CPP_STANDARD=$CPP
-DPYBIND11_WERROR=${WERROR:-ON}
-DDOWNLOAD_CATCH=ON
- $SCRIPT_RUN_PREFIX make pytest -j 2
- $SCRIPT_RUN_PREFIX make cpptest -j 2
- $SCRIPT_RUN_PREFIX make test_cmake_build
after_failure: cat tests/test_cmake_build/*.log*
after_script:
- if [ -n "$DOCKER" ]; then docker stop "$containerid"; docker rm "$containerid"; fi

139
third-party/pybind11/CMakeLists.txt vendored Normal file
View File

@ -0,0 +1,139 @@
# CMakeLists.txt -- Build system for the pybind11 modules
#
# Copyright (c) 2015 Wenzel Jakob <wenzel@inf.ethz.ch>
#
# All rights reserved. Use of this source code is governed by a
# BSD-style license that can be found in the LICENSE file.
cmake_minimum_required(VERSION 2.8.12)
if (POLICY CMP0048)
# cmake warns if loaded from a min-3.0-required parent dir, so silence the warning:
cmake_policy(SET CMP0048 NEW)
endif()
project(pybind11)
# Check if pybind11 is being used directly or via add_subdirectory
set(PYBIND11_MASTER_PROJECT OFF)
if (CMAKE_CURRENT_SOURCE_DIR STREQUAL CMAKE_SOURCE_DIR)
set(PYBIND11_MASTER_PROJECT ON)
endif()
option(PYBIND11_INSTALL "Install pybind11 header files?" ${PYBIND11_MASTER_PROJECT})
option(PYBIND11_TEST "Build pybind11 test suite?" ${PYBIND11_MASTER_PROJECT})
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/tools")
include(pybind11Tools)
# Cache variables so pybind11_add_module can be used in parent projects
set(PYBIND11_INCLUDE_DIR "${CMAKE_CURRENT_LIST_DIR}/include" CACHE INTERNAL "")
set(PYTHON_INCLUDE_DIRS ${PYTHON_INCLUDE_DIRS} CACHE INTERNAL "")
set(PYTHON_LIBRARIES ${PYTHON_LIBRARIES} CACHE INTERNAL "")
set(PYTHON_MODULE_PREFIX ${PYTHON_MODULE_PREFIX} CACHE INTERNAL "")
set(PYTHON_MODULE_EXTENSION ${PYTHON_MODULE_EXTENSION} CACHE INTERNAL "")
# NB: when adding a header don't forget to also add it to setup.py
set(PYBIND11_HEADERS
include/pybind11/attr.h
include/pybind11/buffer_info.h
include/pybind11/cast.h
include/pybind11/chrono.h
include/pybind11/class_support.h
include/pybind11/common.h
include/pybind11/complex.h
include/pybind11/descr.h
include/pybind11/options.h
include/pybind11/eigen.h
include/pybind11/embed.h
include/pybind11/eval.h
include/pybind11/functional.h
include/pybind11/numpy.h
include/pybind11/operators.h
include/pybind11/pybind11.h
include/pybind11/pytypes.h
include/pybind11/stl.h
include/pybind11/stl_bind.h
include/pybind11/typeid.h
)
string(REPLACE "include/" "${CMAKE_CURRENT_SOURCE_DIR}/include/"
PYBIND11_HEADERS "${PYBIND11_HEADERS}")
if (PYBIND11_TEST)
add_subdirectory(tests)
endif()
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
# extract project version from source
file(STRINGS "${PYBIND11_INCLUDE_DIR}/pybind11/common.h" pybind11_version_defines
REGEX "#define PYBIND11_VERSION_(MAJOR|MINOR|PATCH) ")
foreach(ver ${pybind11_version_defines})
if (ver MATCHES "#define PYBIND11_VERSION_(MAJOR|MINOR|PATCH) +([^ ]+)$")
set(PYBIND11_VERSION_${CMAKE_MATCH_1} "${CMAKE_MATCH_2}" CACHE INTERNAL "")
endif()
endforeach()
set(${PROJECT_NAME}_VERSION ${PYBIND11_VERSION_MAJOR}.${PYBIND11_VERSION_MINOR}.${PYBIND11_VERSION_PATCH})
message(STATUS "pybind11 v${${PROJECT_NAME}_VERSION}")
option (USE_PYTHON_INCLUDE_DIR "Install pybind11 headers in Python include directory instead of default installation prefix" OFF)
if (USE_PYTHON_INCLUDE_DIR)
file(RELATIVE_PATH CMAKE_INSTALL_INCLUDEDIR ${CMAKE_INSTALL_PREFIX} ${PYTHON_INCLUDE_DIRS})
endif()
if(NOT (CMAKE_VERSION VERSION_LESS 3.0)) # CMake >= 3.0
# Build an interface library target:
add_library(pybind11 INTERFACE)
add_library(pybind11::pybind11 ALIAS pybind11) # to match exported target
target_include_directories(pybind11 INTERFACE $<BUILD_INTERFACE:${PYBIND11_INCLUDE_DIR}>
$<BUILD_INTERFACE:${PYTHON_INCLUDE_DIRS}>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>)
target_compile_options(pybind11 INTERFACE $<BUILD_INTERFACE:${PYBIND11_CPP_STANDARD}>)
add_library(module INTERFACE)
add_library(pybind11::module ALIAS module)
target_link_libraries(module INTERFACE pybind11::pybind11)
if(WIN32 OR CYGWIN)
target_link_libraries(module INTERFACE $<BUILD_INTERFACE:${PYTHON_LIBRARIES}>)
elseif(APPLE)
target_link_libraries(module INTERFACE "-undefined dynamic_lookup")
endif()
add_library(embed INTERFACE)
add_library(pybind11::embed ALIAS embed)
target_link_libraries(embed INTERFACE pybind11::pybind11 $<BUILD_INTERFACE:${PYTHON_LIBRARIES}>)
endif()
if (PYBIND11_INSTALL)
install(FILES ${PYBIND11_HEADERS}
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/pybind11)
# GNUInstallDirs "DATADIR" wrong here; CMake search path wants "share".
set(PYBIND11_CMAKECONFIG_INSTALL_DIR "share/cmake/${PROJECT_NAME}" CACHE STRING "install path for pybind11Config.cmake")
configure_package_config_file(tools/${PROJECT_NAME}Config.cmake.in
"${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}Config.cmake"
INSTALL_DESTINATION ${PYBIND11_CMAKECONFIG_INSTALL_DIR})
# Remove CMAKE_SIZEOF_VOID_P from ConfigVersion.cmake since the library does
# not depend on architecture specific settings or libraries.
set(_PYBIND11_CMAKE_SIZEOF_VOID_P ${CMAKE_SIZEOF_VOID_P})
unset(CMAKE_SIZEOF_VOID_P)
write_basic_package_version_file(${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}ConfigVersion.cmake
VERSION ${${PROJECT_NAME}_VERSION}
COMPATIBILITY AnyNewerVersion)
set(CMAKE_SIZEOF_VOID_P ${_PYBIND11_CMAKE_SIZEOF_VOID_P})
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}Config.cmake
${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}ConfigVersion.cmake
tools/FindPythonLibsNew.cmake
tools/pybind11Tools.cmake
DESTINATION ${PYBIND11_CMAKECONFIG_INSTALL_DIR})
if(NOT (CMAKE_VERSION VERSION_LESS 3.0))
install(TARGETS pybind11 module embed
EXPORT "${PROJECT_NAME}Targets")
install(EXPORT "${PROJECT_NAME}Targets"
NAMESPACE "${PROJECT_NAME}::"
DESTINATION ${PYBIND11_CMAKECONFIG_INSTALL_DIR})
endif()
endif()

37
third-party/pybind11/CONTRIBUTING.md vendored Normal file
View File

@ -0,0 +1,37 @@
Thank you for your interest in this project! Please refer to the following
sections on how to contribute code and bug reports.
### Reporting bugs
At the moment, this project is run in the spare time of a single person
([Wenzel Jakob](http://rgl.epfl.ch/people/wjakob)) with very limited resources
for issue tracker tickets. Thus, before submitting a question or bug report,
please take a moment of your time and ensure that your issue isn't already
discussed in the project documentation provided at
[http://pybind11.readthedocs.org/en/latest](http://pybind11.readthedocs.org/en/latest).
Assuming that you have identified a previously unknown problem or an important
question, it's essential that you submit a self-contained and minimal piece of
code that reproduces the problem. In other words: no external dependencies,
isolate the function(s) that cause breakage, submit matched and complete C++
and Python snippets that can be easily compiled and run on my end.
## Pull requests
Contributions are submitted, reviewed, and accepted using Github pull requests.
Please refer to [this
article](https://help.github.com/articles/using-pull-requests) for details and
adhere to the following rules to make the process as smooth as possible:
* Make a new branch for every feature you're working on.
* Make small and clean pull requests that are easy to review but make sure they
do add value by themselves.
* Add tests for any new functionality and run the test suite (``make pytest``)
to ensure that no existing features break.
* This project has a strong focus on providing general solutions using a
minimal amount of code, thus small pull requests are greatly preferred.
### License
pybind11 is provided under a BSD-style license that can be found in the
``LICENSE`` file. By using, distributing, or contributing to this project, you
agree to the terms and conditions of this license.

17
third-party/pybind11/ISSUE_TEMPLATE.md vendored Normal file
View File

@ -0,0 +1,17 @@
Make sure you've completed the following steps before submitting your issue -- thank you!
1. Check if your question has already been answered in the [FAQ](http://pybind11.readthedocs.io/en/latest/faq.html) section.
2. Make sure you've read the [documentation](http://pybind11.readthedocs.io/en/latest/). Your issue may be addressed there.
3. If those resources didn't help and you only have a short question (not a bug report), consider asking in the [Gitter chat room](https://gitter.im/pybind/Lobby).
4. If you have a genuine bug report or a more complex question which is not answered in the previous items (or not suitable for chat), please fill in the details below.
5. Include a self-contained and minimal piece of code that reproduces the problem. If that's not possible, try to make the description as clear as possible.
*After reading, remove this checklist and the template text in parentheses below.*
## Issue description
(Provide a short description, state the expected behavior and what actually happens.)
## Reproducible example code
(The code should be minimal, have no external dependencies, isolate the function(s) that cause breakage. Submit matched and complete C++ and Python snippets that can be easily compiled and run to diagnose the issue.)

36
third-party/pybind11/LICENSE vendored Normal file
View File

@ -0,0 +1,36 @@
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>, All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You are under no obligation whatsoever to provide any bug fixes, patches, or
upgrades to the features, functionality or performance of the source code
("Enhancements") to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to the author of this software, without
imposing a separate written license agreement for such Enhancements, then you
hereby grant the following license: a non-exclusive, royalty-free perpetual
license to install, use, modify, prepare derivative works, incorporate into
other computer software, distribute, and sublicense such enhancements or
derivative works thereof, in binary and source code form.

2
third-party/pybind11/MANIFEST.in vendored Normal file
View File

@ -0,0 +1,2 @@
include include/pybind11/*.h
include LICENSE README.md CONTRIBUTING.md

129
third-party/pybind11/README.md vendored Normal file
View File

@ -0,0 +1,129 @@
![pybind11 logo](https://github.com/pybind/pybind11/raw/master/docs/pybind11-logo.png)
# pybind11 — Seamless operability between C++11 and Python
[![Documentation Status](https://readthedocs.org/projects/pybind11/badge/?version=master)](http://pybind11.readthedocs.org/en/master/?badge=master)
[![Documentation Status](https://readthedocs.org/projects/pybind11/badge/?version=stable)](http://pybind11.readthedocs.org/en/stable/?badge=stable)
[![Gitter chat](https://img.shields.io/gitter/room/gitterHQ/gitter.svg)](https://gitter.im/pybind/Lobby)
[![Build Status](https://travis-ci.org/pybind/pybind11.svg?branch=master)](https://travis-ci.org/pybind/pybind11)
[![Build status](https://ci.appveyor.com/api/projects/status/riaj54pn4h08xy40?svg=true)](https://ci.appveyor.com/project/wjakob/pybind11)
**pybind11** is a lightweight header-only library that exposes C++ types in Python
and vice versa, mainly to create Python bindings of existing C++ code. Its
goals and syntax are similar to the excellent
[Boost.Python](http://www.boost.org/doc/libs/1_58_0/libs/python/doc/) library
by David Abrahams: to minimize boilerplate code in traditional extension
modules by inferring type information using compile-time introspection.
The main issue with Boost.Python—and the reason for creating such a similar
project—is Boost. Boost is an enormously large and complex suite of utility
libraries that works with almost every C++ compiler in existence. This
compatibility has its cost: arcane template tricks and workarounds are
necessary to support the oldest and buggiest of compiler specimens. Now that
C++11-compatible compilers are widely available, this heavy machinery has
become an excessively large and unnecessary dependency.
Think of this library as a tiny self-contained version of Boost.Python with
everything stripped away that isn't relevant for binding generation. Without
comments, the core header files only require ~4K lines of code and depend on
Python (2.7 or 3.x, or PyPy2.7 >= 5.7) and the C++ standard library. This
compact implementation was possible thanks to some of the new C++11 language
features (specifically: tuples, lambda functions and variadic templates). Since
its creation, this library has grown beyond Boost.Python in many ways, leading
to dramatically simpler binding code in many common situations.
Tutorial and reference documentation is provided at
[http://pybind11.readthedocs.org/en/master](http://pybind11.readthedocs.org/en/master).
A PDF version of the manual is available
[here](https://media.readthedocs.org/pdf/pybind11/master/pybind11.pdf).
## Core features
pybind11 can map the following core C++ features to Python
- Functions accepting and returning custom data structures per value, reference, or pointer
- Instance methods and static methods
- Overloaded functions
- Instance attributes and static attributes
- Arbitrary exception types
- Enumerations
- Callbacks
- Iterators and ranges
- Custom operators
- Single and multiple inheritance
- STL data structures
- Iterators and ranges
- Smart pointers with reference counting like ``std::shared_ptr``
- Internal references with correct reference counting
- C++ classes with virtual (and pure virtual) methods can be extended in Python
## Goodies
In addition to the core functionality, pybind11 provides some extra goodies:
- Python 2.7, 3.x, and PyPy (PyPy2.7 >= 5.7) are supported with an
implementation-agnostic interface.
- It is possible to bind C++11 lambda functions with captured variables. The
lambda capture data is stored inside the resulting Python function object.
- pybind11 uses C++11 move constructors and move assignment operators whenever
possible to efficiently transfer custom data types.
- It's easy to expose the internal storage of custom data types through
Pythons' buffer protocols. This is handy e.g. for fast conversion between
C++ matrix classes like Eigen and NumPy without expensive copy operations.
- pybind11 can automatically vectorize functions so that they are transparently
applied to all entries of one or more NumPy array arguments.
- Python's slice-based access and assignment operations can be supported with
just a few lines of code.
- Everything is contained in just a few header files; there is no need to link
against any additional libraries.
- Binaries are generally smaller by a factor of at least 2 compared to
equivalent bindings generated by Boost.Python. A recent pybind11 conversion
of PyRosetta, an enormous Boost.Python binding project,
[reported](http://graylab.jhu.edu/RosettaCon2016/PyRosetta-4.pdf) a binary
size reduction of **5.4x** and compile time reduction by **5.8x**.
- When supported by the compiler, two new C++14 features (relaxed constexpr and
return value deduction) are used to precompute function signatures at compile
time, leading to smaller binaries.
- With little extra effort, C++ types can be pickled and unpickled similar to
regular Python objects.
## Supported compilers
1. Clang/LLVM 3.3 or newer (for Apple Xcode's clang, this is 5.0.0 or newer)
2. GCC 4.8 or newer
3. Microsoft Visual Studio 2015 Update 3 or newer
4. Intel C++ compiler 16 or newer (15 with a [workaround](https://github.com/pybind/pybind11/issues/276))
5. Cygwin/GCC (tested on 2.5.1)
## About
This project was created by [Wenzel Jakob](http://rgl.epfl.ch/people/wjakob).
Significant features and/or improvements to the code were contributed by
Jonas Adler,
Sylvain Corlay,
Trent Houliston,
Axel Huebl,
@hulucc,
Sergey Lyskov
Johan Mabille,
Tomasz Miąsko,
Dean Moldovan,
Ben Pritchard,
Jason Rhinelander,
Boris Schäling,
Pim Schellart,
Ivan Smirnov, and
Patrick Stewart.
### License
pybind11 is provided under a BSD-style license that can be found in the
``LICENSE`` file. By using, distributing, or contributing to this project,
you agree to the terms and conditions of this license.

View File

@ -0,0 +1,471 @@
/*
pybind11/attr.h: Infrastructure for processing custom
type and function attributes
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "cast.h"
NAMESPACE_BEGIN(pybind11)
/// \addtogroup annotations
/// @{
/// Annotation for methods
struct is_method { handle class_; is_method(const handle &c) : class_(c) { } };
/// Annotation for operators
struct is_operator { };
/// Annotation for parent scope
struct scope { handle value; scope(const handle &s) : value(s) { } };
/// Annotation for documentation
struct doc { const char *value; doc(const char *value) : value(value) { } };
/// Annotation for function names
struct name { const char *value; name(const char *value) : value(value) { } };
/// Annotation indicating that a function is an overload associated with a given "sibling"
struct sibling { handle value; sibling(const handle &value) : value(value.ptr()) { } };
/// Annotation indicating that a class derives from another given type
template <typename T> struct base {
PYBIND11_DEPRECATED("base<T>() was deprecated in favor of specifying 'T' as a template argument to class_")
base() { }
};
/// Keep patient alive while nurse lives
template <size_t Nurse, size_t Patient> struct keep_alive { };
/// Annotation indicating that a class is involved in a multiple inheritance relationship
struct multiple_inheritance { };
/// Annotation which enables dynamic attributes, i.e. adds `__dict__` to a class
struct dynamic_attr { };
/// Annotation which enables the buffer protocol for a type
struct buffer_protocol { };
/// Annotation which requests that a special metaclass is created for a type
struct metaclass {
handle value;
PYBIND11_DEPRECATED("py::metaclass() is no longer required. It's turned on by default now.")
metaclass() {}
/// Override pybind11's default metaclass
explicit metaclass(handle value) : value(value) { }
};
/// Annotation to mark enums as an arithmetic type
struct arithmetic { };
/** \rst
A call policy which places one or more guard variables (``Ts...``) around the function call.
For example, this definition:
.. code-block:: cpp
m.def("foo", foo, py::call_guard<T>());
is equivalent to the following pseudocode:
.. code-block:: cpp
m.def("foo", [](args...) {
T scope_guard;
return foo(args...); // forwarded arguments
});
\endrst */
template <typename... Ts> struct call_guard;
template <> struct call_guard<> { using type = detail::void_type; };
template <typename T>
struct call_guard<T> {
static_assert(std::is_default_constructible<T>::value,
"The guard type must be default constructible");
using type = T;
};
template <typename T, typename... Ts>
struct call_guard<T, Ts...> {
struct type {
T guard{}; // Compose multiple guard types with left-to-right default-constructor order
typename call_guard<Ts...>::type next{};
};
};
/// @} annotations
NAMESPACE_BEGIN(detail)
/* Forward declarations */
enum op_id : int;
enum op_type : int;
struct undefined_t;
template <op_id id, op_type ot, typename L = undefined_t, typename R = undefined_t> struct op_;
template <typename... Args> struct init;
template <typename... Args> struct init_alias;
inline void keep_alive_impl(size_t Nurse, size_t Patient, function_call &call, handle ret);
/// Internal data structure which holds metadata about a keyword argument
struct argument_record {
const char *name; ///< Argument name
const char *descr; ///< Human-readable version of the argument value
handle value; ///< Associated Python object
bool convert : 1; ///< True if the argument is allowed to convert when loading
bool none : 1; ///< True if None is allowed when loading
argument_record(const char *name, const char *descr, handle value, bool convert, bool none)
: name(name), descr(descr), value(value), convert(convert), none(none) { }
};
/// Internal data structure which holds metadata about a bound function (signature, overloads, etc.)
struct function_record {
function_record()
: is_constructor(false), is_stateless(false), is_operator(false),
has_args(false), has_kwargs(false), is_method(false) { }
/// Function name
char *name = nullptr; /* why no C++ strings? They generate heavier code.. */
// User-specified documentation string
char *doc = nullptr;
/// Human-readable version of the function signature
char *signature = nullptr;
/// List of registered keyword arguments
std::vector<argument_record> args;
/// Pointer to lambda function which converts arguments and performs the actual call
handle (*impl) (function_call &) = nullptr;
/// Storage for the wrapped function pointer and captured data, if any
void *data[3] = { };
/// Pointer to custom destructor for 'data' (if needed)
void (*free_data) (function_record *ptr) = nullptr;
/// Return value policy associated with this function
return_value_policy policy = return_value_policy::automatic;
/// True if name == '__init__'
bool is_constructor : 1;
/// True if this is a stateless function pointer
bool is_stateless : 1;
/// True if this is an operator (__add__), etc.
bool is_operator : 1;
/// True if the function has a '*args' argument
bool has_args : 1;
/// True if the function has a '**kwargs' argument
bool has_kwargs : 1;
/// True if this is a method
bool is_method : 1;
/// Number of arguments (including py::args and/or py::kwargs, if present)
std::uint16_t nargs;
/// Python method object
PyMethodDef *def = nullptr;
/// Python handle to the parent scope (a class or a module)
handle scope;
/// Python handle to the sibling function representing an overload chain
handle sibling;
/// Pointer to next overload
function_record *next = nullptr;
};
/// Special data structure which (temporarily) holds metadata about a bound class
struct type_record {
PYBIND11_NOINLINE type_record()
: multiple_inheritance(false), dynamic_attr(false), buffer_protocol(false) { }
/// Handle to the parent scope
handle scope;
/// Name of the class
const char *name = nullptr;
// Pointer to RTTI type_info data structure
const std::type_info *type = nullptr;
/// How large is the underlying C++ type?
size_t type_size = 0;
/// How large is the type's holder?
size_t holder_size = 0;
/// The global operator new can be overridden with a class-specific variant
void *(*operator_new)(size_t) = ::operator new;
/// Function pointer to class_<..>::init_holder
void (*init_holder)(instance *, const void *) = nullptr;
/// Function pointer to class_<..>::dealloc
void (*dealloc)(const detail::value_and_holder &) = nullptr;
/// List of base classes of the newly created type
list bases;
/// Optional docstring
const char *doc = nullptr;
/// Custom metaclass (optional)
handle metaclass;
/// Multiple inheritance marker
bool multiple_inheritance : 1;
/// Does the class manage a __dict__?
bool dynamic_attr : 1;
/// Does the class implement the buffer protocol?
bool buffer_protocol : 1;
/// Is the default (unique_ptr) holder type used?
bool default_holder : 1;
PYBIND11_NOINLINE void add_base(const std::type_info &base, void *(*caster)(void *)) {
auto base_info = detail::get_type_info(base, false);
if (!base_info) {
std::string tname(base.name());
detail::clean_type_id(tname);
pybind11_fail("generic_type: type \"" + std::string(name) +
"\" referenced unknown base type \"" + tname + "\"");
}
if (default_holder != base_info->default_holder) {
std::string tname(base.name());
detail::clean_type_id(tname);
pybind11_fail("generic_type: type \"" + std::string(name) + "\" " +
(default_holder ? "does not have" : "has") +
" a non-default holder type while its base \"" + tname + "\" " +
(base_info->default_holder ? "does not" : "does"));
}
bases.append((PyObject *) base_info->type);
if (base_info->type->tp_dictoffset != 0)
dynamic_attr = true;
if (caster)
base_info->implicit_casts.emplace_back(type, caster);
}
};
inline function_call::function_call(function_record &f, handle p) :
func(f), parent(p) {
args.reserve(f.nargs);
args_convert.reserve(f.nargs);
}
/**
* Partial template specializations to process custom attributes provided to
* cpp_function_ and class_. These are either used to initialize the respective
* fields in the type_record and function_record data structures or executed at
* runtime to deal with custom call policies (e.g. keep_alive).
*/
template <typename T, typename SFINAE = void> struct process_attribute;
template <typename T> struct process_attribute_default {
/// Default implementation: do nothing
static void init(const T &, function_record *) { }
static void init(const T &, type_record *) { }
static void precall(function_call &) { }
static void postcall(function_call &, handle) { }
};
/// Process an attribute specifying the function's name
template <> struct process_attribute<name> : process_attribute_default<name> {
static void init(const name &n, function_record *r) { r->name = const_cast<char *>(n.value); }
};
/// Process an attribute specifying the function's docstring
template <> struct process_attribute<doc> : process_attribute_default<doc> {
static void init(const doc &n, function_record *r) { r->doc = const_cast<char *>(n.value); }
};
/// Process an attribute specifying the function's docstring (provided as a C-style string)
template <> struct process_attribute<const char *> : process_attribute_default<const char *> {
static void init(const char *d, function_record *r) { r->doc = const_cast<char *>(d); }
static void init(const char *d, type_record *r) { r->doc = const_cast<char *>(d); }
};
template <> struct process_attribute<char *> : process_attribute<const char *> { };
/// Process an attribute indicating the function's return value policy
template <> struct process_attribute<return_value_policy> : process_attribute_default<return_value_policy> {
static void init(const return_value_policy &p, function_record *r) { r->policy = p; }
};
/// Process an attribute which indicates that this is an overloaded function associated with a given sibling
template <> struct process_attribute<sibling> : process_attribute_default<sibling> {
static void init(const sibling &s, function_record *r) { r->sibling = s.value; }
};
/// Process an attribute which indicates that this function is a method
template <> struct process_attribute<is_method> : process_attribute_default<is_method> {
static void init(const is_method &s, function_record *r) { r->is_method = true; r->scope = s.class_; }
};
/// Process an attribute which indicates the parent scope of a method
template <> struct process_attribute<scope> : process_attribute_default<scope> {
static void init(const scope &s, function_record *r) { r->scope = s.value; }
};
/// Process an attribute which indicates that this function is an operator
template <> struct process_attribute<is_operator> : process_attribute_default<is_operator> {
static void init(const is_operator &, function_record *r) { r->is_operator = true; }
};
/// Process a keyword argument attribute (*without* a default value)
template <> struct process_attribute<arg> : process_attribute_default<arg> {
static void init(const arg &a, function_record *r) {
if (r->is_method && r->args.empty())
r->args.emplace_back("self", nullptr, handle(), true /*convert*/, false /*none not allowed*/);
r->args.emplace_back(a.name, nullptr, handle(), !a.flag_noconvert, a.flag_none);
}
};
/// Process a keyword argument attribute (*with* a default value)
template <> struct process_attribute<arg_v> : process_attribute_default<arg_v> {
static void init(const arg_v &a, function_record *r) {
if (r->is_method && r->args.empty())
r->args.emplace_back("self", nullptr /*descr*/, handle() /*parent*/, true /*convert*/, false /*none not allowed*/);
if (!a.value) {
#if !defined(NDEBUG)
std::string descr("'");
if (a.name) descr += std::string(a.name) + ": ";
descr += a.type + "'";
if (r->is_method) {
if (r->name)
descr += " in method '" + (std::string) str(r->scope) + "." + (std::string) r->name + "'";
else
descr += " in method of '" + (std::string) str(r->scope) + "'";
} else if (r->name) {
descr += " in function '" + (std::string) r->name + "'";
}
pybind11_fail("arg(): could not convert default argument "
+ descr + " into a Python object (type not registered yet?)");
#else
pybind11_fail("arg(): could not convert default argument "
"into a Python object (type not registered yet?). "
"Compile in debug mode for more information.");
#endif
}
r->args.emplace_back(a.name, a.descr, a.value.inc_ref(), !a.flag_noconvert, a.flag_none);
}
};
/// Process a parent class attribute. Single inheritance only (class_ itself already guarantees that)
template <typename T>
struct process_attribute<T, enable_if_t<is_pyobject<T>::value>> : process_attribute_default<handle> {
static void init(const handle &h, type_record *r) { r->bases.append(h); }
};
/// Process a parent class attribute (deprecated, does not support multiple inheritance)
template <typename T>
struct process_attribute<base<T>> : process_attribute_default<base<T>> {
static void init(const base<T> &, type_record *r) { r->add_base(typeid(T), nullptr); }
};
/// Process a multiple inheritance attribute
template <>
struct process_attribute<multiple_inheritance> : process_attribute_default<multiple_inheritance> {
static void init(const multiple_inheritance &, type_record *r) { r->multiple_inheritance = true; }
};
template <>
struct process_attribute<dynamic_attr> : process_attribute_default<dynamic_attr> {
static void init(const dynamic_attr &, type_record *r) { r->dynamic_attr = true; }
};
template <>
struct process_attribute<buffer_protocol> : process_attribute_default<buffer_protocol> {
static void init(const buffer_protocol &, type_record *r) { r->buffer_protocol = true; }
};
template <>
struct process_attribute<metaclass> : process_attribute_default<metaclass> {
static void init(const metaclass &m, type_record *r) { r->metaclass = m.value; }
};
/// Process an 'arithmetic' attribute for enums (does nothing here)
template <>
struct process_attribute<arithmetic> : process_attribute_default<arithmetic> {};
template <typename... Ts>
struct process_attribute<call_guard<Ts...>> : process_attribute_default<call_guard<Ts...>> { };
/**
* Process a keep_alive call policy -- invokes keep_alive_impl during the
* pre-call handler if both Nurse, Patient != 0 and use the post-call handler
* otherwise
*/
template <size_t Nurse, size_t Patient> struct process_attribute<keep_alive<Nurse, Patient>> : public process_attribute_default<keep_alive<Nurse, Patient>> {
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N != 0 && P != 0, int> = 0>
static void precall(function_call &call) { keep_alive_impl(Nurse, Patient, call, handle()); }
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N != 0 && P != 0, int> = 0>
static void postcall(function_call &, handle) { }
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N == 0 || P == 0, int> = 0>
static void precall(function_call &) { }
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N == 0 || P == 0, int> = 0>
static void postcall(function_call &call, handle ret) { keep_alive_impl(Nurse, Patient, call, ret); }
};
/// Recursively iterate over variadic template arguments
template <typename... Args> struct process_attributes {
static void init(const Args&... args, function_record *r) {
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::init(args, r), 0) ... };
ignore_unused(unused);
}
static void init(const Args&... args, type_record *r) {
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::init(args, r), 0) ... };
ignore_unused(unused);
}
static void precall(function_call &call) {
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::precall(call), 0) ... };
ignore_unused(unused);
}
static void postcall(function_call &call, handle fn_ret) {
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::postcall(call, fn_ret), 0) ... };
ignore_unused(unused);
}
};
template <typename T>
using is_call_guard = is_instantiation<call_guard, T>;
/// Extract the ``type`` from the first `call_guard` in `Extras...` (or `void_type` if none found)
template <typename... Extra>
using extract_guard_t = typename exactly_one_t<is_call_guard, call_guard<>, Extra...>::type;
/// Check the number of named arguments at compile time
template <typename... Extra,
size_t named = constexpr_sum(std::is_base_of<arg, Extra>::value...),
size_t self = constexpr_sum(std::is_same<is_method, Extra>::value...)>
constexpr bool expected_num_args(size_t nargs, bool has_args, bool has_kwargs) {
return named == 0 || (self + named + has_args + has_kwargs) == nargs;
}
NAMESPACE_END(detail)
NAMESPACE_END(pybind11)

View File

@ -0,0 +1,108 @@
/*
pybind11/buffer_info.h: Python buffer object interface
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "common.h"
NAMESPACE_BEGIN(pybind11)
/// Information record describing a Python buffer object
struct buffer_info {
void *ptr = nullptr; // Pointer to the underlying storage
ssize_t itemsize = 0; // Size of individual items in bytes
ssize_t size = 0; // Total number of entries
std::string format; // For homogeneous buffers, this should be set to format_descriptor<T>::format()
ssize_t ndim = 0; // Number of dimensions
std::vector<ssize_t> shape; // Shape of the tensor (1 entry per dimension)
std::vector<ssize_t> strides; // Number of entries between adjacent entries (for each per dimension)
buffer_info() { }
buffer_info(void *ptr, ssize_t itemsize, const std::string &format, ssize_t ndim,
detail::any_container<ssize_t> shape_in, detail::any_container<ssize_t> strides_in)
: ptr(ptr), itemsize(itemsize), size(1), format(format), ndim(ndim),
shape(std::move(shape_in)), strides(std::move(strides_in)) {
if (ndim != (ssize_t) shape.size() || ndim != (ssize_t) strides.size())
pybind11_fail("buffer_info: ndim doesn't match shape and/or strides length");
for (size_t i = 0; i < (size_t) ndim; ++i)
size *= shape[i];
}
template <typename T>
buffer_info(T *ptr, detail::any_container<ssize_t> shape_in, detail::any_container<ssize_t> strides_in)
: buffer_info(private_ctr_tag(), ptr, sizeof(T), format_descriptor<T>::format(), static_cast<ssize_t>(shape_in->size()), std::move(shape_in), std::move(strides_in)) { }
buffer_info(void *ptr, ssize_t itemsize, const std::string &format, ssize_t size)
: buffer_info(ptr, itemsize, format, 1, {size}, {itemsize}) { }
template <typename T>
buffer_info(T *ptr, ssize_t size)
: buffer_info(ptr, sizeof(T), format_descriptor<T>::format(), size) { }
explicit buffer_info(Py_buffer *view, bool ownview = true)
: buffer_info(view->buf, view->itemsize, view->format, view->ndim,
{view->shape, view->shape + view->ndim}, {view->strides, view->strides + view->ndim}) {
this->view = view;
this->ownview = ownview;
}
buffer_info(const buffer_info &) = delete;
buffer_info& operator=(const buffer_info &) = delete;
buffer_info(buffer_info &&other) {
(*this) = std::move(other);
}
buffer_info& operator=(buffer_info &&rhs) {
ptr = rhs.ptr;
itemsize = rhs.itemsize;
size = rhs.size;
format = std::move(rhs.format);
ndim = rhs.ndim;
shape = std::move(rhs.shape);
strides = std::move(rhs.strides);
std::swap(view, rhs.view);
std::swap(ownview, rhs.ownview);
return *this;
}
~buffer_info() {
if (view && ownview) { PyBuffer_Release(view); delete view; }
}
private:
struct private_ctr_tag { };
buffer_info(private_ctr_tag, void *ptr, ssize_t itemsize, const std::string &format, ssize_t ndim,
detail::any_container<ssize_t> &&shape_in, detail::any_container<ssize_t> &&strides_in)
: buffer_info(ptr, itemsize, format, ndim, std::move(shape_in), std::move(strides_in)) { }
Py_buffer *view = nullptr;
bool ownview = false;
};
NAMESPACE_BEGIN(detail)
template <typename T, typename SFINAE = void> struct compare_buffer_info {
static bool compare(const buffer_info& b) {
return b.format == format_descriptor<T>::format() && b.itemsize == (ssize_t) sizeof(T);
}
};
template <typename T> struct compare_buffer_info<T, detail::enable_if_t<std::is_integral<T>::value>> {
static bool compare(const buffer_info& b) {
return (size_t) b.itemsize == sizeof(T) && (b.format == format_descriptor<T>::value ||
((sizeof(T) == sizeof(long)) && b.format == (std::is_unsigned<T>::value ? "L" : "l")) ||
((sizeof(T) == sizeof(size_t)) && b.format == (std::is_unsigned<T>::value ? "N" : "n")));
}
};
NAMESPACE_END(detail)
NAMESPACE_END(pybind11)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,162 @@
/*
pybind11/chrono.h: Transparent conversion between std::chrono and python's datetime
Copyright (c) 2016 Trent Houliston <trent@houliston.me> and
Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include <cmath>
#include <ctime>
#include <chrono>
#include <datetime.h>
// Backport the PyDateTime_DELTA functions from Python3.3 if required
#ifndef PyDateTime_DELTA_GET_DAYS
#define PyDateTime_DELTA_GET_DAYS(o) (((PyDateTime_Delta*)o)->days)
#endif
#ifndef PyDateTime_DELTA_GET_SECONDS
#define PyDateTime_DELTA_GET_SECONDS(o) (((PyDateTime_Delta*)o)->seconds)
#endif
#ifndef PyDateTime_DELTA_GET_MICROSECONDS
#define PyDateTime_DELTA_GET_MICROSECONDS(o) (((PyDateTime_Delta*)o)->microseconds)
#endif
NAMESPACE_BEGIN(pybind11)
NAMESPACE_BEGIN(detail)
template <typename type> class duration_caster {
public:
typedef typename type::rep rep;
typedef typename type::period period;
typedef std::chrono::duration<uint_fast32_t, std::ratio<86400>> days;
bool load(handle src, bool) {
using namespace std::chrono;
// Lazy initialise the PyDateTime import
if (!PyDateTimeAPI) { PyDateTime_IMPORT; }
if (!src) return false;
// If invoked with datetime.delta object
if (PyDelta_Check(src.ptr())) {
value = type(duration_cast<duration<rep, period>>(
days(PyDateTime_DELTA_GET_DAYS(src.ptr()))
+ seconds(PyDateTime_DELTA_GET_SECONDS(src.ptr()))
+ microseconds(PyDateTime_DELTA_GET_MICROSECONDS(src.ptr()))));
return true;
}
// If invoked with a float we assume it is seconds and convert
else if (PyFloat_Check(src.ptr())) {
value = type(duration_cast<duration<rep, period>>(duration<double>(PyFloat_AsDouble(src.ptr()))));
return true;
}
else return false;
}
// If this is a duration just return it back
static const std::chrono::duration<rep, period>& get_duration(const std::chrono::duration<rep, period> &src) {
return src;
}
// If this is a time_point get the time_since_epoch
template <typename Clock> static std::chrono::duration<rep, period> get_duration(const std::chrono::time_point<Clock, std::chrono::duration<rep, period>> &src) {
return src.time_since_epoch();
}
static handle cast(const type &src, return_value_policy /* policy */, handle /* parent */) {
using namespace std::chrono;
// Use overloaded function to get our duration from our source
// Works out if it is a duration or time_point and get the duration
auto d = get_duration(src);
// Lazy initialise the PyDateTime import
if (!PyDateTimeAPI) { PyDateTime_IMPORT; }
// Declare these special duration types so the conversions happen with the correct primitive types (int)
using dd_t = duration<int, std::ratio<86400>>;
using ss_t = duration<int, std::ratio<1>>;
using us_t = duration<int, std::micro>;
auto dd = duration_cast<dd_t>(d);
auto subd = d - dd;
auto ss = duration_cast<ss_t>(subd);
auto us = duration_cast<us_t>(subd - ss);
return PyDelta_FromDSU(dd.count(), ss.count(), us.count());
}
PYBIND11_TYPE_CASTER(type, _("datetime.timedelta"));
};
// This is for casting times on the system clock into datetime.datetime instances
template <typename Duration> class type_caster<std::chrono::time_point<std::chrono::system_clock, Duration>> {
public:
typedef std::chrono::time_point<std::chrono::system_clock, Duration> type;
bool load(handle src, bool) {
using namespace std::chrono;
// Lazy initialise the PyDateTime import
if (!PyDateTimeAPI) { PyDateTime_IMPORT; }
if (!src) return false;
if (PyDateTime_Check(src.ptr())) {
std::tm cal;
cal.tm_sec = PyDateTime_DATE_GET_SECOND(src.ptr());
cal.tm_min = PyDateTime_DATE_GET_MINUTE(src.ptr());
cal.tm_hour = PyDateTime_DATE_GET_HOUR(src.ptr());
cal.tm_mday = PyDateTime_GET_DAY(src.ptr());
cal.tm_mon = PyDateTime_GET_MONTH(src.ptr()) - 1;
cal.tm_year = PyDateTime_GET_YEAR(src.ptr()) - 1900;
cal.tm_isdst = -1;
value = system_clock::from_time_t(std::mktime(&cal)) + microseconds(PyDateTime_DATE_GET_MICROSECOND(src.ptr()));
return true;
}
else return false;
}
static handle cast(const std::chrono::time_point<std::chrono::system_clock, Duration> &src, return_value_policy /* policy */, handle /* parent */) {
using namespace std::chrono;
// Lazy initialise the PyDateTime import
if (!PyDateTimeAPI) { PyDateTime_IMPORT; }
std::time_t tt = system_clock::to_time_t(src);
// this function uses static memory so it's best to copy it out asap just in case
// otherwise other code that is using localtime may break this (not just python code)
std::tm localtime = *std::localtime(&tt);
// Declare these special duration types so the conversions happen with the correct primitive types (int)
using us_t = duration<int, std::micro>;
return PyDateTime_FromDateAndTime(localtime.tm_year + 1900,
localtime.tm_mon + 1,
localtime.tm_mday,
localtime.tm_hour,
localtime.tm_min,
localtime.tm_sec,
(duration_cast<us_t>(src.time_since_epoch() % seconds(1))).count());
}
PYBIND11_TYPE_CASTER(type, _("datetime.datetime"));
};
// Other clocks that are not the system clock are not measured as datetime.datetime objects
// since they are not measured on calendar time. So instead we just make them timedeltas
// Or if they have passed us a time as a float we convert that
template <typename Clock, typename Duration> class type_caster<std::chrono::time_point<Clock, Duration>>
: public duration_caster<std::chrono::time_point<Clock, Duration>> {
};
template <typename Rep, typename Period> class type_caster<std::chrono::duration<Rep, Period>>
: public duration_caster<std::chrono::duration<Rep, Period>> {
};
NAMESPACE_END(detail)
NAMESPACE_END(pybind11)

View File

@ -0,0 +1,602 @@
/*
pybind11/class_support.h: Python C API implementation details for py::class_
Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "attr.h"
NAMESPACE_BEGIN(pybind11)
NAMESPACE_BEGIN(detail)
inline PyTypeObject *type_incref(PyTypeObject *type) {
Py_INCREF(type);
return type;
}
#if !defined(PYPY_VERSION)
/// `pybind11_static_property.__get__()`: Always pass the class instead of the instance.
extern "C" inline PyObject *pybind11_static_get(PyObject *self, PyObject * /*ob*/, PyObject *cls) {
return PyProperty_Type.tp_descr_get(self, cls, cls);
}
/// `pybind11_static_property.__set__()`: Just like the above `__get__()`.
extern "C" inline int pybind11_static_set(PyObject *self, PyObject *obj, PyObject *value) {
PyObject *cls = PyType_Check(obj) ? obj : (PyObject *) Py_TYPE(obj);
return PyProperty_Type.tp_descr_set(self, cls, value);
}
/** A `static_property` is the same as a `property` but the `__get__()` and `__set__()`
methods are modified to always use the object type instead of a concrete instance.
Return value: New reference. */
inline PyTypeObject *make_static_property_type() {
constexpr auto *name = "pybind11_static_property";
auto name_obj = reinterpret_steal<object>(PYBIND11_FROM_STRING(name));
/* Danger zone: from now (and until PyType_Ready), make sure to
issue no Python C API calls which could potentially invoke the
garbage collector (the GC will call type_traverse(), which will in
turn find the newly constructed type in an invalid state) */
auto heap_type = (PyHeapTypeObject *) PyType_Type.tp_alloc(&PyType_Type, 0);
if (!heap_type)
pybind11_fail("make_static_property_type(): error allocating type!");
heap_type->ht_name = name_obj.inc_ref().ptr();
#if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 3
heap_type->ht_qualname = name_obj.inc_ref().ptr();
#endif
auto type = &heap_type->ht_type;
type->tp_name = name;
type->tp_base = type_incref(&PyProperty_Type);
type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
type->tp_descr_get = pybind11_static_get;
type->tp_descr_set = pybind11_static_set;
if (PyType_Ready(type) < 0)
pybind11_fail("make_static_property_type(): failure in PyType_Ready()!");
setattr((PyObject *) type, "__module__", str("pybind11_builtins"));
return type;
}
#else // PYPY
/** PyPy has some issues with the above C API, so we evaluate Python code instead.
This function will only be called once so performance isn't really a concern.
Return value: New reference. */
inline PyTypeObject *make_static_property_type() {
auto d = dict();
PyObject *result = PyRun_String(R"(\
class pybind11_static_property(property):
def __get__(self, obj, cls):
return property.__get__(self, cls, cls)
def __set__(self, obj, value):
cls = obj if isinstance(obj, type) else type(obj)
property.__set__(self, cls, value)
)", Py_file_input, d.ptr(), d.ptr()
);
if (result == nullptr)
throw error_already_set();
Py_DECREF(result);
return (PyTypeObject *) d["pybind11_static_property"].cast<object>().release().ptr();
}
#endif // PYPY
/** Types with static properties need to handle `Type.static_prop = x` in a specific way.
By default, Python replaces the `static_property` itself, but for wrapped C++ types
we need to call `static_property.__set__()` in order to propagate the new value to
the underlying C++ data structure. */
extern "C" inline int pybind11_meta_setattro(PyObject* obj, PyObject* name, PyObject* value) {
// Use `_PyType_Lookup()` instead of `PyObject_GetAttr()` in order to get the raw
// descriptor (`property`) instead of calling `tp_descr_get` (`property.__get__()`).
PyObject *descr = _PyType_Lookup((PyTypeObject *) obj, name);
// The following assignment combinations are possible:
// 1. `Type.static_prop = value` --> descr_set: `Type.static_prop.__set__(value)`
// 2. `Type.static_prop = other_static_prop` --> setattro: replace existing `static_prop`
// 3. `Type.regular_attribute = value` --> setattro: regular attribute assignment
const auto static_prop = (PyObject *) get_internals().static_property_type;
const auto call_descr_set = descr && PyObject_IsInstance(descr, static_prop)
&& !PyObject_IsInstance(value, static_prop);
if (call_descr_set) {
// Call `static_property.__set__()` instead of replacing the `static_property`.
#if !defined(PYPY_VERSION)
return Py_TYPE(descr)->tp_descr_set(descr, obj, value);
#else
if (PyObject *result = PyObject_CallMethod(descr, "__set__", "OO", obj, value)) {
Py_DECREF(result);
return 0;
} else {
return -1;
}
#endif
} else {
// Replace existing attribute.
return PyType_Type.tp_setattro(obj, name, value);
}
}
#if PY_MAJOR_VERSION >= 3
/**
* Python 3's PyInstanceMethod_Type hides itself via its tp_descr_get, which prevents aliasing
* methods via cls.attr("m2") = cls.attr("m1"): instead the tp_descr_get returns a plain function,
* when called on a class, or a PyMethod, when called on an instance. Override that behaviour here
* to do a special case bypass for PyInstanceMethod_Types.
*/
extern "C" inline PyObject *pybind11_meta_getattro(PyObject *obj, PyObject *name) {
PyObject *descr = _PyType_Lookup((PyTypeObject *) obj, name);
if (descr && PyInstanceMethod_Check(descr)) {
Py_INCREF(descr);
return descr;
}
else {
return PyType_Type.tp_getattro(obj, name);
}
}
#endif
/** This metaclass is assigned by default to all pybind11 types and is required in order
for static properties to function correctly. Users may override this using `py::metaclass`.
Return value: New reference. */
inline PyTypeObject* make_default_metaclass() {
constexpr auto *name = "pybind11_type";
auto name_obj = reinterpret_steal<object>(PYBIND11_FROM_STRING(name));
/* Danger zone: from now (and until PyType_Ready), make sure to
issue no Python C API calls which could potentially invoke the
garbage collector (the GC will call type_traverse(), which will in
turn find the newly constructed type in an invalid state) */
auto heap_type = (PyHeapTypeObject *) PyType_Type.tp_alloc(&PyType_Type, 0);
if (!heap_type)
pybind11_fail("make_default_metaclass(): error allocating metaclass!");
heap_type->ht_name = name_obj.inc_ref().ptr();
#if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 3
heap_type->ht_qualname = name_obj.inc_ref().ptr();
#endif
auto type = &heap_type->ht_type;
type->tp_name = name;
type->tp_base = type_incref(&PyType_Type);
type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
type->tp_setattro = pybind11_meta_setattro;
#if PY_MAJOR_VERSION >= 3
type->tp_getattro = pybind11_meta_getattro;
#endif
if (PyType_Ready(type) < 0)
pybind11_fail("make_default_metaclass(): failure in PyType_Ready()!");
setattr((PyObject *) type, "__module__", str("pybind11_builtins"));
return type;
}
/// For multiple inheritance types we need to recursively register/deregister base pointers for any
/// base classes with pointers that are difference from the instance value pointer so that we can
/// correctly recognize an offset base class pointer. This calls a function with any offset base ptrs.
inline void traverse_offset_bases(void *valueptr, const detail::type_info *tinfo, instance *self,
bool (*f)(void * /*parentptr*/, instance * /*self*/)) {
for (handle h : reinterpret_borrow<tuple>(tinfo->type->tp_bases)) {
if (auto parent_tinfo = get_type_info((PyTypeObject *) h.ptr())) {
for (auto &c : parent_tinfo->implicit_casts) {
if (c.first == tinfo->cpptype) {
auto *parentptr = c.second(valueptr);
if (parentptr != valueptr)
f(parentptr, self);
traverse_offset_bases(parentptr, parent_tinfo, self, f);
break;
}
}
}
}
}
inline bool register_instance_impl(void *ptr, instance *self) {
get_internals().registered_instances.emplace(ptr, self);
return true; // unused, but gives the same signature as the deregister func
}
inline bool deregister_instance_impl(void *ptr, instance *self) {
auto &registered_instances = get_internals().registered_instances;
auto range = registered_instances.equal_range(ptr);
for (auto it = range.first; it != range.second; ++it) {
if (Py_TYPE(self) == Py_TYPE(it->second)) {
registered_instances.erase(it);
return true;
}
}
return false;
}
inline void register_instance(instance *self, void *valptr, const type_info *tinfo) {
register_instance_impl(valptr, self);
if (!tinfo->simple_ancestors)
traverse_offset_bases(valptr, tinfo, self, register_instance_impl);
}
inline bool deregister_instance(instance *self, void *valptr, const type_info *tinfo) {
bool ret = deregister_instance_impl(valptr, self);
if (!tinfo->simple_ancestors)
traverse_offset_bases(valptr, tinfo, self, deregister_instance_impl);
return ret;
}
/// Instance creation function for all pybind11 types. It only allocates space for the C++ object
/// (or multiple objects, for Python-side inheritance from multiple pybind11 types), but doesn't
/// call the constructor -- an `__init__` function must do that. If allocating value, the instance
/// is registered; otherwise register_instance will need to be called once the value has been
/// assigned.
inline PyObject *make_new_instance(PyTypeObject *type, bool allocate_value /*= true (in cast.h)*/) {
#if defined(PYPY_VERSION)
// PyPy gets tp_basicsize wrong (issue 2482) under multiple inheritance when the first inherited
// object is a a plain Python type (i.e. not derived from an extension type). Fix it.
ssize_t instance_size = static_cast<ssize_t>(sizeof(instance));
if (type->tp_basicsize < instance_size) {
type->tp_basicsize = instance_size;
}
#endif
PyObject *self = type->tp_alloc(type, 0);
auto inst = reinterpret_cast<instance *>(self);
// Allocate the value/holder internals:
inst->allocate_layout();
inst->owned = true;
// Allocate (if requested) the value pointers; otherwise leave them as nullptr
if (allocate_value) {
for (auto &v_h : values_and_holders(inst)) {
void *&vptr = v_h.value_ptr();
vptr = v_h.type->operator_new(v_h.type->type_size);
register_instance(inst, vptr, v_h.type);
}
}
return self;
}
/// Instance creation function for all pybind11 types. It only allocates space for the
/// C++ object, but doesn't call the constructor -- an `__init__` function must do that.
extern "C" inline PyObject *pybind11_object_new(PyTypeObject *type, PyObject *, PyObject *) {
return make_new_instance(type);
}
/// An `__init__` function constructs the C++ object. Users should provide at least one
/// of these using `py::init` or directly with `.def(__init__, ...)`. Otherwise, the
/// following default function will be used which simply throws an exception.
extern "C" inline int pybind11_object_init(PyObject *self, PyObject *, PyObject *) {
PyTypeObject *type = Py_TYPE(self);
std::string msg;
#if defined(PYPY_VERSION)
msg += handle((PyObject *) type).attr("__module__").cast<std::string>() + ".";
#endif
msg += type->tp_name;
msg += ": No constructor defined!";
PyErr_SetString(PyExc_TypeError, msg.c_str());
return -1;
}
inline void add_patient(PyObject *nurse, PyObject *patient) {
auto &internals = get_internals();
auto instance = reinterpret_cast<detail::instance *>(nurse);
instance->has_patients = true;
Py_INCREF(patient);
internals.patients[nurse].push_back(patient);
}
inline void clear_patients(PyObject *self) {
auto instance = reinterpret_cast<detail::instance *>(self);
auto &internals = get_internals();
auto pos = internals.patients.find(self);
assert(pos != internals.patients.end());
// Clearing the patients can cause more Python code to run, which
// can invalidate the iterator. Extract the vector of patients
// from the unordered_map first.
auto patients = std::move(pos->second);
internals.patients.erase(pos);
instance->has_patients = false;
for (PyObject *&patient : patients)
Py_CLEAR(patient);
}
/// Clears all internal data from the instance and removes it from registered instances in
/// preparation for deallocation.
inline void clear_instance(PyObject *self) {
auto instance = reinterpret_cast<detail::instance *>(self);
// Deallocate any values/holders, if present:
for (auto &v_h : values_and_holders(instance)) {
if (v_h) {
if (instance->owned || v_h.holder_constructed())
v_h.type->dealloc(v_h);
if (!deregister_instance(instance, v_h.value_ptr(), v_h.type))
pybind11_fail("pybind11_object_dealloc(): Tried to deallocate unregistered instance!");
}
}
// Deallocate the value/holder layout internals:
instance->deallocate_layout();
if (instance->weakrefs)
PyObject_ClearWeakRefs(self);
PyObject **dict_ptr = _PyObject_GetDictPtr(self);
if (dict_ptr)
Py_CLEAR(*dict_ptr);
if (instance->has_patients)
clear_patients(self);
}
/// Instance destructor function for all pybind11 types. It calls `type_info.dealloc`
/// to destroy the C++ object itself, while the rest is Python bookkeeping.
extern "C" inline void pybind11_object_dealloc(PyObject *self) {
clear_instance(self);
Py_TYPE(self)->tp_free(self);
}
/** Create the type which can be used as a common base for all classes. This is
needed in order to satisfy Python's requirements for multiple inheritance.
Return value: New reference. */
inline PyObject *make_object_base_type(PyTypeObject *metaclass) {
constexpr auto *name = "pybind11_object";
auto name_obj = reinterpret_steal<object>(PYBIND11_FROM_STRING(name));
/* Danger zone: from now (and until PyType_Ready), make sure to
issue no Python C API calls which could potentially invoke the
garbage collector (the GC will call type_traverse(), which will in
turn find the newly constructed type in an invalid state) */
auto heap_type = (PyHeapTypeObject *) metaclass->tp_alloc(metaclass, 0);
if (!heap_type)
pybind11_fail("make_object_base_type(): error allocating type!");
heap_type->ht_name = name_obj.inc_ref().ptr();
#if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 3
heap_type->ht_qualname = name_obj.inc_ref().ptr();
#endif
auto type = &heap_type->ht_type;
type->tp_name = name;
type->tp_base = type_incref(&PyBaseObject_Type);
type->tp_basicsize = static_cast<ssize_t>(sizeof(instance));
type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
type->tp_new = pybind11_object_new;
type->tp_init = pybind11_object_init;
type->tp_dealloc = pybind11_object_dealloc;
/* Support weak references (needed for the keep_alive feature) */
type->tp_weaklistoffset = offsetof(instance, weakrefs);
if (PyType_Ready(type) < 0)
pybind11_fail("PyType_Ready failed in make_object_base_type():" + error_string());
setattr((PyObject *) type, "__module__", str("pybind11_builtins"));
assert(!PyType_HasFeature(type, Py_TPFLAGS_HAVE_GC));
return (PyObject *) heap_type;
}
/// dynamic_attr: Support for `d = instance.__dict__`.
extern "C" inline PyObject *pybind11_get_dict(PyObject *self, void *) {
PyObject *&dict = *_PyObject_GetDictPtr(self);
if (!dict)
dict = PyDict_New();
Py_XINCREF(dict);
return dict;
}
/// dynamic_attr: Support for `instance.__dict__ = dict()`.
extern "C" inline int pybind11_set_dict(PyObject *self, PyObject *new_dict, void *) {
if (!PyDict_Check(new_dict)) {
PyErr_Format(PyExc_TypeError, "__dict__ must be set to a dictionary, not a '%.200s'",
Py_TYPE(new_dict)->tp_name);
return -1;
}
PyObject *&dict = *_PyObject_GetDictPtr(self);
Py_INCREF(new_dict);
Py_CLEAR(dict);
dict = new_dict;
return 0;
}
/// dynamic_attr: Allow the garbage collector to traverse the internal instance `__dict__`.
extern "C" inline int pybind11_traverse(PyObject *self, visitproc visit, void *arg) {
PyObject *&dict = *_PyObject_GetDictPtr(self);
Py_VISIT(dict);
return 0;
}
/// dynamic_attr: Allow the GC to clear the dictionary.
extern "C" inline int pybind11_clear(PyObject *self) {
PyObject *&dict = *_PyObject_GetDictPtr(self);
Py_CLEAR(dict);
return 0;
}
/// Give instances of this type a `__dict__` and opt into garbage collection.
inline void enable_dynamic_attributes(PyHeapTypeObject *heap_type) {
auto type = &heap_type->ht_type;
#if defined(PYPY_VERSION)
pybind11_fail(std::string(type->tp_name) + ": dynamic attributes are "
"currently not supported in "
"conjunction with PyPy!");
#endif
type->tp_flags |= Py_TPFLAGS_HAVE_GC;
type->tp_dictoffset = type->tp_basicsize; // place dict at the end
type->tp_basicsize += (ssize_t)sizeof(PyObject *); // and allocate enough space for it
type->tp_traverse = pybind11_traverse;
type->tp_clear = pybind11_clear;
static PyGetSetDef getset[] = {
{const_cast<char*>("__dict__"), pybind11_get_dict, pybind11_set_dict, nullptr, nullptr},
{nullptr, nullptr, nullptr, nullptr, nullptr}
};
type->tp_getset = getset;
}
/// buffer_protocol: Fill in the view as specified by flags.
extern "C" inline int pybind11_getbuffer(PyObject *obj, Py_buffer *view, int flags) {
// Look for a `get_buffer` implementation in this type's info or any bases (following MRO).
type_info *tinfo = nullptr;
for (auto type : reinterpret_borrow<tuple>(Py_TYPE(obj)->tp_mro)) {
tinfo = get_type_info((PyTypeObject *) type.ptr());
if (tinfo && tinfo->get_buffer)
break;
}
if (view == nullptr || obj == nullptr || !tinfo || !tinfo->get_buffer) {
if (view)
view->obj = nullptr;
PyErr_SetString(PyExc_BufferError, "pybind11_getbuffer(): Internal error");
return -1;
}
std::memset(view, 0, sizeof(Py_buffer));
buffer_info *info = tinfo->get_buffer(obj, tinfo->get_buffer_data);
view->obj = obj;
view->ndim = 1;
view->internal = info;
view->buf = info->ptr;
view->itemsize = info->itemsize;
view->len = view->itemsize;
for (auto s : info->shape)
view->len *= s;
if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT)
view->format = const_cast<char *>(info->format.c_str());
if ((flags & PyBUF_STRIDES) == PyBUF_STRIDES) {
view->ndim = (int) info->ndim;
view->strides = &info->strides[0];
view->shape = &info->shape[0];
}
Py_INCREF(view->obj);
return 0;
}
/// buffer_protocol: Release the resources of the buffer.
extern "C" inline void pybind11_releasebuffer(PyObject *, Py_buffer *view) {
delete (buffer_info *) view->internal;
}
/// Give this type a buffer interface.
inline void enable_buffer_protocol(PyHeapTypeObject *heap_type) {
heap_type->ht_type.tp_as_buffer = &heap_type->as_buffer;
#if PY_MAJOR_VERSION < 3
heap_type->ht_type.tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER;
#endif
heap_type->as_buffer.bf_getbuffer = pybind11_getbuffer;
heap_type->as_buffer.bf_releasebuffer = pybind11_releasebuffer;
}
/** Create a brand new Python type according to the `type_record` specification.
Return value: New reference. */
inline PyObject* make_new_python_type(const type_record &rec) {
auto name = reinterpret_steal<object>(PYBIND11_FROM_STRING(rec.name));
#if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 3
auto ht_qualname = name;
if (rec.scope && hasattr(rec.scope, "__qualname__")) {
ht_qualname = reinterpret_steal<object>(
PyUnicode_FromFormat("%U.%U", rec.scope.attr("__qualname__").ptr(), name.ptr()));
}
#endif
object module;
if (rec.scope) {
if (hasattr(rec.scope, "__module__"))
module = rec.scope.attr("__module__");
else if (hasattr(rec.scope, "__name__"))
module = rec.scope.attr("__name__");
}
#if !defined(PYPY_VERSION)
const auto full_name = module ? str(module).cast<std::string>() + "." + rec.name
: std::string(rec.name);
#else
const auto full_name = std::string(rec.name);
#endif
char *tp_doc = nullptr;
if (rec.doc && options::show_user_defined_docstrings()) {
/* Allocate memory for docstring (using PyObject_MALLOC, since
Python will free this later on) */
size_t size = strlen(rec.doc) + 1;
tp_doc = (char *) PyObject_MALLOC(size);
memcpy((void *) tp_doc, rec.doc, size);
}
auto &internals = get_internals();
auto bases = tuple(rec.bases);
auto base = (bases.size() == 0) ? internals.instance_base
: bases[0].ptr();
/* Danger zone: from now (and until PyType_Ready), make sure to
issue no Python C API calls which could potentially invoke the
garbage collector (the GC will call type_traverse(), which will in
turn find the newly constructed type in an invalid state) */
auto metaclass = rec.metaclass.ptr() ? (PyTypeObject *) rec.metaclass.ptr()
: internals.default_metaclass;
auto heap_type = (PyHeapTypeObject *) metaclass->tp_alloc(metaclass, 0);
if (!heap_type)
pybind11_fail(std::string(rec.name) + ": Unable to create type object!");
heap_type->ht_name = name.release().ptr();
#if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 3
heap_type->ht_qualname = ht_qualname.release().ptr();
#endif
auto type = &heap_type->ht_type;
type->tp_name = strdup(full_name.c_str());
type->tp_doc = tp_doc;
type->tp_base = type_incref((PyTypeObject *)base);
type->tp_basicsize = static_cast<ssize_t>(sizeof(instance));
if (bases.size() > 0)
type->tp_bases = bases.release().ptr();
/* Don't inherit base __init__ */
type->tp_init = pybind11_object_init;
/* Supported protocols */
type->tp_as_number = &heap_type->as_number;
type->tp_as_sequence = &heap_type->as_sequence;
type->tp_as_mapping = &heap_type->as_mapping;
/* Flags */
type->tp_flags |= Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_MAJOR_VERSION < 3
type->tp_flags |= Py_TPFLAGS_CHECKTYPES;
#endif
if (rec.dynamic_attr)
enable_dynamic_attributes(heap_type);
if (rec.buffer_protocol)
enable_buffer_protocol(heap_type);
if (PyType_Ready(type) < 0)
pybind11_fail(std::string(rec.name) + ": PyType_Ready failed (" + error_string() + ")!");
assert(rec.dynamic_attr ? PyType_HasFeature(type, Py_TPFLAGS_HAVE_GC)
: !PyType_HasFeature(type, Py_TPFLAGS_HAVE_GC));
/* Register type with the parent scope */
if (rec.scope)
setattr(rec.scope, rec.name, (PyObject *) type);
if (module) // Needed by pydoc
setattr((PyObject *) type, "__module__", module);
return (PyObject *) type;
}
NAMESPACE_END(detail)
NAMESPACE_END(pybind11)

View File

@ -0,0 +1,876 @@
/*
pybind11/common.h -- Basic macros
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#if !defined(NAMESPACE_BEGIN)
# define NAMESPACE_BEGIN(name) namespace name {
#endif
#if !defined(NAMESPACE_END)
# define NAMESPACE_END(name) }
#endif
#if !defined(_MSC_VER) && !defined(__INTEL_COMPILER)
# if __cplusplus >= 201402L
# define PYBIND11_CPP14
# if __cplusplus > 201402L /* Temporary: should be updated to >= the final C++17 value once known */
# define PYBIND11_CPP17
# endif
# endif
#elif defined(_MSC_VER)
// MSVC sets _MSVC_LANG rather than __cplusplus (supposedly until the standard is fully implemented)
# if _MSVC_LANG >= 201402L
# define PYBIND11_CPP14
# if _MSVC_LANG > 201402L && _MSC_VER >= 1910
# define PYBIND11_CPP17
# endif
# endif
#endif
// Compiler version assertions
#if defined(__INTEL_COMPILER)
# if __INTEL_COMPILER < 1500
# error pybind11 requires Intel C++ compiler v15 or newer
# endif
#elif defined(__clang__) && !defined(__apple_build_version__)
# if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ < 3)
# error pybind11 requires clang 3.3 or newer
# endif
#elif defined(__clang__)
// Apple changes clang version macros to its Xcode version; the first Xcode release based on
// (upstream) clang 3.3 was Xcode 5:
# if __clang_major__ < 5
# error pybind11 requires Xcode/clang 5.0 or newer
# endif
#elif defined(__GNUG__)
# if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 8)
# error pybind11 requires gcc 4.8 or newer
# endif
#elif defined(_MSC_VER)
// Pybind hits various compiler bugs in 2015u2 and earlier, and also makes use of some stl features
// (e.g. std::negation) added in 2015u3:
# if _MSC_FULL_VER < 190024210
# error pybind11 requires MSVC 2015 update 3 or newer
# endif
#endif
#if !defined(PYBIND11_EXPORT)
# if defined(WIN32) || defined(_WIN32)
# define PYBIND11_EXPORT __declspec(dllexport)
# else
# define PYBIND11_EXPORT __attribute__ ((visibility("default")))
# endif
#endif
#if defined(_MSC_VER)
# define PYBIND11_NOINLINE __declspec(noinline)
#else
# define PYBIND11_NOINLINE __attribute__ ((noinline))
#endif
#if defined(PYBIND11_CPP14)
# define PYBIND11_DEPRECATED(reason) [[deprecated(reason)]]
#else
# define PYBIND11_DEPRECATED(reason) __attribute__((deprecated(reason)))
#endif
#define PYBIND11_VERSION_MAJOR 2
#define PYBIND11_VERSION_MINOR 2
#define PYBIND11_VERSION_PATCH dev0
/// Include Python header, disable linking to pythonX_d.lib on Windows in debug mode
#if defined(_MSC_VER)
# if (PY_MAJOR_VERSION == 3 && PY_MINOR_VERSION < 4)
# define HAVE_ROUND 1
# endif
# pragma warning(push)
# pragma warning(disable: 4510 4610 4512 4005)
# if defined(_DEBUG)
# define PYBIND11_DEBUG_MARKER
# undef _DEBUG
# endif
#endif
#include <Python.h>
#include <frameobject.h>
#include <pythread.h>
#if defined(_WIN32) && (defined(min) || defined(max))
# error Macro clash with min and max -- define NOMINMAX when compiling your program on Windows
#endif
#if defined(isalnum)
# undef isalnum
# undef isalpha
# undef islower
# undef isspace
# undef isupper
# undef tolower
# undef toupper
#endif
#if defined(_MSC_VER)
# if defined(PYBIND11_DEBUG_MARKER)
# define _DEBUG
# undef PYBIND11_DEBUG_MARKER
# endif
# pragma warning(pop)
#endif
#include <cstddef>
#include <cstring>
#include <forward_list>
#include <vector>
#include <string>
#include <stdexcept>
#include <unordered_set>
#include <unordered_map>
#include <memory>
#include <typeindex>
#include <type_traits>
#if PY_MAJOR_VERSION >= 3 /// Compatibility macros for various Python versions
#define PYBIND11_INSTANCE_METHOD_NEW(ptr, class_) PyInstanceMethod_New(ptr)
#define PYBIND11_INSTANCE_METHOD_CHECK PyInstanceMethod_Check
#define PYBIND11_INSTANCE_METHOD_GET_FUNCTION PyInstanceMethod_GET_FUNCTION
#define PYBIND11_BYTES_CHECK PyBytes_Check
#define PYBIND11_BYTES_FROM_STRING PyBytes_FromString
#define PYBIND11_BYTES_FROM_STRING_AND_SIZE PyBytes_FromStringAndSize
#define PYBIND11_BYTES_AS_STRING_AND_SIZE PyBytes_AsStringAndSize
#define PYBIND11_BYTES_AS_STRING PyBytes_AsString
#define PYBIND11_BYTES_SIZE PyBytes_Size
#define PYBIND11_LONG_CHECK(o) PyLong_Check(o)
#define PYBIND11_LONG_AS_LONGLONG(o) PyLong_AsLongLong(o)
#define PYBIND11_BYTES_NAME "bytes"
#define PYBIND11_STRING_NAME "str"
#define PYBIND11_SLICE_OBJECT PyObject
#define PYBIND11_FROM_STRING PyUnicode_FromString
#define PYBIND11_STR_TYPE ::pybind11::str
#define PYBIND11_PLUGIN_IMPL(name) \
extern "C" PYBIND11_EXPORT PyObject *PyInit_##name()
#else
#define PYBIND11_INSTANCE_METHOD_NEW(ptr, class_) PyMethod_New(ptr, nullptr, class_)
#define PYBIND11_INSTANCE_METHOD_CHECK PyMethod_Check
#define PYBIND11_INSTANCE_METHOD_GET_FUNCTION PyMethod_GET_FUNCTION
#define PYBIND11_BYTES_CHECK PyString_Check
#define PYBIND11_BYTES_FROM_STRING PyString_FromString
#define PYBIND11_BYTES_FROM_STRING_AND_SIZE PyString_FromStringAndSize
#define PYBIND11_BYTES_AS_STRING_AND_SIZE PyString_AsStringAndSize
#define PYBIND11_BYTES_AS_STRING PyString_AsString
#define PYBIND11_BYTES_SIZE PyString_Size
#define PYBIND11_LONG_CHECK(o) (PyInt_Check(o) || PyLong_Check(o))
#define PYBIND11_LONG_AS_LONGLONG(o) (PyInt_Check(o) ? (long long) PyLong_AsLong(o) : PyLong_AsLongLong(o))
#define PYBIND11_BYTES_NAME "str"
#define PYBIND11_STRING_NAME "unicode"
#define PYBIND11_SLICE_OBJECT PySliceObject
#define PYBIND11_FROM_STRING PyString_FromString
#define PYBIND11_STR_TYPE ::pybind11::bytes
#define PYBIND11_PLUGIN_IMPL(name) \
static PyObject *pybind11_init_wrapper(); \
extern "C" PYBIND11_EXPORT void init##name() { \
(void)pybind11_init_wrapper(); \
} \
PyObject *pybind11_init_wrapper()
#endif
#if PY_VERSION_HEX >= 0x03050000 && PY_VERSION_HEX < 0x03050200
extern "C" {
struct _Py_atomic_address { void *value; };
PyAPI_DATA(_Py_atomic_address) _PyThreadState_Current;
}
#endif
#define PYBIND11_TRY_NEXT_OVERLOAD ((PyObject *) 1) // special failure return code
#define PYBIND11_STRINGIFY(x) #x
#define PYBIND11_TOSTRING(x) PYBIND11_STRINGIFY(x)
#define PYBIND11_INTERNALS_ID "__pybind11_" \
PYBIND11_TOSTRING(PYBIND11_VERSION_MAJOR) "_" PYBIND11_TOSTRING(PYBIND11_VERSION_MINOR) "__"
/** \rst
***Deprecated in favor of PYBIND11_MODULE***
This macro creates the entry point that will be invoked when the Python interpreter
imports a plugin library. Please create a `module` in the function body and return
the pointer to its underlying Python object at the end.
.. code-block:: cpp
PYBIND11_PLUGIN(example) {
pybind11::module m("example", "pybind11 example plugin");
/// Set up bindings here
return m.ptr();
}
\endrst */
#define PYBIND11_PLUGIN(name) \
PYBIND11_DEPRECATED("PYBIND11_PLUGIN is deprecated, use PYBIND11_MODULE") \
static PyObject *pybind11_init(); \
PYBIND11_PLUGIN_IMPL(name) { \
int major, minor; \
if (sscanf(Py_GetVersion(), "%i.%i", &major, &minor) != 2) { \
PyErr_SetString(PyExc_ImportError, "Can't parse Python version."); \
return nullptr; \
} else if (major != PY_MAJOR_VERSION || minor != PY_MINOR_VERSION) { \
PyErr_Format(PyExc_ImportError, \
"Python version mismatch: module was compiled for " \
"version %i.%i, while the interpreter is running " \
"version %i.%i.", PY_MAJOR_VERSION, PY_MINOR_VERSION, \
major, minor); \
return nullptr; \
} \
try { \
return pybind11_init(); \
} catch (pybind11::error_already_set &e) { \
e.clear(); \
PyErr_SetString(PyExc_ImportError, e.what()); \
return nullptr; \
} catch (const std::exception &e) { \
PyErr_SetString(PyExc_ImportError, e.what()); \
return nullptr; \
} \
} \
PyObject *pybind11_init()
/** \rst
This macro creates the entry point that will be invoked when the Python interpreter
imports an extension module. The module name is given as the fist argument and it
should not be in quotes. The second macro argument defines a variable of type
`py::module` which can be used to initialize the module.
.. code-block:: cpp
PYBIND11_MODULE(example, m) {
m.doc() = "pybind11 example module";
// Add bindings here
m.def("foo", []() {
return "Hello, World!";
});
}
\endrst */
#define PYBIND11_MODULE(name, variable) \
static void pybind11_init_##name(pybind11::module &); \
PYBIND11_PLUGIN_IMPL(name) { \
int major, minor; \
if (sscanf(Py_GetVersion(), "%i.%i", &major, &minor) != 2) { \
PyErr_SetString(PyExc_ImportError, "Can't parse Python version."); \
return nullptr; \
} else if (major != PY_MAJOR_VERSION || minor != PY_MINOR_VERSION) { \
PyErr_Format(PyExc_ImportError, \
"Python version mismatch: module was compiled for " \
"version %i.%i, while the interpreter is running " \
"version %i.%i.", PY_MAJOR_VERSION, PY_MINOR_VERSION, \
major, minor); \
return nullptr; \
} \
auto m = pybind11::module(#name); \
try { \
pybind11_init_##name(m); \
return m.ptr(); \
} catch (pybind11::error_already_set &e) { \
e.clear(); \
PyErr_SetString(PyExc_ImportError, e.what()); \
return nullptr; \
} catch (const std::exception &e) { \
PyErr_SetString(PyExc_ImportError, e.what()); \
return nullptr; \
} \
} \
void pybind11_init_##name(pybind11::module &variable)
NAMESPACE_BEGIN(pybind11)
using ssize_t = Py_ssize_t;
using size_t = std::size_t;
/// Approach used to cast a previously unknown C++ instance into a Python object
enum class return_value_policy : uint8_t {
/** This is the default return value policy, which falls back to the policy
return_value_policy::take_ownership when the return value is a pointer.
Otherwise, it uses return_value::move or return_value::copy for rvalue
and lvalue references, respectively. See below for a description of what
all of these different policies do. */
automatic = 0,
/** As above, but use policy return_value_policy::reference when the return
value is a pointer. This is the default conversion policy for function
arguments when calling Python functions manually from C++ code (i.e. via
handle::operator()). You probably won't need to use this. */
automatic_reference,
/** Reference an existing object (i.e. do not create a new copy) and take
ownership. Python will call the destructor and delete operator when the
objects reference count reaches zero. Undefined behavior ensues when
the C++ side does the same.. */
take_ownership,
/** Create a new copy of the returned object, which will be owned by
Python. This policy is comparably safe because the lifetimes of the two
instances are decoupled. */
copy,
/** Use std::move to move the return value contents into a new instance
that will be owned by Python. This policy is comparably safe because the
lifetimes of the two instances (move source and destination) are
decoupled. */
move,
/** Reference an existing object, but do not take ownership. The C++ side
is responsible for managing the objects lifetime and deallocating it
when it is no longer used. Warning: undefined behavior will ensue when
the C++ side deletes an object that is still referenced and used by
Python. */
reference,
/** This policy only applies to methods and properties. It references the
object without taking ownership similar to the above
return_value_policy::reference policy. In contrast to that policy, the
function or propertys implicit this argument (called the parent) is
considered to be the the owner of the return value (the child).
pybind11 then couples the lifetime of the parent to the child via a
reference relationship that ensures that the parent cannot be garbage
collected while Python is still using the child. More advanced
variations of this scheme are also possible using combinations of
return_value_policy::reference and the keep_alive call policy */
reference_internal
};
NAMESPACE_BEGIN(detail)
inline static constexpr int log2(size_t n, int k = 0) { return (n <= 1) ? k : log2(n >> 1, k + 1); }
// Returns the size as a multiple of sizeof(void *), rounded up.
inline static constexpr size_t size_in_ptrs(size_t s) { return 1 + ((s - 1) >> log2(sizeof(void *))); }
inline std::string error_string();
/**
* The space to allocate for simple layout instance holders (see below) in multiple of the size of
* a pointer (e.g. 2 means 16 bytes on 64-bit architectures). The default is the minimum required
* to holder either a std::unique_ptr or std::shared_ptr (which is almost always
* sizeof(std::shared_ptr<T>)).
*/
constexpr size_t instance_simple_holder_in_ptrs() {
static_assert(sizeof(std::shared_ptr<int>) >= sizeof(std::unique_ptr<int>),
"pybind assumes std::shared_ptrs are at least as big as std::unique_ptrs");
return size_in_ptrs(sizeof(std::shared_ptr<int>));
}
// Forward declarations
struct type_info;
struct value_and_holder;
/// The 'instance' type which needs to be standard layout (need to be able to use 'offsetof')
struct instance {
PyObject_HEAD
/// Storage for pointers and holder; see simple_layout, below, for a description
union {
void *simple_value_holder[1 + instance_simple_holder_in_ptrs()];
struct {
void **values_and_holders;
bool *holder_constructed;
} nonsimple;
};
/// Weak references (needed for keep alive):
PyObject *weakrefs;
/// If true, the pointer is owned which means we're free to manage it with a holder.
bool owned : 1;
/**
* An instance has two possible value/holder layouts.
*
* Simple layout (when this flag is true), means the `simple_value_holder` is set with a pointer
* and the holder object governing that pointer, i.e. [val1*][holder]. This layout is applied
* whenever there is no python-side multiple inheritance of bound C++ types *and* the type's
* holder will fit in the default space (which is large enough to hold either a std::unique_ptr
* or std::shared_ptr).
*
* Non-simple layout applies when using custom holders that require more space than `shared_ptr`
* (which is typically the size of two pointers), or when multiple inheritance is used on the
* python side. Non-simple layout allocates the required amount of memory to have multiple
* bound C++ classes as parents. Under this layout, `nonsimple.values_and_holders` is set to a
* pointer to allocated space of the required space to hold a a sequence of value pointers and
* holders followed by a set of holder-constructed flags (1 byte each), i.e.
* [val1*][holder1][val2*][holder2]...[bb...] where each [block] is rounded up to a multiple of
* `sizeof(void *)`. `nonsimple.holder_constructed` is, for convenience, a pointer to the
* beginning of the [bb...] block (but not independently allocated).
*/
bool simple_layout : 1;
/// For simple layout, tracks whether the holder has been constructed
bool simple_holder_constructed : 1;
/// If true, get_internals().patients has an entry for this object
bool has_patients : 1;
/// Initializes all of the above type/values/holders data
void allocate_layout();
/// Destroys/deallocates all of the above
void deallocate_layout();
/// Returns the value_and_holder wrapper for the given type (or the first, if `find_type`
/// omitted)
value_and_holder get_value_and_holder(const type_info *find_type = nullptr);
};
static_assert(std::is_standard_layout<instance>::value, "Internal error: `pybind11::detail::instance` is not standard layout!");
struct overload_hash {
inline size_t operator()(const std::pair<const PyObject *, const char *>& v) const {
size_t value = std::hash<const void *>()(v.first);
value ^= std::hash<const void *>()(v.second) + 0x9e3779b9 + (value<<6) + (value>>2);
return value;
}
};
// Python loads modules by default with dlopen with the RTLD_LOCAL flag; under libc++ and possibly
// other stls, this means `typeid(A)` from one module won't equal `typeid(A)` from another module
// even when `A` is the same, non-hidden-visibility type (e.g. from a common include). Under
// stdlibc++, this doesn't happen: equality and the type_index hash are based on the type name,
// which works. If not under a known-good stl, provide our own name-based hasher and equality
// functions that use the type name.
#if defined(__GLIBCXX__)
inline bool same_type(const std::type_info &lhs, const std::type_info &rhs) { return lhs == rhs; }
using type_hash = std::hash<std::type_index>;
using type_equal_to = std::equal_to<std::type_index>;
#else
inline bool same_type(const std::type_info &lhs, const std::type_info &rhs) {
return lhs.name() == rhs.name() ||
std::strcmp(lhs.name(), rhs.name()) == 0;
}
struct type_hash {
size_t operator()(const std::type_index &t) const {
size_t hash = 5381;
const char *ptr = t.name();
while (auto c = static_cast<unsigned char>(*ptr++))
hash = (hash * 33) ^ c;
return hash;
}
};
struct type_equal_to {
bool operator()(const std::type_index &lhs, const std::type_index &rhs) const {
return lhs.name() == rhs.name() ||
std::strcmp(lhs.name(), rhs.name()) == 0;
}
};
#endif
template <typename value_type>
using type_map = std::unordered_map<std::type_index, value_type, type_hash, type_equal_to>;
/// Internal data structure used to track registered instances and types
struct internals {
type_map<void *> registered_types_cpp; // std::type_index -> type_info
std::unordered_map<PyTypeObject *, std::vector<type_info *>> registered_types_py; // PyTypeObject* -> base type_info(s)
std::unordered_multimap<const void *, instance*> registered_instances; // void * -> instance*
std::unordered_set<std::pair<const PyObject *, const char *>, overload_hash> inactive_overload_cache;
type_map<std::vector<bool (*)(PyObject *, void *&)>> direct_conversions;
std::unordered_map<const PyObject *, std::vector<PyObject *>> patients;
std::forward_list<void (*) (std::exception_ptr)> registered_exception_translators;
std::unordered_map<std::string, void *> shared_data; // Custom data to be shared across extensions
std::vector<PyObject *> loader_patient_stack; // Used by `loader_life_support`
PyTypeObject *static_property_type;
PyTypeObject *default_metaclass;
PyObject *instance_base;
#if defined(WITH_THREAD)
decltype(PyThread_create_key()) tstate = 0; // Usually an int but a long on Cygwin64 with Python 3.x
PyInterpreterState *istate = nullptr;
#endif
};
/// Return a reference to the current 'internals' information
inline internals &get_internals();
/// from __cpp_future__ import (convenient aliases from C++14/17)
#if defined(PYBIND11_CPP14) && (!defined(_MSC_VER) || _MSC_VER >= 1910)
using std::enable_if_t;
using std::conditional_t;
using std::remove_cv_t;
using std::remove_reference_t;
#else
template <bool B, typename T = void> using enable_if_t = typename std::enable_if<B, T>::type;
template <bool B, typename T, typename F> using conditional_t = typename std::conditional<B, T, F>::type;
template <typename T> using remove_cv_t = typename std::remove_cv<T>::type;
template <typename T> using remove_reference_t = typename std::remove_reference<T>::type;
#endif
/// Index sequences
#if defined(PYBIND11_CPP14)
using std::index_sequence;
using std::make_index_sequence;
#else
template<size_t ...> struct index_sequence { };
template<size_t N, size_t ...S> struct make_index_sequence_impl : make_index_sequence_impl <N - 1, N - 1, S...> { };
template<size_t ...S> struct make_index_sequence_impl <0, S...> { typedef index_sequence<S...> type; };
template<size_t N> using make_index_sequence = typename make_index_sequence_impl<N>::type;
#endif
/// Make an index sequence of the indices of true arguments
template <typename ISeq, size_t, bool...> struct select_indices_impl { using type = ISeq; };
template <size_t... IPrev, size_t I, bool B, bool... Bs> struct select_indices_impl<index_sequence<IPrev...>, I, B, Bs...>
: select_indices_impl<conditional_t<B, index_sequence<IPrev..., I>, index_sequence<IPrev...>>, I + 1, Bs...> {};
template <bool... Bs> using select_indices = typename select_indices_impl<index_sequence<>, 0, Bs...>::type;
/// Backports of std::bool_constant and std::negation to accomodate older compilers
template <bool B> using bool_constant = std::integral_constant<bool, B>;
template <typename T> struct negation : bool_constant<!T::value> { };
template <typename...> struct void_t_impl { using type = void; };
template <typename... Ts> using void_t = typename void_t_impl<Ts...>::type;
/// Compile-time all/any/none of that check the boolean value of all template types
#ifdef __cpp_fold_expressions
template <class... Ts> using all_of = bool_constant<(Ts::value && ...)>;
template <class... Ts> using any_of = bool_constant<(Ts::value || ...)>;
#elif !defined(_MSC_VER)
template <bool...> struct bools {};
template <class... Ts> using all_of = std::is_same<
bools<Ts::value..., true>,
bools<true, Ts::value...>>;
template <class... Ts> using any_of = negation<all_of<negation<Ts>...>>;
#else
// MSVC has trouble with the above, but supports std::conjunction, which we can use instead (albeit
// at a slight loss of compilation efficiency).
template <class... Ts> using all_of = std::conjunction<Ts...>;
template <class... Ts> using any_of = std::disjunction<Ts...>;
#endif
template <class... Ts> using none_of = negation<any_of<Ts...>>;
template <class T, template<class> class... Predicates> using satisfies_all_of = all_of<Predicates<T>...>;
template <class T, template<class> class... Predicates> using satisfies_any_of = any_of<Predicates<T>...>;
template <class T, template<class> class... Predicates> using satisfies_none_of = none_of<Predicates<T>...>;
/// Strip the class from a method type
template <typename T> struct remove_class { };
template <typename C, typename R, typename... A> struct remove_class<R (C::*)(A...)> { typedef R type(A...); };
template <typename C, typename R, typename... A> struct remove_class<R (C::*)(A...) const> { typedef R type(A...); };
/// Helper template to strip away type modifiers
template <typename T> struct intrinsic_type { typedef T type; };
template <typename T> struct intrinsic_type<const T> { typedef typename intrinsic_type<T>::type type; };
template <typename T> struct intrinsic_type<T*> { typedef typename intrinsic_type<T>::type type; };
template <typename T> struct intrinsic_type<T&> { typedef typename intrinsic_type<T>::type type; };
template <typename T> struct intrinsic_type<T&&> { typedef typename intrinsic_type<T>::type type; };
template <typename T, size_t N> struct intrinsic_type<const T[N]> { typedef typename intrinsic_type<T>::type type; };
template <typename T, size_t N> struct intrinsic_type<T[N]> { typedef typename intrinsic_type<T>::type type; };
template <typename T> using intrinsic_t = typename intrinsic_type<T>::type;
/// Helper type to replace 'void' in some expressions
struct void_type { };
/// Helper template which holds a list of types
template <typename...> struct type_list { };
/// Compile-time integer sum
#ifdef __cpp_fold_expressions
template <typename... Ts> constexpr size_t constexpr_sum(Ts... ns) { return (0 + ... + size_t{ns}); }
#else
constexpr size_t constexpr_sum() { return 0; }
template <typename T, typename... Ts>
constexpr size_t constexpr_sum(T n, Ts... ns) { return size_t{n} + constexpr_sum(ns...); }
#endif
NAMESPACE_BEGIN(constexpr_impl)
/// Implementation details for constexpr functions
constexpr int first(int i) { return i; }
template <typename T, typename... Ts>
constexpr int first(int i, T v, Ts... vs) { return v ? i : first(i + 1, vs...); }
constexpr int last(int /*i*/, int result) { return result; }
template <typename T, typename... Ts>
constexpr int last(int i, int result, T v, Ts... vs) { return last(i + 1, v ? i : result, vs...); }
NAMESPACE_END(constexpr_impl)
/// Return the index of the first type in Ts which satisfies Predicate<T>. Returns sizeof...(Ts) if
/// none match.
template <template<typename> class Predicate, typename... Ts>
constexpr int constexpr_first() { return constexpr_impl::first(0, Predicate<Ts>::value...); }
/// Return the index of the last type in Ts which satisfies Predicate<T>, or -1 if none match.
template <template<typename> class Predicate, typename... Ts>
constexpr int constexpr_last() { return constexpr_impl::last(0, -1, Predicate<Ts>::value...); }
/// Return the Nth element from the parameter pack
template <size_t N, typename T, typename... Ts>
struct pack_element { using type = typename pack_element<N - 1, Ts...>::type; };
template <typename T, typename... Ts>
struct pack_element<0, T, Ts...> { using type = T; };
/// Return the one and only type which matches the predicate, or Default if none match.
/// If more than one type matches the predicate, fail at compile-time.
template <template<typename> class Predicate, typename Default, typename... Ts>
struct exactly_one {
static constexpr auto found = constexpr_sum(Predicate<Ts>::value...);
static_assert(found <= 1, "Found more than one type matching the predicate");
static constexpr auto index = found ? constexpr_first<Predicate, Ts...>() : 0;
using type = conditional_t<found, typename pack_element<index, Ts...>::type, Default>;
};
template <template<typename> class P, typename Default>
struct exactly_one<P, Default> { using type = Default; };
template <template<typename> class Predicate, typename Default, typename... Ts>
using exactly_one_t = typename exactly_one<Predicate, Default, Ts...>::type;
/// Defer the evaluation of type T until types Us are instantiated
template <typename T, typename... /*Us*/> struct deferred_type { using type = T; };
template <typename T, typename... Us> using deferred_t = typename deferred_type<T, Us...>::type;
/// Like is_base_of, but requires a strict base (i.e. `is_strict_base_of<T, T>::value == false`,
/// unlike `std::is_base_of`)
template <typename Base, typename Derived> using is_strict_base_of = bool_constant<
std::is_base_of<Base, Derived>::value && !std::is_same<Base, Derived>::value>;
template <template<typename...> class Base>
struct is_template_base_of_impl {
template <typename... Us> static std::true_type check(Base<Us...> *);
static std::false_type check(...);
};
/// Check if a template is the base of a type. For example:
/// `is_template_base_of<Base, T>` is true if `struct T : Base<U> {}` where U can be anything
template <template<typename...> class Base, typename T>
#if !defined(_MSC_VER)
using is_template_base_of = decltype(is_template_base_of_impl<Base>::check((remove_cv_t<T>*)nullptr));
#else // MSVC2015 has trouble with decltype in template aliases
struct is_template_base_of : decltype(is_template_base_of_impl<Base>::check((remove_cv_t<T>*)nullptr)) { };
#endif
/// Check if T is an instantiation of the template `Class`. For example:
/// `is_instantiation<shared_ptr, T>` is true if `T == shared_ptr<U>` where U can be anything.
template <template<typename...> class Class, typename T>
struct is_instantiation : std::false_type { };
template <template<typename...> class Class, typename... Us>
struct is_instantiation<Class, Class<Us...>> : std::true_type { };
/// Check if T is std::shared_ptr<U> where U can be anything
template <typename T> using is_shared_ptr = is_instantiation<std::shared_ptr, T>;
/// Check if T looks like an input iterator
template <typename T, typename = void> struct is_input_iterator : std::false_type {};
template <typename T>
struct is_input_iterator<T, void_t<decltype(*std::declval<T &>()), decltype(++std::declval<T &>())>>
: std::true_type {};
/// Ignore that a variable is unused in compiler warnings
inline void ignore_unused(const int *) { }
/// Apply a function over each element of a parameter pack
#ifdef __cpp_fold_expressions
#define PYBIND11_EXPAND_SIDE_EFFECTS(PATTERN) (((PATTERN), void()), ...)
#else
using expand_side_effects = bool[];
#define PYBIND11_EXPAND_SIDE_EFFECTS(PATTERN) pybind11::detail::expand_side_effects{ ((PATTERN), void(), false)..., false }
#endif
NAMESPACE_END(detail)
/// Returns a named pointer that is shared among all extension modules (using the same
/// pybind11 version) running in the current interpreter. Names starting with underscores
/// are reserved for internal usage. Returns `nullptr` if no matching entry was found.
inline PYBIND11_NOINLINE void* get_shared_data(const std::string& name) {
auto& internals = detail::get_internals();
auto it = internals.shared_data.find(name);
return it != internals.shared_data.end() ? it->second : nullptr;
}
/// Set the shared data that can be later recovered by `get_shared_data()`.
inline PYBIND11_NOINLINE void *set_shared_data(const std::string& name, void *data) {
detail::get_internals().shared_data[name] = data;
return data;
}
/// Returns a typed reference to a shared data entry (by using `get_shared_data()`) if
/// such entry exists. Otherwise, a new object of default-constructible type `T` is
/// added to the shared data under the given name and a reference to it is returned.
template<typename T> T& get_or_create_shared_data(const std::string& name) {
auto& internals = detail::get_internals();
auto it = internals.shared_data.find(name);
T* ptr = (T*) (it != internals.shared_data.end() ? it->second : nullptr);
if (!ptr) {
ptr = new T();
internals.shared_data[name] = ptr;
}
return *ptr;
}
/// Fetch and hold an error which was already set in Python
class error_already_set : public std::runtime_error {
public:
error_already_set() : std::runtime_error(detail::error_string()) {
PyErr_Fetch(&type, &value, &trace);
}
error_already_set(const error_already_set &) = delete;
error_already_set(error_already_set &&e)
: std::runtime_error(e.what()), type(e.type), value(e.value),
trace(e.trace) { e.type = e.value = e.trace = nullptr; }
inline ~error_already_set(); // implementation in pybind11.h
error_already_set& operator=(const error_already_set &) = delete;
/// Give the error back to Python
void restore() { PyErr_Restore(type, value, trace); type = value = trace = nullptr; }
/// Clear the held Python error state (the C++ `what()` message remains intact)
void clear() { restore(); PyErr_Clear(); }
/// Check if the trapped exception matches a given Python exception class
bool matches(PyObject *ex) const { return PyErr_GivenExceptionMatches(ex, type); }
private:
PyObject *type, *value, *trace;
};
/// C++ bindings of builtin Python exceptions
class builtin_exception : public std::runtime_error {
public:
using std::runtime_error::runtime_error;
/// Set the error using the Python C API
virtual void set_error() const = 0;
};
#define PYBIND11_RUNTIME_EXCEPTION(name, type) \
class name : public builtin_exception { public: \
using builtin_exception::builtin_exception; \
name() : name("") { } \
void set_error() const override { PyErr_SetString(type, what()); } \
};
PYBIND11_RUNTIME_EXCEPTION(stop_iteration, PyExc_StopIteration)
PYBIND11_RUNTIME_EXCEPTION(index_error, PyExc_IndexError)
PYBIND11_RUNTIME_EXCEPTION(key_error, PyExc_KeyError)
PYBIND11_RUNTIME_EXCEPTION(value_error, PyExc_ValueError)
PYBIND11_RUNTIME_EXCEPTION(type_error, PyExc_TypeError)
PYBIND11_RUNTIME_EXCEPTION(cast_error, PyExc_RuntimeError) /// Thrown when pybind11::cast or handle::call fail due to a type casting error
PYBIND11_RUNTIME_EXCEPTION(reference_cast_error, PyExc_RuntimeError) /// Used internally
[[noreturn]] PYBIND11_NOINLINE inline void pybind11_fail(const char *reason) { throw std::runtime_error(reason); }
[[noreturn]] PYBIND11_NOINLINE inline void pybind11_fail(const std::string &reason) { throw std::runtime_error(reason); }
template <typename T, typename SFINAE = void> struct format_descriptor { };
NAMESPACE_BEGIN(detail)
// Returns the index of the given type in the type char array below, and in the list in numpy.h
// The order here is: bool; 8 ints ((signed,unsigned)x(8,16,32,64)bits); float,double,long double;
// complex float,double,long double. Note that the long double types only participate when long
// double is actually longer than double (it isn't under MSVC).
// NB: not only the string below but also complex.h and numpy.h rely on this order.
template <typename T, typename SFINAE = void> struct is_fmt_numeric { static constexpr bool value = false; };
template <typename T> struct is_fmt_numeric<T, enable_if_t<std::is_arithmetic<T>::value>> {
static constexpr bool value = true;
static constexpr int index = std::is_same<T, bool>::value ? 0 : 1 + (
std::is_integral<T>::value ? detail::log2(sizeof(T))*2 + std::is_unsigned<T>::value : 8 + (
std::is_same<T, double>::value ? 1 : std::is_same<T, long double>::value ? 2 : 0));
};
NAMESPACE_END(detail)
template <typename T> struct format_descriptor<T, detail::enable_if_t<std::is_arithmetic<T>::value>> {
static constexpr const char c = "?bBhHiIqQfdg"[detail::is_fmt_numeric<T>::index];
static constexpr const char value[2] = { c, '\0' };
static std::string format() { return std::string(1, c); }
};
template <typename T> constexpr const char format_descriptor<
T, detail::enable_if_t<std::is_arithmetic<T>::value>>::value[2];
/// RAII wrapper that temporarily clears any Python error state
struct error_scope {
PyObject *type, *value, *trace;
error_scope() { PyErr_Fetch(&type, &value, &trace); }
~error_scope() { PyErr_Restore(type, value, trace); }
};
/// Dummy destructor wrapper that can be used to expose classes with a private destructor
struct nodelete { template <typename T> void operator()(T*) { } };
// overload_cast requires variable templates: C++14
#if defined(PYBIND11_CPP14)
#define PYBIND11_OVERLOAD_CAST 1
NAMESPACE_BEGIN(detail)
template <typename... Args>
struct overload_cast_impl {
template <typename Return>
constexpr auto operator()(Return (*pf)(Args...)) const noexcept
-> decltype(pf) { return pf; }
template <typename Return, typename Class>
constexpr auto operator()(Return (Class::*pmf)(Args...), std::false_type = {}) const noexcept
-> decltype(pmf) { return pmf; }
template <typename Return, typename Class>
constexpr auto operator()(Return (Class::*pmf)(Args...) const, std::true_type) const noexcept
-> decltype(pmf) { return pmf; }
};
NAMESPACE_END(detail)
/// Syntax sugar for resolving overloaded function pointers:
/// - regular: static_cast<Return (Class::*)(Arg0, Arg1, Arg2)>(&Class::func)
/// - sweet: overload_cast<Arg0, Arg1, Arg2>(&Class::func)
template <typename... Args>
static constexpr detail::overload_cast_impl<Args...> overload_cast = {};
// MSVC 2015 only accepts this particular initialization syntax for this variable template.
/// Const member function selector for overload_cast
/// - regular: static_cast<Return (Class::*)(Arg) const>(&Class::func)
/// - sweet: overload_cast<Arg>(&Class::func, const_)
static constexpr auto const_ = std::true_type{};
#else // no overload_cast: providing something that static_assert-fails:
template <typename... Args> struct overload_cast {
static_assert(detail::deferred_t<std::false_type, Args...>::value,
"pybind11::overload_cast<...> requires compiling in C++14 mode");
};
#endif // overload_cast
NAMESPACE_BEGIN(detail)
// Adaptor for converting arbitrary container arguments into a vector; implicitly convertible from
// any standard container (or C-style array) supporting std::begin/std::end, any singleton
// arithmetic type (if T is arithmetic), or explicitly constructible from an iterator pair.
template <typename T>
class any_container {
std::vector<T> v;
public:
any_container() = default;
// Can construct from a pair of iterators
template <typename It, typename = enable_if_t<is_input_iterator<It>::value>>
any_container(It first, It last) : v(first, last) { }
// Implicit conversion constructor from any arbitrary container type with values convertible to T
template <typename Container, typename = enable_if_t<std::is_convertible<decltype(*std::begin(std::declval<const Container &>())), T>::value>>
any_container(const Container &c) : any_container(std::begin(c), std::end(c)) { }
// initializer_list's aren't deducible, so don't get matched by the above template; we need this
// to explicitly allow implicit conversion from one:
template <typename TIn, typename = enable_if_t<std::is_convertible<TIn, T>::value>>
any_container(const std::initializer_list<TIn> &c) : any_container(c.begin(), c.end()) { }
// Avoid copying if given an rvalue vector of the correct type.
any_container(std::vector<T> &&v) : v(std::move(v)) { }
// Moves the vector out of an rvalue any_container
operator std::vector<T> &&() && { return std::move(v); }
// Dereferencing obtains a reference to the underlying vector
std::vector<T> &operator*() { return v; }
const std::vector<T> &operator*() const { return v; }
// -> lets you call methods on the underlying vector
std::vector<T> *operator->() { return &v; }
const std::vector<T> *operator->() const { return &v; }
};
NAMESPACE_END(detail)
NAMESPACE_END(pybind11)

View File

@ -0,0 +1,61 @@
/*
pybind11/complex.h: Complex number support
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include <complex>
/// glibc defines I as a macro which breaks things, e.g., boost template names
#ifdef I
# undef I
#endif
NAMESPACE_BEGIN(pybind11)
template <typename T> struct format_descriptor<std::complex<T>, detail::enable_if_t<std::is_floating_point<T>::value>> {
static constexpr const char c = format_descriptor<T>::c;
static constexpr const char value[3] = { 'Z', c, '\0' };
static std::string format() { return std::string(value); }
};
template <typename T> constexpr const char format_descriptor<
std::complex<T>, detail::enable_if_t<std::is_floating_point<T>::value>>::value[3];
NAMESPACE_BEGIN(detail)
template <typename T> struct is_fmt_numeric<std::complex<T>, detail::enable_if_t<std::is_floating_point<T>::value>> {
static constexpr bool value = true;
static constexpr int index = is_fmt_numeric<T>::index + 3;
};
template <typename T> class type_caster<std::complex<T>> {
public:
bool load(handle src, bool convert) {
if (!src)
return false;
if (!convert && !PyComplex_Check(src.ptr()))
return false;
Py_complex result = PyComplex_AsCComplex(src.ptr());
if (result.real == -1.0 && PyErr_Occurred()) {
PyErr_Clear();
return false;
}
value = std::complex<T>((T) result.real, (T) result.imag);
return true;
}
static handle cast(const std::complex<T> &src, return_value_policy /* policy */, handle /* parent */) {
return PyComplex_FromDoubles((double) src.real(), (double) src.imag());
}
PYBIND11_TYPE_CASTER(std::complex<T>, _("complex"));
};
NAMESPACE_END(detail)
NAMESPACE_END(pybind11)

View File

@ -0,0 +1,185 @@
/*
pybind11/descr.h: Helper type for concatenating type signatures
either at runtime (C++11) or compile time (C++14)
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "common.h"
NAMESPACE_BEGIN(pybind11)
NAMESPACE_BEGIN(detail)
/* Concatenate type signatures at compile time using C++14 */
#if defined(PYBIND11_CPP14) && !defined(_MSC_VER)
#define PYBIND11_CONSTEXPR_DESCR
template <size_t Size1, size_t Size2> class descr {
template <size_t Size1_, size_t Size2_> friend class descr;
public:
constexpr descr(char const (&text) [Size1+1], const std::type_info * const (&types)[Size2+1])
: descr(text, types,
make_index_sequence<Size1>(),
make_index_sequence<Size2>()) { }
constexpr const char *text() const { return m_text; }
constexpr const std::type_info * const * types() const { return m_types; }
template <size_t OtherSize1, size_t OtherSize2>
constexpr descr<Size1 + OtherSize1, Size2 + OtherSize2> operator+(const descr<OtherSize1, OtherSize2> &other) const {
return concat(other,
make_index_sequence<Size1>(),
make_index_sequence<Size2>(),
make_index_sequence<OtherSize1>(),
make_index_sequence<OtherSize2>());
}
protected:
template <size_t... Indices1, size_t... Indices2>
constexpr descr(
char const (&text) [Size1+1],
const std::type_info * const (&types) [Size2+1],
index_sequence<Indices1...>, index_sequence<Indices2...>)
: m_text{text[Indices1]..., '\0'},
m_types{types[Indices2]..., nullptr } {}
template <size_t OtherSize1, size_t OtherSize2, size_t... Indices1,
size_t... Indices2, size_t... OtherIndices1, size_t... OtherIndices2>
constexpr descr<Size1 + OtherSize1, Size2 + OtherSize2>
concat(const descr<OtherSize1, OtherSize2> &other,
index_sequence<Indices1...>, index_sequence<Indices2...>,
index_sequence<OtherIndices1...>, index_sequence<OtherIndices2...>) const {
return descr<Size1 + OtherSize1, Size2 + OtherSize2>(
{ m_text[Indices1]..., other.m_text[OtherIndices1]..., '\0' },
{ m_types[Indices2]..., other.m_types[OtherIndices2]..., nullptr }
);
}
protected:
char m_text[Size1 + 1];
const std::type_info * m_types[Size2 + 1];
};
template <size_t Size> constexpr descr<Size - 1, 0> _(char const(&text)[Size]) {
return descr<Size - 1, 0>(text, { nullptr });
}
template <size_t Rem, size_t... Digits> struct int_to_str : int_to_str<Rem/10, Rem%10, Digits...> { };
template <size_t...Digits> struct int_to_str<0, Digits...> {
static constexpr auto digits = descr<sizeof...(Digits), 0>({ ('0' + Digits)..., '\0' }, { nullptr });
};
// Ternary description (like std::conditional)
template <bool B, size_t Size1, size_t Size2>
constexpr enable_if_t<B, descr<Size1 - 1, 0>> _(char const(&text1)[Size1], char const(&)[Size2]) {
return _(text1);
}
template <bool B, size_t Size1, size_t Size2>
constexpr enable_if_t<!B, descr<Size2 - 1, 0>> _(char const(&)[Size1], char const(&text2)[Size2]) {
return _(text2);
}
template <bool B, size_t SizeA1, size_t SizeA2, size_t SizeB1, size_t SizeB2>
constexpr enable_if_t<B, descr<SizeA1, SizeA2>> _(descr<SizeA1, SizeA2> d, descr<SizeB1, SizeB2>) { return d; }
template <bool B, size_t SizeA1, size_t SizeA2, size_t SizeB1, size_t SizeB2>
constexpr enable_if_t<!B, descr<SizeB1, SizeB2>> _(descr<SizeA1, SizeA2>, descr<SizeB1, SizeB2> d) { return d; }
template <size_t Size> auto constexpr _() -> decltype(int_to_str<Size / 10, Size % 10>::digits) {
return int_to_str<Size / 10, Size % 10>::digits;
}
template <typename Type> constexpr descr<1, 1> _() {
return descr<1, 1>({ '%', '\0' }, { &typeid(Type), nullptr });
}
inline constexpr descr<0, 0> concat() { return _(""); }
template <size_t Size1, size_t Size2, typename... Args> auto constexpr concat(descr<Size1, Size2> descr) { return descr; }
template <size_t Size1, size_t Size2, typename... Args> auto constexpr concat(descr<Size1, Size2> descr, Args&&... args) { return descr + _(", ") + concat(args...); }
template <size_t Size1, size_t Size2> auto constexpr type_descr(descr<Size1, Size2> descr) { return _("{") + descr + _("}"); }
#define PYBIND11_DESCR constexpr auto
#else /* Simpler C++11 implementation based on run-time memory allocation and copying */
class descr {
public:
PYBIND11_NOINLINE descr(const char *text, const std::type_info * const * types) {
size_t nChars = len(text), nTypes = len(types);
m_text = new char[nChars];
m_types = new const std::type_info *[nTypes];
memcpy(m_text, text, nChars * sizeof(char));
memcpy(m_types, types, nTypes * sizeof(const std::type_info *));
}
PYBIND11_NOINLINE descr operator+(descr &&d2) && {
descr r;
size_t nChars1 = len(m_text), nTypes1 = len(m_types);
size_t nChars2 = len(d2.m_text), nTypes2 = len(d2.m_types);
r.m_text = new char[nChars1 + nChars2 - 1];
r.m_types = new const std::type_info *[nTypes1 + nTypes2 - 1];
memcpy(r.m_text, m_text, (nChars1-1) * sizeof(char));
memcpy(r.m_text + nChars1 - 1, d2.m_text, nChars2 * sizeof(char));
memcpy(r.m_types, m_types, (nTypes1-1) * sizeof(std::type_info *));
memcpy(r.m_types + nTypes1 - 1, d2.m_types, nTypes2 * sizeof(std::type_info *));
delete[] m_text; delete[] m_types;
delete[] d2.m_text; delete[] d2.m_types;
return r;
}
char *text() { return m_text; }
const std::type_info * * types() { return m_types; }
protected:
PYBIND11_NOINLINE descr() { }
template <typename T> static size_t len(const T *ptr) { // return length including null termination
const T *it = ptr;
while (*it++ != (T) 0)
;
return static_cast<size_t>(it - ptr);
}
const std::type_info **m_types = nullptr;
char *m_text = nullptr;
};
/* The 'PYBIND11_NOINLINE inline' combinations below are intentional to get the desired linkage while producing as little object code as possible */
PYBIND11_NOINLINE inline descr _(const char *text) {
const std::type_info *types[1] = { nullptr };
return descr(text, types);
}
template <bool B> PYBIND11_NOINLINE enable_if_t<B, descr> _(const char *text1, const char *) { return _(text1); }
template <bool B> PYBIND11_NOINLINE enable_if_t<!B, descr> _(char const *, const char *text2) { return _(text2); }
template <bool B> PYBIND11_NOINLINE enable_if_t<B, descr> _(descr d, descr) { return d; }
template <bool B> PYBIND11_NOINLINE enable_if_t<!B, descr> _(descr, descr d) { return d; }
template <typename Type> PYBIND11_NOINLINE descr _() {
const std::type_info *types[2] = { &typeid(Type), nullptr };
return descr("%", types);
}
template <size_t Size> PYBIND11_NOINLINE descr _() {
const std::type_info *types[1] = { nullptr };
return descr(std::to_string(Size).c_str(), types);
}
PYBIND11_NOINLINE inline descr concat() { return _(""); }
PYBIND11_NOINLINE inline descr concat(descr &&d) { return d; }
template <typename... Args> PYBIND11_NOINLINE descr concat(descr &&d, Args&&... args) { return std::move(d) + _(", ") + concat(std::forward<Args>(args)...); }
PYBIND11_NOINLINE inline descr type_descr(descr&& d) { return _("{") + std::move(d) + _("}"); }
#define PYBIND11_DESCR ::pybind11::detail::descr
#endif
NAMESPACE_END(detail)
NAMESPACE_END(pybind11)

View File

@ -0,0 +1,610 @@
/*
pybind11/eigen.h: Transparent conversion for dense and sparse Eigen matrices
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "numpy.h"
#if defined(__INTEL_COMPILER)
# pragma warning(disable: 1682) // implicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem)
#elif defined(__GNUG__) || defined(__clang__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wconversion"
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
# if __GNUC__ >= 7
# pragma GCC diagnostic ignored "-Wint-in-bool-context"
# endif
#endif
#include <Eigen/Core>
#include <Eigen/SparseCore>
#if defined(_MSC_VER)
# pragma warning(push)
# pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
#endif
// Eigen prior to 3.2.7 doesn't have proper move constructors--but worse, some classes get implicit
// move constructors that break things. We could detect this an explicitly copy, but an extra copy
// of matrices seems highly undesirable.
static_assert(EIGEN_VERSION_AT_LEAST(3,2,7), "Eigen support in pybind11 requires Eigen >= 3.2.7");
NAMESPACE_BEGIN(pybind11)
// Provide a convenience alias for easier pass-by-ref usage with fully dynamic strides:
using EigenDStride = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>;
template <typename MatrixType> using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>;
template <typename MatrixType> using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>;
NAMESPACE_BEGIN(detail)
#if EIGEN_VERSION_AT_LEAST(3,3,0)
using EigenIndex = Eigen::Index;
#else
using EigenIndex = EIGEN_DEFAULT_DENSE_INDEX_TYPE;
#endif
// Matches Eigen::Map, Eigen::Ref, blocks, etc:
template <typename T> using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>, std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>;
template <typename T> using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>;
template <typename T> using is_eigen_dense_plain = all_of<negation<is_eigen_dense_map<T>>, is_template_base_of<Eigen::PlainObjectBase, T>>;
template <typename T> using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>;
// Test for objects inheriting from EigenBase<Derived> that aren't captured by the above. This
// basically covers anything that can be assigned to a dense matrix but that don't have a typical
// matrix data layout that can be copied from their .data(). For example, DiagonalMatrix and
// SelfAdjointView fall into this category.
template <typename T> using is_eigen_other = all_of<
is_template_base_of<Eigen::EigenBase, T>,
negation<any_of<is_eigen_dense_map<T>, is_eigen_dense_plain<T>, is_eigen_sparse<T>>>
>;
// Captures numpy/eigen conformability status (returned by EigenProps::conformable()):
template <bool EigenRowMajor> struct EigenConformable {
bool conformable = false;
EigenIndex rows = 0, cols = 0;
EigenDStride stride{0, 0}; // Only valid if negativestrides is false!
bool negativestrides = false; // If true, do not use stride!
EigenConformable(bool fits = false) : conformable{fits} {}
// Matrix type:
EigenConformable(EigenIndex r, EigenIndex c,
EigenIndex rstride, EigenIndex cstride) :
conformable{true}, rows{r}, cols{c} {
// TODO: when Eigen bug #747 is fixed, remove the tests for non-negativity. http://eigen.tuxfamily.org/bz/show_bug.cgi?id=747
if (rstride < 0 || cstride < 0) {
negativestrides = true;
} else {
stride = {EigenRowMajor ? rstride : cstride /* outer stride */,
EigenRowMajor ? cstride : rstride /* inner stride */ };
}
}
// Vector type:
EigenConformable(EigenIndex r, EigenIndex c, EigenIndex stride)
: EigenConformable(r, c, r == 1 ? c*stride : stride, c == 1 ? r : r*stride) {}
template <typename props> bool stride_compatible() const {
// To have compatible strides, we need (on both dimensions) one of fully dynamic strides,
// matching strides, or a dimension size of 1 (in which case the stride value is irrelevant)
return
!negativestrides &&
(props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner() ||
(EigenRowMajor ? cols : rows) == 1) &&
(props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer() ||
(EigenRowMajor ? rows : cols) == 1);
}
operator bool() const { return conformable; }
};
template <typename Type> struct eigen_extract_stride { using type = Type; };
template <typename PlainObjectType, int MapOptions, typename StrideType>
struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> { using type = StrideType; };
template <typename PlainObjectType, int Options, typename StrideType>
struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> { using type = StrideType; };
// Helper struct for extracting information from an Eigen type
template <typename Type_> struct EigenProps {
using Type = Type_;
using Scalar = typename Type::Scalar;
using StrideType = typename eigen_extract_stride<Type>::type;
static constexpr EigenIndex
rows = Type::RowsAtCompileTime,
cols = Type::ColsAtCompileTime,
size = Type::SizeAtCompileTime;
static constexpr bool
row_major = Type::IsRowMajor,
vector = Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1
fixed_rows = rows != Eigen::Dynamic,
fixed_cols = cols != Eigen::Dynamic,
fixed = size != Eigen::Dynamic, // Fully-fixed size
dynamic = !fixed_rows && !fixed_cols; // Fully-dynamic size
template <EigenIndex i, EigenIndex ifzero> using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>;
static constexpr EigenIndex inner_stride = if_zero<StrideType::InnerStrideAtCompileTime, 1>::value,
outer_stride = if_zero<StrideType::OuterStrideAtCompileTime,
vector ? size : row_major ? cols : rows>::value;
static constexpr bool dynamic_stride = inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic;
static constexpr bool requires_row_major = !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1;
static constexpr bool requires_col_major = !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1;
// Takes an input array and determines whether we can make it fit into the Eigen type. If
// the array is a vector, we attempt to fit it into either an Eigen 1xN or Nx1 vector
// (preferring the latter if it will fit in either, i.e. for a fully dynamic matrix type).
static EigenConformable<row_major> conformable(const array &a) {
const auto dims = a.ndim();
if (dims < 1 || dims > 2)
return false;
if (dims == 2) { // Matrix type: require exact match (or dynamic)
EigenIndex
np_rows = a.shape(0),
np_cols = a.shape(1),
np_rstride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)),
np_cstride = a.strides(1) / static_cast<ssize_t>(sizeof(Scalar));
if ((fixed_rows && np_rows != rows) || (fixed_cols && np_cols != cols))
return false;
return {np_rows, np_cols, np_rstride, np_cstride};
}
// Otherwise we're storing an n-vector. Only one of the strides will be used, but whichever
// is used, we want the (single) numpy stride value.
const EigenIndex n = a.shape(0),
stride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar));
if (vector) { // Eigen type is a compile-time vector
if (fixed && size != n)
return false; // Vector size mismatch
return {rows == 1 ? 1 : n, cols == 1 ? 1 : n, stride};
}
else if (fixed) {
// The type has a fixed size, but is not a vector: abort
return false;
}
else if (fixed_cols) {
// Since this isn't a vector, cols must be != 1. We allow this only if it exactly
// equals the number of elements (rows is Dynamic, and so 1 row is allowed).
if (cols != n) return false;
return {1, n, stride};
}
else {
// Otherwise it's either fully dynamic, or column dynamic; both become a column vector
if (fixed_rows && rows != n) return false;
return {n, 1, stride};
}
}
static PYBIND11_DESCR descriptor() {
constexpr bool show_writeable = is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value;
constexpr bool show_order = is_eigen_dense_map<Type>::value;
constexpr bool show_c_contiguous = show_order && requires_row_major;
constexpr bool show_f_contiguous = !show_c_contiguous && show_order && requires_col_major;
return type_descr(_("numpy.ndarray[") + npy_format_descriptor<Scalar>::name() +
_("[") + _<fixed_rows>(_<(size_t) rows>(), _("m")) +
_(", ") + _<fixed_cols>(_<(size_t) cols>(), _("n")) +
_("]") +
// For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to be
// satisfied: writeable=True (for a mutable reference), and, depending on the map's stride
// options, possibly f_contiguous or c_contiguous. We include them in the descriptor output
// to provide some hint as to why a TypeError is occurring (otherwise it can be confusing to
// see that a function accepts a 'numpy.ndarray[float64[3,2]]' and an error message that you
// *gave* a numpy.ndarray of the right type and dimensions.
_<show_writeable>(", flags.writeable", "") +
_<show_c_contiguous>(", flags.c_contiguous", "") +
_<show_f_contiguous>(", flags.f_contiguous", "") +
_("]")
);
}
};
// Casts an Eigen type to numpy array. If given a base, the numpy array references the src data,
// otherwise it'll make a copy. writeable lets you turn off the writeable flag for the array.
template <typename props> handle eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) {
constexpr ssize_t elem_size = sizeof(typename props::Scalar);
array a;
if (props::vector)
a = array({ src.size() }, { elem_size * src.innerStride() }, src.data(), base);
else
a = array({ src.rows(), src.cols() }, { elem_size * src.rowStride(), elem_size * src.colStride() },
src.data(), base);
if (!writeable)
array_proxy(a.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_;
return a.release();
}
// Takes an lvalue ref to some Eigen type and a (python) base object, creating a numpy array that
// reference the Eigen object's data with `base` as the python-registered base class (if omitted,
// the base will be set to None, and lifetime management is up to the caller). The numpy array is
// non-writeable if the given type is const.
template <typename props, typename Type>
handle eigen_ref_array(Type &src, handle parent = none()) {
// none here is to get past array's should-we-copy detection, which currently always
// copies when there is no base. Setting the base to None should be harmless.
return eigen_array_cast<props>(src, parent, !std::is_const<Type>::value);
}
// Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a numpy
// array that references the encapsulated data with a python-side reference to the capsule to tie
// its destruction to that of any dependent python objects. Const-ness is determined by whether or
// not the Type of the pointer given is const.
template <typename props, typename Type, typename = enable_if_t<is_eigen_dense_plain<Type>::value>>
handle eigen_encapsulate(Type *src) {
capsule base(src, [](void *o) { delete static_cast<Type *>(o); });
return eigen_ref_array<props>(*src, base);
}
// Type caster for regular, dense matrix types (e.g. MatrixXd), but not maps/refs/etc. of dense
// types.
template<typename Type>
struct type_caster<Type, enable_if_t<is_eigen_dense_plain<Type>::value>> {
using Scalar = typename Type::Scalar;
using props = EigenProps<Type>;
bool load(handle src, bool convert) {
// If we're in no-convert mode, only load if given an array of the correct type
if (!convert && !isinstance<array_t<Scalar>>(src))
return false;
// Coerce into an array, but don't do type conversion yet; the copy below handles it.
auto buf = array::ensure(src);
if (!buf)
return false;
auto dims = buf.ndim();
if (dims < 1 || dims > 2)
return false;
auto fits = props::conformable(buf);
if (!fits)
return false;
// Allocate the new type, then build a numpy reference into it
value = Type(fits.rows, fits.cols);
auto ref = reinterpret_steal<array>(eigen_ref_array<props>(value));
if (dims == 1) ref = ref.squeeze();
int result = detail::npy_api::get().PyArray_CopyInto_(ref.ptr(), buf.ptr());
if (result < 0) { // Copy failed!
PyErr_Clear();
return false;
}
return true;
}
private:
// Cast implementation
template <typename CType>
static handle cast_impl(CType *src, return_value_policy policy, handle parent) {
switch (policy) {
case return_value_policy::take_ownership:
case return_value_policy::automatic:
return eigen_encapsulate<props>(src);
case return_value_policy::move:
return eigen_encapsulate<props>(new CType(std::move(*src)));
case return_value_policy::copy:
return eigen_array_cast<props>(*src);
case return_value_policy::reference:
case return_value_policy::automatic_reference:
return eigen_ref_array<props>(*src);
case return_value_policy::reference_internal:
return eigen_ref_array<props>(*src, parent);
default:
throw cast_error("unhandled return_value_policy: should not happen!");
};
}
public:
// Normal returned non-reference, non-const value:
static handle cast(Type &&src, return_value_policy /* policy */, handle parent) {
return cast_impl(&src, return_value_policy::move, parent);
}
// If you return a non-reference const, we mark the numpy array readonly:
static handle cast(const Type &&src, return_value_policy /* policy */, handle parent) {
return cast_impl(&src, return_value_policy::move, parent);
}
// lvalue reference return; default (automatic) becomes copy
static handle cast(Type &src, return_value_policy policy, handle parent) {
if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
policy = return_value_policy::copy;
return cast_impl(&src, policy, parent);
}
// const lvalue reference return; default (automatic) becomes copy
static handle cast(const Type &src, return_value_policy policy, handle parent) {
if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
policy = return_value_policy::copy;
return cast(&src, policy, parent);
}
// non-const pointer return
static handle cast(Type *src, return_value_policy policy, handle parent) {
return cast_impl(src, policy, parent);
}
// const pointer return
static handle cast(const Type *src, return_value_policy policy, handle parent) {
return cast_impl(src, policy, parent);
}
static PYBIND11_DESCR name() { return props::descriptor(); }
operator Type*() { return &value; }
operator Type&() { return value; }
operator Type&&() && { return std::move(value); }
template <typename T> using cast_op_type = movable_cast_op_type<T>;
private:
Type value;
};
// Eigen Ref/Map classes have slightly different policy requirements, meaning we don't want to force
// `move` when a Ref/Map rvalue is returned; we treat Ref<> sort of like a pointer (we care about
// the underlying data, not the outer shell).
template <typename Return>
struct return_value_policy_override<Return, enable_if_t<is_eigen_dense_map<Return>::value>> {
static return_value_policy policy(return_value_policy p) { return p; }
};
// Base class for casting reference/map/block/etc. objects back to python.
template <typename MapType> struct eigen_map_caster {
private:
using props = EigenProps<MapType>;
public:
// Directly referencing a ref/map's data is a bit dangerous (whatever the map/ref points to has
// to stay around), but we'll allow it under the assumption that you know what you're doing (and
// have an appropriate keep_alive in place). We return a numpy array pointing directly at the
// ref's data (The numpy array ends up read-only if the ref was to a const matrix type.) Note
// that this means you need to ensure you don't destroy the object in some other way (e.g. with
// an appropriate keep_alive, or with a reference to a statically allocated matrix).
static handle cast(const MapType &src, return_value_policy policy, handle parent) {
switch (policy) {
case return_value_policy::copy:
return eigen_array_cast<props>(src);
case return_value_policy::reference_internal:
return eigen_array_cast<props>(src, parent, is_eigen_mutable_map<MapType>::value);
case return_value_policy::reference:
case return_value_policy::automatic:
case return_value_policy::automatic_reference:
return eigen_array_cast<props>(src, none(), is_eigen_mutable_map<MapType>::value);
default:
// move, take_ownership don't make any sense for a ref/map:
pybind11_fail("Invalid return_value_policy for Eigen Map/Ref/Block type");
}
}
static PYBIND11_DESCR name() { return props::descriptor(); }
// Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
// types but not bound arguments). We still provide them (with an explicitly delete) so that
// you end up here if you try anyway.
bool load(handle, bool) = delete;
operator MapType() = delete;
template <typename> using cast_op_type = MapType;
};
// We can return any map-like object (but can only load Refs, specialized next):
template <typename Type> struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>>
: eigen_map_caster<Type> {};
// Loader for Ref<...> arguments. See the documentation for info on how to make this work without
// copying (it requires some extra effort in many cases).
template <typename PlainObjectType, typename StrideType>
struct type_caster<
Eigen::Ref<PlainObjectType, 0, StrideType>,
enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value>
> : public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> {
private:
using Type = Eigen::Ref<PlainObjectType, 0, StrideType>;
using props = EigenProps<Type>;
using Scalar = typename props::Scalar;
using MapType = Eigen::Map<PlainObjectType, 0, StrideType>;
using Array = array_t<Scalar, array::forcecast |
((props::row_major ? props::inner_stride : props::outer_stride) == 1 ? array::c_style :
(props::row_major ? props::outer_stride : props::inner_stride) == 1 ? array::f_style : 0)>;
static constexpr bool need_writeable = is_eigen_mutable_map<Type>::value;
// Delay construction (these have no default constructor)
std::unique_ptr<MapType> map;
std::unique_ptr<Type> ref;
// Our array. When possible, this is just a numpy array pointing to the source data, but
// sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an incompatible
// layout, or is an array of a type that needs to be converted). Using a numpy temporary
// (rather than an Eigen temporary) saves an extra copy when we need both type conversion and
// storage order conversion. (Note that we refuse to use this temporary copy when loading an
// argument for a Ref<M> with M non-const, i.e. a read-write reference).
Array copy_or_ref;
public:
bool load(handle src, bool convert) {
// First check whether what we have is already an array of the right type. If not, we can't
// avoid a copy (because the copy is also going to do type conversion).
bool need_copy = !isinstance<Array>(src);
EigenConformable<props::row_major> fits;
if (!need_copy) {
// We don't need a converting copy, but we also need to check whether the strides are
// compatible with the Ref's stride requirements
Array aref = reinterpret_borrow<Array>(src);
if (aref && (!need_writeable || aref.writeable())) {
fits = props::conformable(aref);
if (!fits) return false; // Incompatible dimensions
if (!fits.template stride_compatible<props>())
need_copy = true;
else
copy_or_ref = std::move(aref);
}
else {
need_copy = true;
}
}
if (need_copy) {
// We need to copy: If we need a mutable reference, or we're not supposed to convert
// (either because we're in the no-convert overload pass, or because we're explicitly
// instructed not to copy (via `py::arg().noconvert()`) we have to fail loading.
if (!convert || need_writeable) return false;
Array copy = Array::ensure(src);
if (!copy) return false;
fits = props::conformable(copy);
if (!fits || !fits.template stride_compatible<props>())
return false;
copy_or_ref = std::move(copy);
loader_life_support::add_patient(copy_or_ref);
}
ref.reset();
map.reset(new MapType(data(copy_or_ref), fits.rows, fits.cols, make_stride(fits.stride.outer(), fits.stride.inner())));
ref.reset(new Type(*map));
return true;
}
operator Type*() { return ref.get(); }
operator Type&() { return *ref; }
template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>;
private:
template <typename T = Type, enable_if_t<is_eigen_mutable_map<T>::value, int> = 0>
Scalar *data(Array &a) { return a.mutable_data(); }
template <typename T = Type, enable_if_t<!is_eigen_mutable_map<T>::value, int> = 0>
const Scalar *data(Array &a) { return a.data(); }
// Attempt to figure out a constructor of `Stride` that will work.
// If both strides are fixed, use a default constructor:
template <typename S> using stride_ctor_default = bool_constant<
S::InnerStrideAtCompileTime != Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic &&
std::is_default_constructible<S>::value>;
// Otherwise, if there is a two-index constructor, assume it is (outer,inner) like
// Eigen::Stride, and use it:
template <typename S> using stride_ctor_dual = bool_constant<
!stride_ctor_default<S>::value && std::is_constructible<S, EigenIndex, EigenIndex>::value>;
// Otherwise, if there is a one-index constructor, and just one of the strides is dynamic, use
// it (passing whichever stride is dynamic).
template <typename S> using stride_ctor_outer = bool_constant<
!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value &&
S::OuterStrideAtCompileTime == Eigen::Dynamic && S::InnerStrideAtCompileTime != Eigen::Dynamic &&
std::is_constructible<S, EigenIndex>::value>;
template <typename S> using stride_ctor_inner = bool_constant<
!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value &&
S::InnerStrideAtCompileTime == Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic &&
std::is_constructible<S, EigenIndex>::value>;
template <typename S = StrideType, enable_if_t<stride_ctor_default<S>::value, int> = 0>
static S make_stride(EigenIndex, EigenIndex) { return S(); }
template <typename S = StrideType, enable_if_t<stride_ctor_dual<S>::value, int> = 0>
static S make_stride(EigenIndex outer, EigenIndex inner) { return S(outer, inner); }
template <typename S = StrideType, enable_if_t<stride_ctor_outer<S>::value, int> = 0>
static S make_stride(EigenIndex outer, EigenIndex) { return S(outer); }
template <typename S = StrideType, enable_if_t<stride_ctor_inner<S>::value, int> = 0>
static S make_stride(EigenIndex, EigenIndex inner) { return S(inner); }
};
// type_caster for special matrix types (e.g. DiagonalMatrix), which are EigenBase, but not
// EigenDense (i.e. they don't have a data(), at least not with the usual matrix layout).
// load() is not supported, but we can cast them into the python domain by first copying to a
// regular Eigen::Matrix, then casting that.
template <typename Type>
struct type_caster<Type, enable_if_t<is_eigen_other<Type>::value>> {
protected:
using Matrix = Eigen::Matrix<typename Type::Scalar, Type::RowsAtCompileTime, Type::ColsAtCompileTime>;
using props = EigenProps<Matrix>;
public:
static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
handle h = eigen_encapsulate<props>(new Matrix(src));
return h;
}
static handle cast(const Type *src, return_value_policy policy, handle parent) { return cast(*src, policy, parent); }
static PYBIND11_DESCR name() { return props::descriptor(); }
// Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
// types but not bound arguments). We still provide them (with an explicitly delete) so that
// you end up here if you try anyway.
bool load(handle, bool) = delete;
operator Type() = delete;
template <typename> using cast_op_type = Type;
};
template<typename Type>
struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> {
typedef typename Type::Scalar Scalar;
typedef remove_reference_t<decltype(*std::declval<Type>().outerIndexPtr())> StorageIndex;
typedef typename Type::Index Index;
static constexpr bool rowMajor = Type::IsRowMajor;
bool load(handle src, bool) {
if (!src)
return false;
auto obj = reinterpret_borrow<object>(src);
object sparse_module = module::import("scipy.sparse");
object matrix_type = sparse_module.attr(
rowMajor ? "csr_matrix" : "csc_matrix");
if (!obj.get_type().is(matrix_type)) {
try {
obj = matrix_type(obj);
} catch (const error_already_set &) {
return false;
}
}
auto values = array_t<Scalar>((object) obj.attr("data"));
auto innerIndices = array_t<StorageIndex>((object) obj.attr("indices"));
auto outerIndices = array_t<StorageIndex>((object) obj.attr("indptr"));
auto shape = pybind11::tuple((pybind11::object) obj.attr("shape"));
auto nnz = obj.attr("nnz").cast<Index>();
if (!values || !innerIndices || !outerIndices)
return false;
value = Eigen::MappedSparseMatrix<Scalar, Type::Flags, StorageIndex>(
shape[0].cast<Index>(), shape[1].cast<Index>(), nnz,
outerIndices.mutable_data(), innerIndices.mutable_data(), values.mutable_data());
return true;
}
static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
const_cast<Type&>(src).makeCompressed();
object matrix_type = module::import("scipy.sparse").attr(
rowMajor ? "csr_matrix" : "csc_matrix");
array data(src.nonZeros(), src.valuePtr());
array outerIndices((rowMajor ? src.rows() : src.cols()) + 1, src.outerIndexPtr());
array innerIndices(src.nonZeros(), src.innerIndexPtr());
return matrix_type(
std::make_tuple(data, innerIndices, outerIndices),
std::make_pair(src.rows(), src.cols())
).release();
}
PYBIND11_TYPE_CASTER(Type, _<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[", "scipy.sparse.csc_matrix[")
+ npy_format_descriptor<Scalar>::name() + _("]"));
};
NAMESPACE_END(detail)
NAMESPACE_END(pybind11)
#if defined(__GNUG__) || defined(__clang__)
# pragma GCC diagnostic pop
#elif defined(_MSC_VER)
# pragma warning(pop)
#endif

View File

@ -0,0 +1,195 @@
/*
pybind11/embed.h: Support for embedding the interpreter
Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include "eval.h"
#if defined(PYPY_VERSION)
# error Embedding the interpreter is not supported with PyPy
#endif
#if PY_MAJOR_VERSION >= 3
# define PYBIND11_EMBEDDED_MODULE_IMPL(name) \
extern "C" PyObject *pybind11_init_impl_##name() { \
return pybind11_init_wrapper_##name(); \
}
#else
# define PYBIND11_EMBEDDED_MODULE_IMPL(name) \
extern "C" void pybind11_init_impl_##name() { \
pybind11_init_wrapper_##name(); \
}
#endif
/** \rst
Add a new module to the table of builtins for the interpreter. Must be
defined in global scope. The first macro parameter is the name of the
module (without quotes). The second parameter is the variable which will
be used as the interface to add functions and classes to the module.
.. code-block:: cpp
PYBIND11_EMBEDDED_MODULE(example, m) {
// ... initialize functions and classes here
m.def("foo", []() {
return "Hello, World!";
});
}
\endrst */
#define PYBIND11_EMBEDDED_MODULE(name, variable) \
static void pybind11_init_##name(pybind11::module &); \
static PyObject *pybind11_init_wrapper_##name() { \
auto m = pybind11::module(#name); \
try { \
pybind11_init_##name(m); \
return m.ptr(); \
} catch (pybind11::error_already_set &e) { \
e.clear(); \
PyErr_SetString(PyExc_ImportError, e.what()); \
return nullptr; \
} catch (const std::exception &e) { \
PyErr_SetString(PyExc_ImportError, e.what()); \
return nullptr; \
} \
} \
PYBIND11_EMBEDDED_MODULE_IMPL(name) \
pybind11::detail::embedded_module name(#name, pybind11_init_impl_##name); \
void pybind11_init_##name(pybind11::module &variable)
NAMESPACE_BEGIN(pybind11)
NAMESPACE_BEGIN(detail)
/// Python 2.7/3.x compatible version of `PyImport_AppendInittab` and error checks.
struct embedded_module {
#if PY_MAJOR_VERSION >= 3
using init_t = PyObject *(*)();
#else
using init_t = void (*)();
#endif
embedded_module(const char *name, init_t init) {
if (Py_IsInitialized())
pybind11_fail("Can't add new modules after the interpreter has been initialized");
auto result = PyImport_AppendInittab(name, init);
if (result == -1)
pybind11_fail("Insufficient memory to add a new module");
}
};
NAMESPACE_END(detail)
/** \rst
Initialize the Python interpreter. No other pybind11 or CPython API functions can be
called before this is done; with the exception of `PYBIND11_EMBEDDED_MODULE`. The
optional parameter can be used to skip the registration of signal handlers (see the
Python documentation for details). Calling this function again after the interpreter
has already been initialized is a fatal error.
\endrst */
inline void initialize_interpreter(bool init_signal_handlers = true) {
if (Py_IsInitialized())
pybind11_fail("The interpreter is already running");
Py_InitializeEx(init_signal_handlers ? 1 : 0);
// Make .py files in the working directory available by default
auto sys_path = reinterpret_borrow<list>(module::import("sys").attr("path"));
sys_path.append(".");
}
/** \rst
Shut down the Python interpreter. No pybind11 or CPython API functions can be called
after this. In addition, pybind11 objects must not outlive the interpreter:
.. code-block:: cpp
{ // BAD
py::initialize_interpreter();
auto hello = py::str("Hello, World!");
py::finalize_interpreter();
} // <-- BOOM, hello's destructor is called after interpreter shutdown
{ // GOOD
py::initialize_interpreter();
{ // scoped
auto hello = py::str("Hello, World!");
} // <-- OK, hello is cleaned up properly
py::finalize_interpreter();
}
{ // BETTER
py::scoped_interpreter guard{};
auto hello = py::str("Hello, World!");
}
.. warning::
The interpreter can be restarted by calling `initialize_interpreter` again.
Modules created using pybind11 can be safely re-initialized. However, Python
itself cannot completely unload binary extension modules and there are several
caveats with regard to interpreter restarting. All the details can be found
in the CPython documentation. In short, not all interpreter memory may be
freed, either due to reference cycles or user-created global data.
\endrst */
inline void finalize_interpreter() {
handle builtins(PyEval_GetBuiltins());
const char *id = PYBIND11_INTERNALS_ID;
// Get the internals pointer (without creating it if it doesn't exist). It's possible for the
// internals to be created during Py_Finalize() (e.g. if a py::capsule calls `get_internals()`
// during destruction), so we get the pointer-pointer here and check it after Py_Finalize().
detail::internals **internals_ptr_ptr = &detail::get_internals_ptr();
// It could also be stashed in builtins, so look there too:
if (builtins.contains(id) && isinstance<capsule>(builtins[id]))
internals_ptr_ptr = capsule(builtins[id]);
Py_Finalize();
if (internals_ptr_ptr) {
delete *internals_ptr_ptr;
*internals_ptr_ptr = nullptr;
}
}
/** \rst
Scope guard version of `initialize_interpreter` and `finalize_interpreter`.
This a move-only guard and only a single instance can exist.
.. code-block:: cpp
#include <pybind11/embed.h>
int main() {
py::scoped_interpreter guard{};
py::print(Hello, World!);
} // <-- interpreter shutdown
\endrst */
class scoped_interpreter {
public:
scoped_interpreter(bool init_signal_handlers = true) {
initialize_interpreter(init_signal_handlers);
}
scoped_interpreter(const scoped_interpreter &) = delete;
scoped_interpreter(scoped_interpreter &&other) noexcept { other.is_valid = false; }
scoped_interpreter &operator=(const scoped_interpreter &) = delete;
scoped_interpreter &operator=(scoped_interpreter &&) = delete;
~scoped_interpreter() {
if (is_valid)
finalize_interpreter();
}
private:
bool is_valid = true;
};
NAMESPACE_END(pybind11)

View File

@ -0,0 +1,117 @@
/*
pybind11/exec.h: Support for evaluating Python expressions and statements
from strings and files
Copyright (c) 2016 Klemens Morgenstern <klemens.morgenstern@ed-chemnitz.de> and
Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
NAMESPACE_BEGIN(pybind11)
enum eval_mode {
/// Evaluate a string containing an isolated expression
eval_expr,
/// Evaluate a string containing a single statement. Returns \c none
eval_single_statement,
/// Evaluate a string containing a sequence of statement. Returns \c none
eval_statements
};
template <eval_mode mode = eval_expr>
object eval(str expr, object global = globals(), object local = object()) {
if (!local)
local = global;
/* PyRun_String does not accept a PyObject / encoding specifier,
this seems to be the only alternative */
std::string buffer = "# -*- coding: utf-8 -*-\n" + (std::string) expr;
int start;
switch (mode) {
case eval_expr: start = Py_eval_input; break;
case eval_single_statement: start = Py_single_input; break;
case eval_statements: start = Py_file_input; break;
default: pybind11_fail("invalid evaluation mode");
}
PyObject *result = PyRun_String(buffer.c_str(), start, global.ptr(), local.ptr());
if (!result)
throw error_already_set();
return reinterpret_steal<object>(result);
}
template <eval_mode mode = eval_expr, size_t N>
object eval(const char (&s)[N], object global = globals(), object local = object()) {
/* Support raw string literals by removing common leading whitespace */
auto expr = (s[0] == '\n') ? str(module::import("textwrap").attr("dedent")(s))
: str(s);
return eval<mode>(expr, global, local);
}
inline void exec(str expr, object global = globals(), object local = object()) {
eval<eval_statements>(expr, global, local);
}
template <size_t N>
void exec(const char (&s)[N], object global = globals(), object local = object()) {
eval<eval_statements>(s, global, local);
}
template <eval_mode mode = eval_statements>
object eval_file(str fname, object global = globals(), object local = object()) {
if (!local)
local = global;
int start;
switch (mode) {
case eval_expr: start = Py_eval_input; break;
case eval_single_statement: start = Py_single_input; break;
case eval_statements: start = Py_file_input; break;
default: pybind11_fail("invalid evaluation mode");
}
int closeFile = 1;
std::string fname_str = (std::string) fname;
#if PY_VERSION_HEX >= 0x03040000
FILE *f = _Py_fopen_obj(fname.ptr(), "r");
#elif PY_VERSION_HEX >= 0x03000000
FILE *f = _Py_fopen(fname.ptr(), "r");
#else
/* No unicode support in open() :( */
auto fobj = reinterpret_steal<object>(PyFile_FromString(
const_cast<char *>(fname_str.c_str()),
const_cast<char*>("r")));
FILE *f = nullptr;
if (fobj)
f = PyFile_AsFile(fobj.ptr());
closeFile = 0;
#endif
if (!f) {
PyErr_Clear();
pybind11_fail("File \"" + fname_str + "\" could not be opened!");
}
#if PY_VERSION_HEX < 0x03000000 && defined(PYPY_VERSION)
PyObject *result = PyRun_File(f, fname_str.c_str(), start, global.ptr(),
local.ptr());
(void) closeFile;
#else
PyObject *result = PyRun_FileEx(f, fname_str.c_str(), start, global.ptr(),
local.ptr(), closeFile);
#endif
if (!result)
throw error_already_set();
return reinterpret_steal<object>(result);
}
NAMESPACE_END(pybind11)

View File

@ -0,0 +1,85 @@
/*
pybind11/functional.h: std::function<> support
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include <functional>
NAMESPACE_BEGIN(pybind11)
NAMESPACE_BEGIN(detail)
template <typename Return, typename... Args>
struct type_caster<std::function<Return(Args...)>> {
using type = std::function<Return(Args...)>;
using retval_type = conditional_t<std::is_same<Return, void>::value, void_type, Return>;
using function_type = Return (*) (Args...);
public:
bool load(handle src, bool convert) {
if (src.is_none()) {
// Defer accepting None to other overloads (if we aren't in convert mode):
if (!convert) return false;
return true;
}
if (!isinstance<function>(src))
return false;
auto func = reinterpret_borrow<function>(src);
/*
When passing a C++ function as an argument to another C++
function via Python, every function call would normally involve
a full C++ -> Python -> C++ roundtrip, which can be prohibitive.
Here, we try to at least detect the case where the function is
stateless (i.e. function pointer or lambda function without
captured variables), in which case the roundtrip can be avoided.
*/
if (auto cfunc = func.cpp_function()) {
auto c = reinterpret_borrow<capsule>(PyCFunction_GET_SELF(cfunc.ptr()));
auto rec = (function_record *) c;
if (rec && rec->is_stateless &&
same_type(typeid(function_type), *reinterpret_cast<const std::type_info *>(rec->data[1]))) {
struct capture { function_type f; };
value = ((capture *) &rec->data)->f;
return true;
}
}
value = [func](Args... args) -> Return {
gil_scoped_acquire acq;
object retval(func(std::forward<Args>(args)...));
/* Visual studio 2015 parser issue: need parentheses around this expression */
return (retval.template cast<Return>());
};
return true;
}
template <typename Func>
static handle cast(Func &&f_, return_value_policy policy, handle /* parent */) {
if (!f_)
return none().inc_ref();
auto result = f_.template target<function_type>();
if (result)
return cpp_function(*result, policy).release();
else
return cpp_function(std::forward<Func>(f_), policy).release();
}
PYBIND11_TYPE_CASTER(type, _("Callable[[") +
argument_loader<Args...>::arg_names() + _("], ") +
make_caster<retval_type>::name() +
_("]"));
};
NAMESPACE_END(detail)
NAMESPACE_END(pybind11)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,167 @@
/*
pybind11/operator.h: Metatemplates for operator overloading
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#if defined(__clang__) && !defined(__INTEL_COMPILER)
# pragma clang diagnostic ignored "-Wunsequenced" // multiple unsequenced modifications to 'self' (when using def(py::self OP Type()))
#elif defined(_MSC_VER)
# pragma warning(push)
# pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
#endif
NAMESPACE_BEGIN(pybind11)
NAMESPACE_BEGIN(detail)
/// Enumeration with all supported operator types
enum op_id : int {
op_add, op_sub, op_mul, op_div, op_mod, op_divmod, op_pow, op_lshift,
op_rshift, op_and, op_xor, op_or, op_neg, op_pos, op_abs, op_invert,
op_int, op_long, op_float, op_str, op_cmp, op_gt, op_ge, op_lt, op_le,
op_eq, op_ne, op_iadd, op_isub, op_imul, op_idiv, op_imod, op_ilshift,
op_irshift, op_iand, op_ixor, op_ior, op_complex, op_bool, op_nonzero,
op_repr, op_truediv, op_itruediv
};
enum op_type : int {
op_l, /* base type on left */
op_r, /* base type on right */
op_u /* unary operator */
};
struct self_t { };
static const self_t self = self_t();
/// Type for an unused type slot
struct undefined_t { };
/// Don't warn about an unused variable
inline self_t __self() { return self; }
/// base template of operator implementations
template <op_id, op_type, typename B, typename L, typename R> struct op_impl { };
/// Operator implementation generator
template <op_id id, op_type ot, typename L, typename R> struct op_ {
template <typename Class, typename... Extra> void execute(Class &cl, const Extra&... extra) const {
using Base = typename Class::type;
using L_type = conditional_t<std::is_same<L, self_t>::value, Base, L>;
using R_type = conditional_t<std::is_same<R, self_t>::value, Base, R>;
using op = op_impl<id, ot, Base, L_type, R_type>;
cl.def(op::name(), &op::execute, is_operator(), extra...);
#if PY_MAJOR_VERSION < 3
if (id == op_truediv || id == op_itruediv)
cl.def(id == op_itruediv ? "__idiv__" : ot == op_l ? "__div__" : "__rdiv__",
&op::execute, is_operator(), extra...);
#endif
}
template <typename Class, typename... Extra> void execute_cast(Class &cl, const Extra&... extra) const {
using Base = typename Class::type;
using L_type = conditional_t<std::is_same<L, self_t>::value, Base, L>;
using R_type = conditional_t<std::is_same<R, self_t>::value, Base, R>;
using op = op_impl<id, ot, Base, L_type, R_type>;
cl.def(op::name(), &op::execute_cast, is_operator(), extra...);
#if PY_MAJOR_VERSION < 3
if (id == op_truediv || id == op_itruediv)
cl.def(id == op_itruediv ? "__idiv__" : ot == op_l ? "__div__" : "__rdiv__",
&op::execute, is_operator(), extra...);
#endif
}
};
#define PYBIND11_BINARY_OPERATOR(id, rid, op, expr) \
template <typename B, typename L, typename R> struct op_impl<op_##id, op_l, B, L, R> { \
static char const* name() { return "__" #id "__"; } \
static auto execute(const L &l, const R &r) -> decltype(expr) { return (expr); } \
static B execute_cast(const L &l, const R &r) { return B(expr); } \
}; \
template <typename B, typename L, typename R> struct op_impl<op_##id, op_r, B, L, R> { \
static char const* name() { return "__" #rid "__"; } \
static auto execute(const R &r, const L &l) -> decltype(expr) { return (expr); } \
static B execute_cast(const R &r, const L &l) { return B(expr); } \
}; \
inline op_<op_##id, op_l, self_t, self_t> op(const self_t &, const self_t &) { \
return op_<op_##id, op_l, self_t, self_t>(); \
} \
template <typename T> op_<op_##id, op_l, self_t, T> op(const self_t &, const T &) { \
return op_<op_##id, op_l, self_t, T>(); \
} \
template <typename T> op_<op_##id, op_r, T, self_t> op(const T &, const self_t &) { \
return op_<op_##id, op_r, T, self_t>(); \
}
#define PYBIND11_INPLACE_OPERATOR(id, op, expr) \
template <typename B, typename L, typename R> struct op_impl<op_##id, op_l, B, L, R> { \
static char const* name() { return "__" #id "__"; } \
static auto execute(L &l, const R &r) -> decltype(expr) { return expr; } \
static B execute_cast(L &l, const R &r) { return B(expr); } \
}; \
template <typename T> op_<op_##id, op_l, self_t, T> op(const self_t &, const T &) { \
return op_<op_##id, op_l, self_t, T>(); \
}
#define PYBIND11_UNARY_OPERATOR(id, op, expr) \
template <typename B, typename L> struct op_impl<op_##id, op_u, B, L, undefined_t> { \
static char const* name() { return "__" #id "__"; } \
static auto execute(const L &l) -> decltype(expr) { return expr; } \
static B execute_cast(const L &l) { return B(expr); } \
}; \
inline op_<op_##id, op_u, self_t, undefined_t> op(const self_t &) { \
return op_<op_##id, op_u, self_t, undefined_t>(); \
}
PYBIND11_BINARY_OPERATOR(sub, rsub, operator-, l - r)
PYBIND11_BINARY_OPERATOR(add, radd, operator+, l + r)
PYBIND11_BINARY_OPERATOR(mul, rmul, operator*, l * r)
PYBIND11_BINARY_OPERATOR(truediv, rtruediv, operator/, l / r)
PYBIND11_BINARY_OPERATOR(mod, rmod, operator%, l % r)
PYBIND11_BINARY_OPERATOR(lshift, rlshift, operator<<, l << r)
PYBIND11_BINARY_OPERATOR(rshift, rrshift, operator>>, l >> r)
PYBIND11_BINARY_OPERATOR(and, rand, operator&, l & r)
PYBIND11_BINARY_OPERATOR(xor, rxor, operator^, l ^ r)
PYBIND11_BINARY_OPERATOR(eq, eq, operator==, l == r)
PYBIND11_BINARY_OPERATOR(ne, ne, operator!=, l != r)
PYBIND11_BINARY_OPERATOR(or, ror, operator|, l | r)
PYBIND11_BINARY_OPERATOR(gt, lt, operator>, l > r)
PYBIND11_BINARY_OPERATOR(ge, le, operator>=, l >= r)
PYBIND11_BINARY_OPERATOR(lt, gt, operator<, l < r)
PYBIND11_BINARY_OPERATOR(le, ge, operator<=, l <= r)
//PYBIND11_BINARY_OPERATOR(pow, rpow, pow, std::pow(l, r))
PYBIND11_INPLACE_OPERATOR(iadd, operator+=, l += r)
PYBIND11_INPLACE_OPERATOR(isub, operator-=, l -= r)
PYBIND11_INPLACE_OPERATOR(imul, operator*=, l *= r)
PYBIND11_INPLACE_OPERATOR(itruediv, operator/=, l /= r)
PYBIND11_INPLACE_OPERATOR(imod, operator%=, l %= r)
PYBIND11_INPLACE_OPERATOR(ilshift, operator<<=, l <<= r)
PYBIND11_INPLACE_OPERATOR(irshift, operator>>=, l >>= r)
PYBIND11_INPLACE_OPERATOR(iand, operator&=, l &= r)
PYBIND11_INPLACE_OPERATOR(ixor, operator^=, l ^= r)
PYBIND11_INPLACE_OPERATOR(ior, operator|=, l |= r)
PYBIND11_UNARY_OPERATOR(neg, operator-, -l)
PYBIND11_UNARY_OPERATOR(pos, operator+, +l)
PYBIND11_UNARY_OPERATOR(abs, abs, std::abs(l))
PYBIND11_UNARY_OPERATOR(invert, operator~, (~l))
PYBIND11_UNARY_OPERATOR(bool, operator!, !!l)
PYBIND11_UNARY_OPERATOR(int, int_, (int) l)
PYBIND11_UNARY_OPERATOR(float, float_, (double) l)
#undef PYBIND11_BINARY_OPERATOR
#undef PYBIND11_INPLACE_OPERATOR
#undef PYBIND11_UNARY_OPERATOR
NAMESPACE_END(detail)
using detail::self;
NAMESPACE_END(pybind11)
#if defined(_MSC_VER)
# pragma warning(pop)
#endif

View File

@ -0,0 +1,65 @@
/*
pybind11/options.h: global settings that are configurable at runtime.
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "common.h"
NAMESPACE_BEGIN(pybind11)
class options {
public:
// Default RAII constructor, which leaves settings as they currently are.
options() : previous_state(global_state()) {}
// Class is non-copyable.
options(const options&) = delete;
options& operator=(const options&) = delete;
// Destructor, which restores settings that were in effect before.
~options() {
global_state() = previous_state;
}
// Setter methods (affect the global state):
options& disable_user_defined_docstrings() & { global_state().show_user_defined_docstrings = false; return *this; }
options& enable_user_defined_docstrings() & { global_state().show_user_defined_docstrings = true; return *this; }
options& disable_function_signatures() & { global_state().show_function_signatures = false; return *this; }
options& enable_function_signatures() & { global_state().show_function_signatures = true; return *this; }
// Getter methods (return the global state):
static bool show_user_defined_docstrings() { return global_state().show_user_defined_docstrings; }
static bool show_function_signatures() { return global_state().show_function_signatures; }
// This type is not meant to be allocated on the heap.
void* operator new(size_t) = delete;
private:
struct state {
bool show_user_defined_docstrings = true; //< Include user-supplied texts in docstrings.
bool show_function_signatures = true; //< Include auto-generated function signatures in docstrings.
};
static state &global_state() {
static state instance;
return instance;
}
state previous_state;
};
NAMESPACE_END(pybind11)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,367 @@
/*
pybind11/stl.h: Transparent conversion for STL data types
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include <set>
#include <unordered_set>
#include <map>
#include <unordered_map>
#include <iostream>
#include <list>
#include <valarray>
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
#endif
#ifdef __has_include
// std::optional (but including it in c++14 mode isn't allowed)
# if defined(PYBIND11_CPP17) && __has_include(<optional>)
# include <optional>
# define PYBIND11_HAS_OPTIONAL 1
# endif
// std::experimental::optional (but not allowed in c++11 mode)
# if defined(PYBIND11_CPP14) && __has_include(<experimental/optional>)
# include <experimental/optional>
# define PYBIND11_HAS_EXP_OPTIONAL 1
# endif
// std::variant
# if defined(PYBIND11_CPP17) && __has_include(<variant>)
# include <variant>
# define PYBIND11_HAS_VARIANT 1
# endif
#elif defined(_MSC_VER) && defined(PYBIND11_CPP17)
# include <optional>
# include <variant>
# define PYBIND11_HAS_OPTIONAL 1
# define PYBIND11_HAS_VARIANT 1
#endif
NAMESPACE_BEGIN(pybind11)
NAMESPACE_BEGIN(detail)
/// Extracts an const lvalue reference or rvalue reference for U based on the type of T (e.g. for
/// forwarding a container element). Typically used indirect via forwarded_type(), below.
template <typename T, typename U>
using forwarded_type = conditional_t<
std::is_lvalue_reference<T>::value, remove_reference_t<U> &, remove_reference_t<U> &&>;
/// Forwards a value U as rvalue or lvalue according to whether T is rvalue or lvalue; typically
/// used for forwarding a container's elements.
template <typename T, typename U>
forwarded_type<T, U> forward_like(U &&u) {
return std::forward<detail::forwarded_type<T, U>>(std::forward<U>(u));
}
template <typename Type, typename Key> struct set_caster {
using type = Type;
using key_conv = make_caster<Key>;
bool load(handle src, bool convert) {
if (!isinstance<pybind11::set>(src))
return false;
auto s = reinterpret_borrow<pybind11::set>(src);
value.clear();
for (auto entry : s) {
key_conv conv;
if (!conv.load(entry, convert))
return false;
value.insert(cast_op<Key &&>(std::move(conv)));
}
return true;
}
template <typename T>
static handle cast(T &&src, return_value_policy policy, handle parent) {
pybind11::set s;
for (auto &value: src) {
auto value_ = reinterpret_steal<object>(key_conv::cast(forward_like<T>(value), policy, parent));
if (!value_ || !s.add(value_))
return handle();
}
return s.release();
}
PYBIND11_TYPE_CASTER(type, _("Set[") + key_conv::name() + _("]"));
};
template <typename Type, typename Key, typename Value> struct map_caster {
using key_conv = make_caster<Key>;
using value_conv = make_caster<Value>;
bool load(handle src, bool convert) {
if (!isinstance<dict>(src))
return false;
auto d = reinterpret_borrow<dict>(src);
value.clear();
for (auto it : d) {
key_conv kconv;
value_conv vconv;
if (!kconv.load(it.first.ptr(), convert) ||
!vconv.load(it.second.ptr(), convert))
return false;
value.emplace(cast_op<Key &&>(std::move(kconv)), cast_op<Value &&>(std::move(vconv)));
}
return true;
}
template <typename T>
static handle cast(T &&src, return_value_policy policy, handle parent) {
dict d;
for (auto &kv: src) {
auto key = reinterpret_steal<object>(key_conv::cast(forward_like<T>(kv.first), policy, parent));
auto value = reinterpret_steal<object>(value_conv::cast(forward_like<T>(kv.second), policy, parent));
if (!key || !value)
return handle();
d[key] = value;
}
return d.release();
}
PYBIND11_TYPE_CASTER(Type, _("Dict[") + key_conv::name() + _(", ") + value_conv::name() + _("]"));
};
template <typename Type, typename Value> struct list_caster {
using value_conv = make_caster<Value>;
bool load(handle src, bool convert) {
if (!isinstance<sequence>(src))
return false;
auto s = reinterpret_borrow<sequence>(src);
value.clear();
reserve_maybe(s, &value);
for (auto it : s) {
value_conv conv;
if (!conv.load(it, convert))
return false;
value.push_back(cast_op<Value &&>(std::move(conv)));
}
return true;
}
private:
template <typename T = Type,
enable_if_t<std::is_same<decltype(std::declval<T>().reserve(0)), void>::value, int> = 0>
void reserve_maybe(sequence s, Type *) { value.reserve(s.size()); }
void reserve_maybe(sequence, void *) { }
public:
template <typename T>
static handle cast(T &&src, return_value_policy policy, handle parent) {
list l(src.size());
size_t index = 0;
for (auto &value: src) {
auto value_ = reinterpret_steal<object>(value_conv::cast(forward_like<T>(value), policy, parent));
if (!value_)
return handle();
PyList_SET_ITEM(l.ptr(), (ssize_t) index++, value_.release().ptr()); // steals a reference
}
return l.release();
}
PYBIND11_TYPE_CASTER(Type, _("List[") + value_conv::name() + _("]"));
};
template <typename Type, typename Alloc> struct type_caster<std::vector<Type, Alloc>>
: list_caster<std::vector<Type, Alloc>, Type> { };
template <typename Type, typename Alloc> struct type_caster<std::list<Type, Alloc>>
: list_caster<std::list<Type, Alloc>, Type> { };
template <typename ArrayType, typename Value, bool Resizable, size_t Size = 0> struct array_caster {
using value_conv = make_caster<Value>;
private:
template <bool R = Resizable>
bool require_size(enable_if_t<R, size_t> size) {
if (value.size() != size)
value.resize(size);
return true;
}
template <bool R = Resizable>
bool require_size(enable_if_t<!R, size_t> size) {
return size == Size;
}
public:
bool load(handle src, bool convert) {
if (!isinstance<list>(src))
return false;
auto l = reinterpret_borrow<list>(src);
if (!require_size(l.size()))
return false;
size_t ctr = 0;
for (auto it : l) {
value_conv conv;
if (!conv.load(it, convert))
return false;
value[ctr++] = cast_op<Value &&>(std::move(conv));
}
return true;
}
template <typename T>
static handle cast(T &&src, return_value_policy policy, handle parent) {
list l(src.size());
size_t index = 0;
for (auto &value: src) {
auto value_ = reinterpret_steal<object>(value_conv::cast(forward_like<T>(value), policy, parent));
if (!value_)
return handle();
PyList_SET_ITEM(l.ptr(), (ssize_t) index++, value_.release().ptr()); // steals a reference
}
return l.release();
}
PYBIND11_TYPE_CASTER(ArrayType, _("List[") + value_conv::name() + _<Resizable>(_(""), _("[") + _<Size>() + _("]")) + _("]"));
};
template <typename Type, size_t Size> struct type_caster<std::array<Type, Size>>
: array_caster<std::array<Type, Size>, Type, false, Size> { };
template <typename Type> struct type_caster<std::valarray<Type>>
: array_caster<std::valarray<Type>, Type, true> { };
template <typename Key, typename Compare, typename Alloc> struct type_caster<std::set<Key, Compare, Alloc>>
: set_caster<std::set<Key, Compare, Alloc>, Key> { };
template <typename Key, typename Hash, typename Equal, typename Alloc> struct type_caster<std::unordered_set<Key, Hash, Equal, Alloc>>
: set_caster<std::unordered_set<Key, Hash, Equal, Alloc>, Key> { };
template <typename Key, typename Value, typename Compare, typename Alloc> struct type_caster<std::map<Key, Value, Compare, Alloc>>
: map_caster<std::map<Key, Value, Compare, Alloc>, Key, Value> { };
template <typename Key, typename Value, typename Hash, typename Equal, typename Alloc> struct type_caster<std::unordered_map<Key, Value, Hash, Equal, Alloc>>
: map_caster<std::unordered_map<Key, Value, Hash, Equal, Alloc>, Key, Value> { };
// This type caster is intended to be used for std::optional and std::experimental::optional
template<typename T> struct optional_caster {
using value_conv = make_caster<typename T::value_type>;
template <typename T_>
static handle cast(T_ &&src, return_value_policy policy, handle parent) {
if (!src)
return none().inc_ref();
return value_conv::cast(*std::forward<T_>(src), policy, parent);
}
bool load(handle src, bool convert) {
if (!src) {
return false;
} else if (src.is_none()) {
return true; // default-constructed value is already empty
}
value_conv inner_caster;
if (!inner_caster.load(src, convert))
return false;
value.emplace(cast_op<typename T::value_type &&>(std::move(inner_caster)));
return true;
}
PYBIND11_TYPE_CASTER(T, _("Optional[") + value_conv::name() + _("]"));
};
#if PYBIND11_HAS_OPTIONAL
template<typename T> struct type_caster<std::optional<T>>
: public optional_caster<std::optional<T>> {};
template<> struct type_caster<std::nullopt_t>
: public void_caster<std::nullopt_t> {};
#endif
#if PYBIND11_HAS_EXP_OPTIONAL
template<typename T> struct type_caster<std::experimental::optional<T>>
: public optional_caster<std::experimental::optional<T>> {};
template<> struct type_caster<std::experimental::nullopt_t>
: public void_caster<std::experimental::nullopt_t> {};
#endif
/// Visit a variant and cast any found type to Python
struct variant_caster_visitor {
return_value_policy policy;
handle parent;
template <typename T>
handle operator()(T &&src) const {
return make_caster<T>::cast(std::forward<T>(src), policy, parent);
}
};
/// Helper class which abstracts away variant's `visit` function. `std::variant` and similar
/// `namespace::variant` types which provide a `namespace::visit()` function are handled here
/// automatically using argument-dependent lookup. Users can provide specializations for other
/// variant-like classes, e.g. `boost::variant` and `boost::apply_visitor`.
template <template<typename...> class Variant>
struct visit_helper {
template <typename... Args>
static auto call(Args &&...args) -> decltype(visit(std::forward<Args>(args)...)) {
return visit(std::forward<Args>(args)...);
}
};
/// Generic variant caster
template <typename Variant> struct variant_caster;
template <template<typename...> class V, typename... Ts>
struct variant_caster<V<Ts...>> {
static_assert(sizeof...(Ts) > 0, "Variant must consist of at least one alternative.");
template <typename U, typename... Us>
bool load_alternative(handle src, bool convert, type_list<U, Us...>) {
auto caster = make_caster<U>();
if (caster.load(src, convert)) {
value = cast_op<U>(caster);
return true;
}
return load_alternative(src, convert, type_list<Us...>{});
}
bool load_alternative(handle, bool, type_list<>) { return false; }
bool load(handle src, bool convert) {
// Do a first pass without conversions to improve constructor resolution.
// E.g. `py::int_(1).cast<variant<double, int>>()` needs to fill the `int`
// slot of the variant. Without two-pass loading `double` would be filled
// because it appears first and a conversion is possible.
if (convert && load_alternative(src, false, type_list<Ts...>{}))
return true;
return load_alternative(src, convert, type_list<Ts...>{});
}
template <typename Variant>
static handle cast(Variant &&src, return_value_policy policy, handle parent) {
return visit_helper<V>::call(variant_caster_visitor{policy, parent},
std::forward<Variant>(src));
}
using Type = V<Ts...>;
PYBIND11_TYPE_CASTER(Type, _("Union[") + detail::concat(make_caster<Ts>::name()...) + _("]"));
};
#if PYBIND11_HAS_VARIANT
template <typename... Ts>
struct type_caster<std::variant<Ts...>> : variant_caster<std::variant<Ts...>> { };
#endif
NAMESPACE_END(detail)
inline std::ostream &operator<<(std::ostream &os, const handle &obj) {
os << (std::string) str(obj);
return os;
}
NAMESPACE_END(pybind11)
#if defined(_MSC_VER)
#pragma warning(pop)
#endif

View File

@ -0,0 +1,588 @@
/*
pybind11/std_bind.h: Binding generators for STL data types
Copyright (c) 2016 Sergey Lyskov and Wenzel Jakob
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "common.h"
#include "operators.h"
#include <algorithm>
#include <sstream>
NAMESPACE_BEGIN(pybind11)
NAMESPACE_BEGIN(detail)
/* SFINAE helper class used by 'is_comparable */
template <typename T> struct container_traits {
template <typename T2> static std::true_type test_comparable(decltype(std::declval<const T2 &>() == std::declval<const T2 &>())*);
template <typename T2> static std::false_type test_comparable(...);
template <typename T2> static std::true_type test_value(typename T2::value_type *);
template <typename T2> static std::false_type test_value(...);
template <typename T2> static std::true_type test_pair(typename T2::first_type *, typename T2::second_type *);
template <typename T2> static std::false_type test_pair(...);
static constexpr const bool is_comparable = std::is_same<std::true_type, decltype(test_comparable<T>(nullptr))>::value;
static constexpr const bool is_pair = std::is_same<std::true_type, decltype(test_pair<T>(nullptr, nullptr))>::value;
static constexpr const bool is_vector = std::is_same<std::true_type, decltype(test_value<T>(nullptr))>::value;
static constexpr const bool is_element = !is_pair && !is_vector;
};
/* Default: is_comparable -> std::false_type */
template <typename T, typename SFINAE = void>
struct is_comparable : std::false_type { };
/* For non-map data structures, check whether operator== can be instantiated */
template <typename T>
struct is_comparable<
T, enable_if_t<container_traits<T>::is_element &&
container_traits<T>::is_comparable>>
: std::true_type { };
/* For a vector/map data structure, recursively check the value type (which is std::pair for maps) */
template <typename T>
struct is_comparable<T, enable_if_t<container_traits<T>::is_vector>> {
static constexpr const bool value =
is_comparable<typename T::value_type>::value;
};
/* For pairs, recursively check the two data types */
template <typename T>
struct is_comparable<T, enable_if_t<container_traits<T>::is_pair>> {
static constexpr const bool value =
is_comparable<typename T::first_type>::value &&
is_comparable<typename T::second_type>::value;
};
/* Fallback functions */
template <typename, typename, typename... Args> void vector_if_copy_constructible(const Args &...) { }
template <typename, typename, typename... Args> void vector_if_equal_operator(const Args &...) { }
template <typename, typename, typename... Args> void vector_if_insertion_operator(const Args &...) { }
template <typename, typename, typename... Args> void vector_modifiers(const Args &...) { }
template<typename Vector, typename Class_>
void vector_if_copy_constructible(enable_if_t<
std::is_copy_constructible<Vector>::value &&
std::is_copy_constructible<typename Vector::value_type>::value, Class_> &cl) {
cl.def(init<const Vector &>(), "Copy constructor");
}
template<typename Vector, typename Class_>
void vector_if_equal_operator(enable_if_t<is_comparable<Vector>::value, Class_> &cl) {
using T = typename Vector::value_type;
cl.def(self == self);
cl.def(self != self);
cl.def("count",
[](const Vector &v, const T &x) {
return std::count(v.begin(), v.end(), x);
},
arg("x"),
"Return the number of times ``x`` appears in the list"
);
cl.def("remove", [](Vector &v, const T &x) {
auto p = std::find(v.begin(), v.end(), x);
if (p != v.end())
v.erase(p);
else
throw value_error();
},
arg("x"),
"Remove the first item from the list whose value is x. "
"It is an error if there is no such item."
);
cl.def("__contains__",
[](const Vector &v, const T &x) {
return std::find(v.begin(), v.end(), x) != v.end();
},
arg("x"),
"Return true the container contains ``x``"
);
}
// Vector modifiers -- requires a copyable vector_type:
// (Technically, some of these (pop and __delitem__) don't actually require copyability, but it seems
// silly to allow deletion but not insertion, so include them here too.)
template <typename Vector, typename Class_>
void vector_modifiers(enable_if_t<std::is_copy_constructible<typename Vector::value_type>::value, Class_> &cl) {
using T = typename Vector::value_type;
using SizeType = typename Vector::size_type;
using DiffType = typename Vector::difference_type;
cl.def("append",
[](Vector &v, const T &value) { v.push_back(value); },
arg("x"),
"Add an item to the end of the list");
cl.def("__init__", [](Vector &v, iterable it) {
new (&v) Vector();
try {
v.reserve(len(it));
for (handle h : it)
v.push_back(h.cast<T>());
} catch (...) {
v.~Vector();
throw;
}
});
cl.def("extend",
[](Vector &v, const Vector &src) {
v.insert(v.end(), src.begin(), src.end());
},
arg("L"),
"Extend the list by appending all the items in the given list"
);
cl.def("insert",
[](Vector &v, SizeType i, const T &x) {
if (i > v.size())
throw index_error();
v.insert(v.begin() + (DiffType) i, x);
},
arg("i") , arg("x"),
"Insert an item at a given position."
);
cl.def("pop",
[](Vector &v) {
if (v.empty())
throw index_error();
T t = v.back();
v.pop_back();
return t;
},
"Remove and return the last item"
);
cl.def("pop",
[](Vector &v, SizeType i) {
if (i >= v.size())
throw index_error();
T t = v[i];
v.erase(v.begin() + (DiffType) i);
return t;
},
arg("i"),
"Remove and return the item at index ``i``"
);
cl.def("__setitem__",
[](Vector &v, SizeType i, const T &t) {
if (i >= v.size())
throw index_error();
v[i] = t;
}
);
/// Slicing protocol
cl.def("__getitem__",
[](const Vector &v, slice slice) -> Vector * {
size_t start, stop, step, slicelength;
if (!slice.compute(v.size(), &start, &stop, &step, &slicelength))
throw error_already_set();
Vector *seq = new Vector();
seq->reserve((size_t) slicelength);
for (size_t i=0; i<slicelength; ++i) {
seq->push_back(v[start]);
start += step;
}
return seq;
},
arg("s"),
"Retrieve list elements using a slice object"
);
cl.def("__setitem__",
[](Vector &v, slice slice, const Vector &value) {
size_t start, stop, step, slicelength;
if (!slice.compute(v.size(), &start, &stop, &step, &slicelength))
throw error_already_set();
if (slicelength != value.size())
throw std::runtime_error("Left and right hand size of slice assignment have different sizes!");
for (size_t i=0; i<slicelength; ++i) {
v[start] = value[i];
start += step;
}
},
"Assign list elements using a slice object"
);
cl.def("__delitem__",
[](Vector &v, SizeType i) {
if (i >= v.size())
throw index_error();
v.erase(v.begin() + DiffType(i));
},
"Delete the list elements at index ``i``"
);
cl.def("__delitem__",
[](Vector &v, slice slice) {
size_t start, stop, step, slicelength;
if (!slice.compute(v.size(), &start, &stop, &step, &slicelength))
throw error_already_set();
if (step == 1 && false) {
v.erase(v.begin() + (DiffType) start, v.begin() + DiffType(start + slicelength));
} else {
for (size_t i = 0; i < slicelength; ++i) {
v.erase(v.begin() + DiffType(start));
start += step - 1;
}
}
},
"Delete list elements using a slice object"
);
}
// If the type has an operator[] that doesn't return a reference (most notably std::vector<bool>),
// we have to access by copying; otherwise we return by reference.
template <typename Vector> using vector_needs_copy = negation<
std::is_same<decltype(std::declval<Vector>()[typename Vector::size_type()]), typename Vector::value_type &>>;
// The usual case: access and iterate by reference
template <typename Vector, typename Class_>
void vector_accessor(enable_if_t<!vector_needs_copy<Vector>::value, Class_> &cl) {
using T = typename Vector::value_type;
using SizeType = typename Vector::size_type;
using ItType = typename Vector::iterator;
cl.def("__getitem__",
[](Vector &v, SizeType i) -> T & {
if (i >= v.size())
throw index_error();
return v[i];
},
return_value_policy::reference_internal // ref + keepalive
);
cl.def("__iter__",
[](Vector &v) {
return make_iterator<
return_value_policy::reference_internal, ItType, ItType, T&>(
v.begin(), v.end());
},
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
);
}
// The case for special objects, like std::vector<bool>, that have to be returned-by-copy:
template <typename Vector, typename Class_>
void vector_accessor(enable_if_t<vector_needs_copy<Vector>::value, Class_> &cl) {
using T = typename Vector::value_type;
using SizeType = typename Vector::size_type;
using ItType = typename Vector::iterator;
cl.def("__getitem__",
[](const Vector &v, SizeType i) -> T {
if (i >= v.size())
throw index_error();
return v[i];
}
);
cl.def("__iter__",
[](Vector &v) {
return make_iterator<
return_value_policy::copy, ItType, ItType, T>(
v.begin(), v.end());
},
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
);
}
template <typename Vector, typename Class_> auto vector_if_insertion_operator(Class_ &cl, std::string const &name)
-> decltype(std::declval<std::ostream&>() << std::declval<typename Vector::value_type>(), void()) {
using size_type = typename Vector::size_type;
cl.def("__repr__",
[name](Vector &v) {
std::ostringstream s;
s << name << '[';
for (size_type i=0; i < v.size(); ++i) {
s << v[i];
if (i != v.size() - 1)
s << ", ";
}
s << ']';
return s.str();
},
"Return the canonical string representation of this list."
);
}
// Provide the buffer interface for vectors if we have data() and we have a format for it
// GCC seems to have "void std::vector<bool>::data()" - doing SFINAE on the existence of data() is insufficient, we need to check it returns an appropriate pointer
template <typename Vector, typename = void>
struct vector_has_data_and_format : std::false_type {};
template <typename Vector>
struct vector_has_data_and_format<Vector, enable_if_t<std::is_same<decltype(format_descriptor<typename Vector::value_type>::format(), std::declval<Vector>().data()), typename Vector::value_type*>::value>> : std::true_type {};
// Add the buffer interface to a vector
template <typename Vector, typename Class_, typename... Args>
enable_if_t<detail::any_of<std::is_same<Args, buffer_protocol>...>::value>
vector_buffer(Class_& cl) {
using T = typename Vector::value_type;
static_assert(vector_has_data_and_format<Vector>::value, "There is not an appropriate format descriptor for this vector");
// numpy.h declares this for arbitrary types, but it may raise an exception and crash hard at runtime if PYBIND11_NUMPY_DTYPE hasn't been called, so check here
format_descriptor<T>::format();
cl.def_buffer([](Vector& v) -> buffer_info {
return buffer_info(v.data(), static_cast<ssize_t>(sizeof(T)), format_descriptor<T>::format(), 1, {v.size()}, {sizeof(T)});
});
cl.def("__init__", [](Vector& vec, buffer buf) {
auto info = buf.request();
if (info.ndim != 1 || info.strides[0] % static_cast<ssize_t>(sizeof(T)))
throw type_error("Only valid 1D buffers can be copied to a vector");
if (!detail::compare_buffer_info<T>::compare(info) || (ssize_t) sizeof(T) != info.itemsize)
throw type_error("Format mismatch (Python: " + info.format + " C++: " + format_descriptor<T>::format() + ")");
new (&vec) Vector();
vec.reserve((size_t) info.shape[0]);
T *p = static_cast<T*>(info.ptr);
ssize_t step = info.strides[0] / static_cast<ssize_t>(sizeof(T));
T *end = p + info.shape[0] * step;
for (; p != end; p += step)
vec.push_back(*p);
});
return;
}
template <typename Vector, typename Class_, typename... Args>
enable_if_t<!detail::any_of<std::is_same<Args, buffer_protocol>...>::value> vector_buffer(Class_&) {}
NAMESPACE_END(detail)
//
// std::vector
//
template <typename Vector, typename holder_type = std::unique_ptr<Vector>, typename... Args>
class_<Vector, holder_type> bind_vector(module &m, std::string const &name, Args&&... args) {
using Class_ = class_<Vector, holder_type>;
Class_ cl(m, name.c_str(), std::forward<Args>(args)...);
// Declare the buffer interface if a buffer_protocol() is passed in
detail::vector_buffer<Vector, Class_, Args...>(cl);
cl.def(init<>());
// Register copy constructor (if possible)
detail::vector_if_copy_constructible<Vector, Class_>(cl);
// Register comparison-related operators and functions (if possible)
detail::vector_if_equal_operator<Vector, Class_>(cl);
// Register stream insertion operator (if possible)
detail::vector_if_insertion_operator<Vector, Class_>(cl, name);
// Modifiers require copyable vector value type
detail::vector_modifiers<Vector, Class_>(cl);
// Accessor and iterator; return by value if copyable, otherwise we return by ref + keep-alive
detail::vector_accessor<Vector, Class_>(cl);
cl.def("__bool__",
[](const Vector &v) -> bool {
return !v.empty();
},
"Check whether the list is nonempty"
);
cl.def("__len__", &Vector::size);
#if 0
// C++ style functions deprecated, leaving it here as an example
cl.def(init<size_type>());
cl.def("resize",
(void (Vector::*) (size_type count)) & Vector::resize,
"changes the number of elements stored");
cl.def("erase",
[](Vector &v, SizeType i) {
if (i >= v.size())
throw index_error();
v.erase(v.begin() + i);
}, "erases element at index ``i``");
cl.def("empty", &Vector::empty, "checks whether the container is empty");
cl.def("size", &Vector::size, "returns the number of elements");
cl.def("push_back", (void (Vector::*)(const T&)) &Vector::push_back, "adds an element to the end");
cl.def("pop_back", &Vector::pop_back, "removes the last element");
cl.def("max_size", &Vector::max_size, "returns the maximum possible number of elements");
cl.def("reserve", &Vector::reserve, "reserves storage");
cl.def("capacity", &Vector::capacity, "returns the number of elements that can be held in currently allocated storage");
cl.def("shrink_to_fit", &Vector::shrink_to_fit, "reduces memory usage by freeing unused memory");
cl.def("clear", &Vector::clear, "clears the contents");
cl.def("swap", &Vector::swap, "swaps the contents");
cl.def("front", [](Vector &v) {
if (v.size()) return v.front();
else throw index_error();
}, "access the first element");
cl.def("back", [](Vector &v) {
if (v.size()) return v.back();
else throw index_error();
}, "access the last element ");
#endif
return cl;
}
//
// std::map, std::unordered_map
//
NAMESPACE_BEGIN(detail)
/* Fallback functions */
template <typename, typename, typename... Args> void map_if_insertion_operator(const Args &...) { }
template <typename, typename, typename... Args> void map_assignment(const Args &...) { }
// Map assignment when copy-assignable: just copy the value
template <typename Map, typename Class_>
void map_assignment(enable_if_t<std::is_copy_assignable<typename Map::mapped_type>::value, Class_> &cl) {
using KeyType = typename Map::key_type;
using MappedType = typename Map::mapped_type;
cl.def("__setitem__",
[](Map &m, const KeyType &k, const MappedType &v) {
auto it = m.find(k);
if (it != m.end()) it->second = v;
else m.emplace(k, v);
}
);
}
// Not copy-assignable, but still copy-constructible: we can update the value by erasing and reinserting
template<typename Map, typename Class_>
void map_assignment(enable_if_t<
!std::is_copy_assignable<typename Map::mapped_type>::value &&
std::is_copy_constructible<typename Map::mapped_type>::value,
Class_> &cl) {
using KeyType = typename Map::key_type;
using MappedType = typename Map::mapped_type;
cl.def("__setitem__",
[](Map &m, const KeyType &k, const MappedType &v) {
// We can't use m[k] = v; because value type might not be default constructable
auto r = m.emplace(k, v);
if (!r.second) {
// value type is not copy assignable so the only way to insert it is to erase it first...
m.erase(r.first);
m.emplace(k, v);
}
}
);
}
template <typename Map, typename Class_> auto map_if_insertion_operator(Class_ &cl, std::string const &name)
-> decltype(std::declval<std::ostream&>() << std::declval<typename Map::key_type>() << std::declval<typename Map::mapped_type>(), void()) {
cl.def("__repr__",
[name](Map &m) {
std::ostringstream s;
s << name << '{';
bool f = false;
for (auto const &kv : m) {
if (f)
s << ", ";
s << kv.first << ": " << kv.second;
f = true;
}
s << '}';
return s.str();
},
"Return the canonical string representation of this map."
);
}
NAMESPACE_END(detail)
template <typename Map, typename holder_type = std::unique_ptr<Map>, typename... Args>
class_<Map, holder_type> bind_map(module &m, const std::string &name, Args&&... args) {
using KeyType = typename Map::key_type;
using MappedType = typename Map::mapped_type;
using Class_ = class_<Map, holder_type>;
Class_ cl(m, name.c_str(), std::forward<Args>(args)...);
cl.def(init<>());
// Register stream insertion operator (if possible)
detail::map_if_insertion_operator<Map, Class_>(cl, name);
cl.def("__bool__",
[](const Map &m) -> bool { return !m.empty(); },
"Check whether the map is nonempty"
);
cl.def("__iter__",
[](Map &m) { return make_key_iterator(m.begin(), m.end()); },
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
);
cl.def("items",
[](Map &m) { return make_iterator(m.begin(), m.end()); },
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
);
cl.def("__getitem__",
[](Map &m, const KeyType &k) -> MappedType & {
auto it = m.find(k);
if (it == m.end())
throw key_error();
return it->second;
},
return_value_policy::reference_internal // ref + keepalive
);
// Assignment provided only if the type is copyable
detail::map_assignment<Map, Class_>(cl);
cl.def("__delitem__",
[](Map &m, const KeyType &k) {
auto it = m.find(k);
if (it == m.end())
throw key_error();
return m.erase(it);
}
);
cl.def("__len__", &Map::size);
return cl;
}
NAMESPACE_END(pybind11)

View File

@ -0,0 +1,53 @@
/*
pybind11/typeid.h: Compiler-independent access to type identifiers
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include <cstdio>
#include <cstdlib>
#if defined(__GNUG__)
#include <cxxabi.h>
#endif
NAMESPACE_BEGIN(pybind11)
NAMESPACE_BEGIN(detail)
/// Erase all occurrences of a substring
inline void erase_all(std::string &string, const std::string &search) {
for (size_t pos = 0;;) {
pos = string.find(search, pos);
if (pos == std::string::npos) break;
string.erase(pos, search.length());
}
}
PYBIND11_NOINLINE inline void clean_type_id(std::string &name) {
#if defined(__GNUG__)
int status = 0;
std::unique_ptr<char, void (*)(void *)> res {
abi::__cxa_demangle(name.c_str(), nullptr, nullptr, &status), std::free };
if (status == 0)
name = res.get();
#else
detail::erase_all(name, "class ");
detail::erase_all(name, "struct ");
detail::erase_all(name, "enum ");
#endif
detail::erase_all(name, "pybind11::");
}
NAMESPACE_END(detail)
/// Return a string representation of a C++ type
template <typename T> static std::string type_id() {
std::string name(typeid(T).name());
detail::clean_type_id(name);
return name;
}
NAMESPACE_END(pybind11)

View File

@ -0,0 +1,11 @@
from ._version import version_info, __version__ # noqa: F401 imported but unused
def get_include(*args, **kwargs):
import os
try:
from pip import locations
return os.path.dirname(
locations.distutils_scheme('pybind11', *args, **kwargs)['headers'])
except ImportError:
return 'include'

View File

@ -0,0 +1,31 @@
from __future__ import print_function
import argparse
import sys
import sysconfig
from . import get_include
def print_includes():
dirs = [sysconfig.get_path('include')]
if sysconfig.get_path('platinclude') not in dirs:
dirs.append(sysconfig.get_path('platinclude'))
if get_include() not in dirs:
dirs.append(get_include())
print(' '.join('-I' + d for d in dirs))
def main():
parser = argparse.ArgumentParser(prog='python -m pybind11')
parser.add_argument('--includes', action='store_true',
help='Include flags for both pybind11 and Python headers.')
args = parser.parse_args()
if not sys.argv[1:]:
parser.print_help()
if args.includes:
print_includes()
if __name__ == '__main__':
main()

View File

@ -0,0 +1,2 @@
version_info = (2, 2, 'dev0')
__version__ = '.'.join(map(str, version_info))

10
third-party/pybind11/setup.cfg vendored Normal file
View File

@ -0,0 +1,10 @@
[bdist_wheel]
universal=1
[flake8]
max-line-length = 99
show_source = True
exclude = .git, __pycache__, build, dist, docs, tools, venv
ignore =
# required for pretty matrix formating: multiple spaces after `,` and `[`
E201, E241

86
third-party/pybind11/setup.py vendored Normal file
View File

@ -0,0 +1,86 @@
#!/usr/bin/env python
# Setup script for PyPI; use CMakeFile.txt to build extension modules
from setuptools import setup
from pybind11 import __version__
import os
# Prevent installation of pybind11 headers by setting
# PYBIND11_USE_CMAKE.
if os.environ.get('PYBIND11_USE_CMAKE'):
headers = []
else:
headers = [
'include/pybind11/attr.h',
'include/pybind11/buffer_info.h',
'include/pybind11/cast.h',
'include/pybind11/chrono.h',
'include/pybind11/class_support.h',
'include/pybind11/common.h',
'include/pybind11/complex.h',
'include/pybind11/descr.h',
'include/pybind11/eigen.h',
'include/pybind11/embed.h',
'include/pybind11/eval.h',
'include/pybind11/functional.h',
'include/pybind11/numpy.h',
'include/pybind11/operators.h',
'include/pybind11/options.h',
'include/pybind11/pybind11.h',
'include/pybind11/pytypes.h',
'include/pybind11/stl.h',
'include/pybind11/stl_bind.h',
'include/pybind11/typeid.h'
]
setup(
name='pybind11',
version=__version__,
description='Seamless operability between C++11 and Python',
author='Wenzel Jakob',
author_email='wenzel.jakob@epfl.ch',
url='https://github.com/wjakob/pybind11',
download_url='https://github.com/wjakob/pybind11/tarball/v' + __version__,
packages=['pybind11'],
license='BSD',
headers=headers,
classifiers=[
'Development Status :: 5 - Production/Stable',
'Intended Audience :: Developers',
'Topic :: Software Development :: Libraries :: Python Modules',
'Topic :: Utilities',
'Programming Language :: C++',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.2',
'Programming Language :: Python :: 3.3',
'Programming Language :: Python :: 3.4',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'License :: OSI Approved :: BSD License'
],
keywords='C++11, Python bindings',
long_description="""pybind11 is a lightweight header-only library that
exposes C++ types in Python and vice versa, mainly to create Python bindings of
existing C++ code. Its goals and syntax are similar to the excellent
Boost.Python by David Abrahams: to minimize boilerplate code in traditional
extension modules by inferring type information using compile-time
introspection.
The main issue with Boost.Python-and the reason for creating such a similar
project-is Boost. Boost is an enormously large and complex suite of utility
libraries that works with almost every C++ compiler in existence. This
compatibility has its cost: arcane template tricks and workarounds are
necessary to support the oldest and buggiest of compiler specimens. Now that
C++11-compatible compilers are widely available, this heavy machinery has
become an excessively large and unnecessary dependency.
Think of this library as a tiny self-contained version of Boost.Python with
everything stripped away that isn't relevant for binding generation. Without
comments, the core header files only require ~4K lines of code and depend on
Python (2.7 or 3.x, or PyPy2.7 >= 5.7) and the C++ standard library. This
compact implementation was possible thanks to some of the new C++11 language
features (specifically: tuples, lambda functions and variadic templates). Since
its creation, this library has grown beyond Boost.Python in many ways, leading
to dramatically simpler binding code in many common situations.""")

View File

@ -0,0 +1,57 @@
# - Find the Catch test framework or download it (single header)
#
# This is a quick module for internal use. It assumes that Catch is
# REQUIRED and that a minimum version is provided (not EXACT). If
# a suitable version isn't found locally, the single header file
# will be downloaded and placed in the build dir: PROJECT_BINARY_DIR.
#
# This code sets the following variables:
# CATCH_INCLUDE_DIR - path to catch.hpp
# CATCH_VERSION - version number
if(NOT Catch_FIND_VERSION)
message(FATAL_ERROR "A version number must be specified.")
elseif(Catch_FIND_REQUIRED)
message(FATAL_ERROR "This module assumes Catch is not required.")
elseif(Catch_FIND_VERSION_EXACT)
message(FATAL_ERROR "Exact version numbers are not supported, only minimum.")
endif()
# Extract the version number from catch.hpp
function(_get_catch_version)
file(STRINGS "${CATCH_INCLUDE_DIR}/catch.hpp" version_line REGEX "Catch v.*" LIMIT_COUNT 1)
if(version_line MATCHES "Catch v([0-9]+)\\.([0-9]+)\\.([0-9]+)")
set(CATCH_VERSION "${CMAKE_MATCH_1}.${CMAKE_MATCH_2}.${CMAKE_MATCH_3}" PARENT_SCOPE)
endif()
endfunction()
# Download the single-header version of Catch
function(_download_catch version destination_dir)
message(STATUS "Downloading catch v${version}...")
set(url https://github.com/philsquared/Catch/releases/download/v${version}/catch.hpp)
file(DOWNLOAD ${url} "${destination_dir}/catch.hpp" STATUS status)
list(GET status 0 error)
if(error)
message(FATAL_ERROR "Could not download ${url}")
endif()
set(CATCH_INCLUDE_DIR "${destination_dir}" CACHE INTERNAL "")
endfunction()
# Look for catch locally
find_path(CATCH_INCLUDE_DIR NAMES catch.hpp PATH_SUFFIXES catch)
if(CATCH_INCLUDE_DIR)
_get_catch_version()
endif()
# Download the header if it wasn't found or if it's outdated
if(NOT CATCH_VERSION OR CATCH_VERSION VERSION_LESS ${Catch_FIND_VERSION})
if(DOWNLOAD_CATCH)
_download_catch(${Catch_FIND_VERSION} "${PROJECT_BINARY_DIR}/catch/")
_get_catch_version()
else()
set(CATCH_FOUND FALSE)
return()
endif()
endif()
set(CATCH_FOUND TRUE)

View File

@ -0,0 +1,81 @@
# - Try to find Eigen3 lib
#
# This module supports requiring a minimum version, e.g. you can do
# find_package(Eigen3 3.1.2)
# to require version 3.1.2 or newer of Eigen3.
#
# Once done this will define
#
# EIGEN3_FOUND - system has eigen lib with correct version
# EIGEN3_INCLUDE_DIR - the eigen include directory
# EIGEN3_VERSION - eigen version
# Copyright (c) 2006, 2007 Montel Laurent, <montel@kde.org>
# Copyright (c) 2008, 2009 Gael Guennebaud, <g.gael@free.fr>
# Copyright (c) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
# Redistribution and use is allowed according to the terms of the 2-clause BSD license.
if(NOT Eigen3_FIND_VERSION)
if(NOT Eigen3_FIND_VERSION_MAJOR)
set(Eigen3_FIND_VERSION_MAJOR 2)
endif(NOT Eigen3_FIND_VERSION_MAJOR)
if(NOT Eigen3_FIND_VERSION_MINOR)
set(Eigen3_FIND_VERSION_MINOR 91)
endif(NOT Eigen3_FIND_VERSION_MINOR)
if(NOT Eigen3_FIND_VERSION_PATCH)
set(Eigen3_FIND_VERSION_PATCH 0)
endif(NOT Eigen3_FIND_VERSION_PATCH)
set(Eigen3_FIND_VERSION "${Eigen3_FIND_VERSION_MAJOR}.${Eigen3_FIND_VERSION_MINOR}.${Eigen3_FIND_VERSION_PATCH}")
endif(NOT Eigen3_FIND_VERSION)
macro(_eigen3_check_version)
file(READ "${EIGEN3_INCLUDE_DIR}/Eigen/src/Core/util/Macros.h" _eigen3_version_header)
string(REGEX MATCH "define[ \t]+EIGEN_WORLD_VERSION[ \t]+([0-9]+)" _eigen3_world_version_match "${_eigen3_version_header}")
set(EIGEN3_WORLD_VERSION "${CMAKE_MATCH_1}")
string(REGEX MATCH "define[ \t]+EIGEN_MAJOR_VERSION[ \t]+([0-9]+)" _eigen3_major_version_match "${_eigen3_version_header}")
set(EIGEN3_MAJOR_VERSION "${CMAKE_MATCH_1}")
string(REGEX MATCH "define[ \t]+EIGEN_MINOR_VERSION[ \t]+([0-9]+)" _eigen3_minor_version_match "${_eigen3_version_header}")
set(EIGEN3_MINOR_VERSION "${CMAKE_MATCH_1}")
set(EIGEN3_VERSION ${EIGEN3_WORLD_VERSION}.${EIGEN3_MAJOR_VERSION}.${EIGEN3_MINOR_VERSION})
if(${EIGEN3_VERSION} VERSION_LESS ${Eigen3_FIND_VERSION})
set(EIGEN3_VERSION_OK FALSE)
else(${EIGEN3_VERSION} VERSION_LESS ${Eigen3_FIND_VERSION})
set(EIGEN3_VERSION_OK TRUE)
endif(${EIGEN3_VERSION} VERSION_LESS ${Eigen3_FIND_VERSION})
if(NOT EIGEN3_VERSION_OK)
message(STATUS "Eigen3 version ${EIGEN3_VERSION} found in ${EIGEN3_INCLUDE_DIR}, "
"but at least version ${Eigen3_FIND_VERSION} is required")
endif(NOT EIGEN3_VERSION_OK)
endmacro(_eigen3_check_version)
if (EIGEN3_INCLUDE_DIR)
# in cache already
_eigen3_check_version()
set(EIGEN3_FOUND ${EIGEN3_VERSION_OK})
else (EIGEN3_INCLUDE_DIR)
find_path(EIGEN3_INCLUDE_DIR NAMES signature_of_eigen3_matrix_library
PATHS
${CMAKE_INSTALL_PREFIX}/include
${KDE4_INCLUDE_DIR}
PATH_SUFFIXES eigen3 eigen
)
if(EIGEN3_INCLUDE_DIR)
_eigen3_check_version()
endif(EIGEN3_INCLUDE_DIR)
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(Eigen3 DEFAULT_MSG EIGEN3_INCLUDE_DIR EIGEN3_VERSION_OK)
mark_as_advanced(EIGEN3_INCLUDE_DIR)
endif(EIGEN3_INCLUDE_DIR)

View File

@ -0,0 +1,194 @@
# - Find python libraries
# This module finds the libraries corresponding to the Python interpeter
# FindPythonInterp provides.
# This code sets the following variables:
#
# PYTHONLIBS_FOUND - have the Python libs been found
# PYTHON_PREFIX - path to the Python installation
# PYTHON_LIBRARIES - path to the python library
# PYTHON_INCLUDE_DIRS - path to where Python.h is found
# PYTHON_MODULE_EXTENSION - lib extension, e.g. '.so' or '.pyd'
# PYTHON_MODULE_PREFIX - lib name prefix: usually an empty string
# PYTHON_SITE_PACKAGES - path to installation site-packages
# PYTHON_IS_DEBUG - whether the Python interpreter is a debug build
#
# Thanks to talljimbo for the patch adding the 'LDVERSION' config
# variable usage.
#=============================================================================
# Copyright 2001-2009 Kitware, Inc.
# Copyright 2012 Continuum Analytics, Inc.
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# * Neither the names of Kitware, Inc., the Insight Software Consortium,
# nor the names of their contributors may be used to endorse or promote
# products derived from this software without specific prior written
# permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#=============================================================================
if(PYTHONLIBS_FOUND)
return()
endif()
# Use the Python interpreter to find the libs.
if(PythonLibsNew_FIND_REQUIRED)
find_package(PythonInterp ${PythonLibsNew_FIND_VERSION} REQUIRED)
else()
find_package(PythonInterp ${PythonLibsNew_FIND_VERSION})
endif()
if(NOT PYTHONINTERP_FOUND)
set(PYTHONLIBS_FOUND FALSE)
return()
endif()
# According to http://stackoverflow.com/questions/646518/python-how-to-detect-debug-interpreter
# testing whether sys has the gettotalrefcount function is a reliable, cross-platform
# way to detect a CPython debug interpreter.
#
# The library suffix is from the config var LDVERSION sometimes, otherwise
# VERSION. VERSION will typically be like "2.7" on unix, and "27" on windows.
execute_process(COMMAND "${PYTHON_EXECUTABLE}" "-c"
"from distutils import sysconfig as s;import sys;import struct;
print('.'.join(str(v) for v in sys.version_info));
print(sys.prefix);
print(s.get_python_inc(plat_specific=True));
print(s.get_python_lib(plat_specific=True));
print(s.get_config_var('SO'));
print(hasattr(sys, 'gettotalrefcount')+0);
print(struct.calcsize('@P'));
print(s.get_config_var('LDVERSION') or s.get_config_var('VERSION'));
print(s.get_config_var('LIBDIR') or '');
print(s.get_config_var('MULTIARCH') or '');
"
RESULT_VARIABLE _PYTHON_SUCCESS
OUTPUT_VARIABLE _PYTHON_VALUES
ERROR_VARIABLE _PYTHON_ERROR_VALUE)
if(NOT _PYTHON_SUCCESS MATCHES 0)
if(PythonLibsNew_FIND_REQUIRED)
message(FATAL_ERROR
"Python config failure:\n${_PYTHON_ERROR_VALUE}")
endif()
set(PYTHONLIBS_FOUND FALSE)
return()
endif()
# Convert the process output into a list
string(REGEX REPLACE ";" "\\\\;" _PYTHON_VALUES ${_PYTHON_VALUES})
string(REGEX REPLACE "\n" ";" _PYTHON_VALUES ${_PYTHON_VALUES})
list(GET _PYTHON_VALUES 0 _PYTHON_VERSION_LIST)
list(GET _PYTHON_VALUES 1 PYTHON_PREFIX)
list(GET _PYTHON_VALUES 2 PYTHON_INCLUDE_DIR)
list(GET _PYTHON_VALUES 3 PYTHON_SITE_PACKAGES)
list(GET _PYTHON_VALUES 4 PYTHON_MODULE_EXTENSION)
list(GET _PYTHON_VALUES 5 PYTHON_IS_DEBUG)
list(GET _PYTHON_VALUES 6 PYTHON_SIZEOF_VOID_P)
list(GET _PYTHON_VALUES 7 PYTHON_LIBRARY_SUFFIX)
list(GET _PYTHON_VALUES 8 PYTHON_LIBDIR)
list(GET _PYTHON_VALUES 9 PYTHON_MULTIARCH)
# Make sure the Python has the same pointer-size as the chosen compiler
# Skip if CMAKE_SIZEOF_VOID_P is not defined
if(CMAKE_SIZEOF_VOID_P AND (NOT "${PYTHON_SIZEOF_VOID_P}" STREQUAL "${CMAKE_SIZEOF_VOID_P}"))
if(PythonLibsNew_FIND_REQUIRED)
math(EXPR _PYTHON_BITS "${PYTHON_SIZEOF_VOID_P} * 8")
math(EXPR _CMAKE_BITS "${CMAKE_SIZEOF_VOID_P} * 8")
message(FATAL_ERROR
"Python config failure: Python is ${_PYTHON_BITS}-bit, "
"chosen compiler is ${_CMAKE_BITS}-bit")
endif()
set(PYTHONLIBS_FOUND FALSE)
return()
endif()
# The built-in FindPython didn't always give the version numbers
string(REGEX REPLACE "\\." ";" _PYTHON_VERSION_LIST ${_PYTHON_VERSION_LIST})
list(GET _PYTHON_VERSION_LIST 0 PYTHON_VERSION_MAJOR)
list(GET _PYTHON_VERSION_LIST 1 PYTHON_VERSION_MINOR)
list(GET _PYTHON_VERSION_LIST 2 PYTHON_VERSION_PATCH)
# Make sure all directory separators are '/'
string(REGEX REPLACE "\\\\" "/" PYTHON_PREFIX ${PYTHON_PREFIX})
string(REGEX REPLACE "\\\\" "/" PYTHON_INCLUDE_DIR ${PYTHON_INCLUDE_DIR})
string(REGEX REPLACE "\\\\" "/" PYTHON_SITE_PACKAGES ${PYTHON_SITE_PACKAGES})
if(CMAKE_HOST_WIN32)
set(PYTHON_LIBRARY
"${PYTHON_PREFIX}/libs/Python${PYTHON_LIBRARY_SUFFIX}.lib")
# when run in a venv, PYTHON_PREFIX points to it. But the libraries remain in the
# original python installation. They may be found relative to PYTHON_INCLUDE_DIR.
if(NOT EXISTS "${PYTHON_LIBRARY}")
get_filename_component(_PYTHON_ROOT ${PYTHON_INCLUDE_DIR} DIRECTORY)
set(PYTHON_LIBRARY
"${_PYTHON_ROOT}/libs/Python${PYTHON_LIBRARY_SUFFIX}.lib")
endif()
# raise an error if the python libs are still not found.
if(NOT EXISTS "${PYTHON_LIBRARY}")
message(FATAL_ERROR "Python libraries not found")
endif()
else()
if(PYTHON_MULTIARCH)
set(_PYTHON_LIBS_SEARCH "${PYTHON_LIBDIR}/${PYTHON_MULTIARCH}" "${PYTHON_LIBDIR}")
else()
set(_PYTHON_LIBS_SEARCH "${PYTHON_LIBDIR}")
endif()
#message(STATUS "Searching for Python libs in ${_PYTHON_LIBS_SEARCH}")
# Probably this needs to be more involved. It would be nice if the config
# information the python interpreter itself gave us were more complete.
find_library(PYTHON_LIBRARY
NAMES "python${PYTHON_LIBRARY_SUFFIX}"
PATHS ${_PYTHON_LIBS_SEARCH}
NO_DEFAULT_PATH)
# If all else fails, just set the name/version and let the linker figure out the path.
if(NOT PYTHON_LIBRARY)
set(PYTHON_LIBRARY python${PYTHON_LIBRARY_SUFFIX})
endif()
endif()
MARK_AS_ADVANCED(
PYTHON_LIBRARY
PYTHON_INCLUDE_DIR
)
# We use PYTHON_INCLUDE_DIR, PYTHON_LIBRARY and PYTHON_DEBUG_LIBRARY for the
# cache entries because they are meant to specify the location of a single
# library. We now set the variables listed by the documentation for this
# module.
SET(PYTHON_INCLUDE_DIRS "${PYTHON_INCLUDE_DIR}")
SET(PYTHON_LIBRARIES "${PYTHON_LIBRARY}")
SET(PYTHON_DEBUG_LIBRARIES "${PYTHON_DEBUG_LIBRARY}")
find_package_message(PYTHON
"Found PythonLibs: ${PYTHON_LIBRARY}"
"${PYTHON_EXECUTABLE}${PYTHON_VERSION}")
set(PYTHONLIBS_FOUND TRUE)

View File

@ -0,0 +1,82 @@
#!/bin/bash
#
# Script to check include/test code for common pybind11 code style errors.
#
# This script currently checks for
#
# 1. use of tabs instead of spaces
# 2. MSDOS-style CRLF endings
# 3. trailing spaces
# 4. missing space between keyword and parenthesis, e.g.: for(, if(, while(
# 5. Missing space between right parenthesis and brace, e.g. 'for (...){'
# 6. opening brace on its own line. It should always be on the same line as the
# if/while/for/do statment.
#
# Invoke as: tools/check-style.sh
#
errors=0
IFS=$'\n'
found=
# The mt=41 sets a red background for matched tabs:
GREP_COLORS='mt=41' GREP_COLOR='41' grep $'\t' include tests/*.{cpp,py,h} docs/*.rst -rn --color=always |
while read f; do
if [ -z "$found" ]; then
echo -e '\033[31m\033[01mError: found tabs instead of spaces in the following files:\033[0m'
found=1
errors=1
fi
echo " $f"
done
found=
grep -IUlr $'\r' include tests/*.{cpp,py,h} docs/*.rst --color=always |
while read f; do
if [ -z "$found" ]; then
echo -e '\033[31m\033[01mError: found CRLF characters in the following files:\033[0m'
found=1
errors=1
fi
echo " $f"
done
found=
# The mt=41 sets a red background for matched trailing spaces
GREP_COLORS='mt=41' GREP_COLOR='41' grep '[[:blank:]]\+$' include tests/*.{cpp,py,h} docs/*.rst -rn --color=always |
while read f; do
if [ -z "$found" ]; then
echo -e '\033[31m\033[01mError: found trailing spaces in the following files:\033[0m'
found=1
errors=1
fi
echo " $f"
done
found=
grep '\<\(if\|for\|while\|catch\)(\|){' include tests/*.{cpp,py,h} -rn --color=always |
while read line; do
if [ -z "$found" ]; then
echo -e '\033[31m\033[01mError: found the following coding style problems:\033[0m'
found=1
errors=1
fi
echo " $line"
done
found=
GREP_COLORS='mt=41' GREP_COLOR='41' grep '^\s*{\s*$' include docs/*.rst -rn --color=always |
while read f; do
if [ -z "$found" ]; then
echo -e '\033[31m\033[01mError: braces should occur on the same line as the if/while/.. statement. Found issues in the following files: \033[0m'
found=1
errors=1
fi
echo " $f"
done
exit $errors

38
third-party/pybind11/tools/libsize.py vendored Normal file
View File

@ -0,0 +1,38 @@
from __future__ import print_function, division
import os
import sys
# Internal build script for generating debugging test .so size.
# Usage:
# python libsize.py file.so save.txt -- displays the size of file.so and, if save.txt exists, compares it to the
# size in it, then overwrites save.txt with the new size for future runs.
if len(sys.argv) != 3:
sys.exit("Invalid arguments: usage: python libsize.py file.so save.txt")
lib = sys.argv[1]
save = sys.argv[2]
if not os.path.exists(lib):
sys.exit("Error: requested file ({}) does not exist".format(lib))
libsize = os.path.getsize(lib)
print("------", os.path.basename(lib), "file size:", libsize, end='')
if os.path.exists(save):
with open(save) as sf:
oldsize = int(sf.readline())
if oldsize > 0:
change = libsize - oldsize
if change == 0:
print(" (no change)")
else:
print(" (change of {:+} bytes = {:+.2%})".format(change, change / oldsize))
else:
print()
with open(save, 'w') as sf:
sf.write(str(libsize))

304
third-party/pybind11/tools/mkdoc.py vendored Normal file
View File

@ -0,0 +1,304 @@
#!/usr/bin/env python3
#
# Syntax: mkdoc.py [-I<path> ..] [.. a list of header files ..]
#
# Extract documentation from C++ header files to use it in Python bindings
#
import os
import sys
import platform
import re
import textwrap
from clang import cindex
from clang.cindex import CursorKind
from collections import OrderedDict
from threading import Thread, Semaphore
from multiprocessing import cpu_count
RECURSE_LIST = [
CursorKind.TRANSLATION_UNIT,
CursorKind.NAMESPACE,
CursorKind.CLASS_DECL,
CursorKind.STRUCT_DECL,
CursorKind.ENUM_DECL,
CursorKind.CLASS_TEMPLATE
]
PRINT_LIST = [
CursorKind.CLASS_DECL,
CursorKind.STRUCT_DECL,
CursorKind.ENUM_DECL,
CursorKind.ENUM_CONSTANT_DECL,
CursorKind.CLASS_TEMPLATE,
CursorKind.FUNCTION_DECL,
CursorKind.FUNCTION_TEMPLATE,
CursorKind.CONVERSION_FUNCTION,
CursorKind.CXX_METHOD,
CursorKind.CONSTRUCTOR,
CursorKind.FIELD_DECL
]
CPP_OPERATORS = {
'<=': 'le', '>=': 'ge', '==': 'eq', '!=': 'ne', '[]': 'array',
'+=': 'iadd', '-=': 'isub', '*=': 'imul', '/=': 'idiv', '%=':
'imod', '&=': 'iand', '|=': 'ior', '^=': 'ixor', '<<=': 'ilshift',
'>>=': 'irshift', '++': 'inc', '--': 'dec', '<<': 'lshift', '>>':
'rshift', '&&': 'land', '||': 'lor', '!': 'lnot', '~': 'bnot',
'&': 'band', '|': 'bor', '+': 'add', '-': 'sub', '*': 'mul', '/':
'div', '%': 'mod', '<': 'lt', '>': 'gt', '=': 'assign', '()': 'call'
}
CPP_OPERATORS = OrderedDict(
sorted(CPP_OPERATORS.items(), key=lambda t: -len(t[0])))
job_count = cpu_count()
job_semaphore = Semaphore(job_count)
output = []
def d(s):
return s.decode('utf8')
def sanitize_name(name):
name = re.sub(r'type-parameter-0-([0-9]+)', r'T\1', name)
for k, v in CPP_OPERATORS.items():
name = name.replace('operator%s' % k, 'operator_%s' % v)
name = re.sub('<.*>', '', name)
name = ''.join([ch if ch.isalnum() else '_' for ch in name])
name = re.sub('_$', '', re.sub('_+', '_', name))
return '__doc_' + name
def process_comment(comment):
result = ''
# Remove C++ comment syntax
leading_spaces = float('inf')
for s in comment.expandtabs(tabsize=4).splitlines():
s = s.strip()
if s.startswith('/*'):
s = s[2:].lstrip('*')
elif s.endswith('*/'):
s = s[:-2].rstrip('*')
elif s.startswith('///'):
s = s[3:]
if s.startswith('*'):
s = s[1:]
if len(s) > 0:
leading_spaces = min(leading_spaces, len(s) - len(s.lstrip()))
result += s + '\n'
if leading_spaces != float('inf'):
result2 = ""
for s in result.splitlines():
result2 += s[leading_spaces:] + '\n'
result = result2
# Doxygen tags
cpp_group = '([\w:]+)'
param_group = '([\[\w:\]]+)'
s = result
s = re.sub(r'\\c\s+%s' % cpp_group, r'``\1``', s)
s = re.sub(r'\\a\s+%s' % cpp_group, r'*\1*', s)
s = re.sub(r'\\e\s+%s' % cpp_group, r'*\1*', s)
s = re.sub(r'\\em\s+%s' % cpp_group, r'*\1*', s)
s = re.sub(r'\\b\s+%s' % cpp_group, r'**\1**', s)
s = re.sub(r'\\ingroup\s+%s' % cpp_group, r'', s)
s = re.sub(r'\\param%s?\s+%s' % (param_group, cpp_group),
r'\n\n$Parameter ``\2``:\n\n', s)
s = re.sub(r'\\tparam%s?\s+%s' % (param_group, cpp_group),
r'\n\n$Template parameter ``\2``:\n\n', s)
for in_, out_ in {
'return': 'Returns',
'author': 'Author',
'authors': 'Authors',
'copyright': 'Copyright',
'date': 'Date',
'remark': 'Remark',
'sa': 'See also',
'see': 'See also',
'extends': 'Extends',
'throw': 'Throws',
'throws': 'Throws'
}.items():
s = re.sub(r'\\%s\s*' % in_, r'\n\n$%s:\n\n' % out_, s)
s = re.sub(r'\\details\s*', r'\n\n', s)
s = re.sub(r'\\brief\s*', r'', s)
s = re.sub(r'\\short\s*', r'', s)
s = re.sub(r'\\ref\s*', r'', s)
s = re.sub(r'\\code\s?(.*?)\s?\\endcode',
r"```\n\1\n```\n", s, flags=re.DOTALL)
# HTML/TeX tags
s = re.sub(r'<tt>(.*?)</tt>', r'``\1``', s, flags=re.DOTALL)
s = re.sub(r'<pre>(.*?)</pre>', r"```\n\1\n```\n", s, flags=re.DOTALL)
s = re.sub(r'<em>(.*?)</em>', r'*\1*', s, flags=re.DOTALL)
s = re.sub(r'<b>(.*?)</b>', r'**\1**', s, flags=re.DOTALL)
s = re.sub(r'\\f\$(.*?)\\f\$', r'$\1$', s, flags=re.DOTALL)
s = re.sub(r'<li>', r'\n\n* ', s)
s = re.sub(r'</?ul>', r'', s)
s = re.sub(r'</li>', r'\n\n', s)
s = s.replace('``true``', '``True``')
s = s.replace('``false``', '``False``')
# Re-flow text
wrapper = textwrap.TextWrapper()
wrapper.expand_tabs = True
wrapper.replace_whitespace = True
wrapper.drop_whitespace = True
wrapper.width = 70
wrapper.initial_indent = wrapper.subsequent_indent = ''
result = ''
in_code_segment = False
for x in re.split(r'(```)', s):
if x == '```':
if not in_code_segment:
result += '```\n'
else:
result += '\n```\n\n'
in_code_segment = not in_code_segment
elif in_code_segment:
result += x.strip()
else:
for y in re.split(r'(?: *\n *){2,}', x):
wrapped = wrapper.fill(re.sub(r'\s+', ' ', y).strip())
if len(wrapped) > 0 and wrapped[0] == '$':
result += wrapped[1:] + '\n'
wrapper.initial_indent = \
wrapper.subsequent_indent = ' ' * 4
else:
if len(wrapped) > 0:
result += wrapped + '\n\n'
wrapper.initial_indent = wrapper.subsequent_indent = ''
return result.rstrip().lstrip('\n')
def extract(filename, node, prefix):
if not (node.location.file is None or
os.path.samefile(d(node.location.file.name), filename)):
return 0
if node.kind in RECURSE_LIST:
sub_prefix = prefix
if node.kind != CursorKind.TRANSLATION_UNIT:
if len(sub_prefix) > 0:
sub_prefix += '_'
sub_prefix += d(node.spelling)
for i in node.get_children():
extract(filename, i, sub_prefix)
if node.kind in PRINT_LIST:
comment = d(node.raw_comment) if node.raw_comment is not None else ''
comment = process_comment(comment)
sub_prefix = prefix
if len(sub_prefix) > 0:
sub_prefix += '_'
if len(node.spelling) > 0:
name = sanitize_name(sub_prefix + d(node.spelling))
global output
output.append((name, filename, comment))
class ExtractionThread(Thread):
def __init__(self, filename, parameters):
Thread.__init__(self)
self.filename = filename
self.parameters = parameters
job_semaphore.acquire()
def run(self):
print('Processing "%s" ..' % self.filename, file=sys.stderr)
try:
index = cindex.Index(
cindex.conf.lib.clang_createIndex(False, True))
tu = index.parse(self.filename, self.parameters)
extract(self.filename, tu.cursor, '')
finally:
job_semaphore.release()
if __name__ == '__main__':
parameters = ['-x', 'c++', '-std=c++11']
filenames = []
if platform.system() == 'Darwin':
dev_path = '/Applications/Xcode.app/Contents/Developer/'
lib_dir = dev_path + 'Toolchains/XcodeDefault.xctoolchain/usr/lib/'
sdk_dir = dev_path + 'Platforms/MacOSX.platform/Developer/SDKs'
libclang = lib_dir + 'libclang.dylib'
if os.path.exists(libclang):
cindex.Config.set_library_path(os.path.dirname(libclang))
if os.path.exists(sdk_dir):
sysroot_dir = os.path.join(sdk_dir, next(os.walk(sdk_dir))[1][0])
parameters.append('-isysroot')
parameters.append(sysroot_dir)
for item in sys.argv[1:]:
if item.startswith('-'):
parameters.append(item)
else:
filenames.append(item)
if len(filenames) == 0:
print('Syntax: %s [.. a list of header files ..]' % sys.argv[0])
exit(-1)
print('''/*
This file contains docstrings for the Python bindings.
Do not edit! These were automatically extracted by mkdoc.py
*/
#define __EXPAND(x) x
#define __COUNT(_1, _2, _3, _4, _5, _6, _7, COUNT, ...) COUNT
#define __VA_SIZE(...) __EXPAND(__COUNT(__VA_ARGS__, 7, 6, 5, 4, 3, 2, 1))
#define __CAT1(a, b) a ## b
#define __CAT2(a, b) __CAT1(a, b)
#define __DOC1(n1) __doc_##n1
#define __DOC2(n1, n2) __doc_##n1##_##n2
#define __DOC3(n1, n2, n3) __doc_##n1##_##n2##_##n3
#define __DOC4(n1, n2, n3, n4) __doc_##n1##_##n2##_##n3##_##n4
#define __DOC5(n1, n2, n3, n4, n5) __doc_##n1##_##n2##_##n3##_##n4##_##n5
#define __DOC6(n1, n2, n3, n4, n5, n6) __doc_##n1##_##n2##_##n3##_##n4##_##n5##_##n6
#define __DOC7(n1, n2, n3, n4, n5, n6, n7) __doc_##n1##_##n2##_##n3##_##n4##_##n5##_##n6##_##n7
#define DOC(...) __EXPAND(__EXPAND(__CAT2(__DOC, __VA_SIZE(__VA_ARGS__)))(__VA_ARGS__))
#if defined(__GNUG__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-variable"
#endif
''')
output.clear()
for filename in filenames:
thr = ExtractionThread(filename, parameters)
thr.start()
print('Waiting for jobs to finish ..', file=sys.stderr)
for i in range(job_count):
job_semaphore.acquire()
name_ctr = 1
name_prev = None
for name, _, comment in list(sorted(output, key=lambda x: (x[0], x[1]))):
if name == name_prev:
name_ctr += 1
name = name + "_%i" % name_ctr
else:
name_prev = name
name_ctr = 1
print('\nstatic const char *%s =%sR"doc(%s)doc";' %
(name, '\n' if '\n' in comment else ' ', comment))
print('''
#if defined(__GNUG__)
#pragma GCC diagnostic pop
#endif
''')

View File

@ -0,0 +1,100 @@
# pybind11Config.cmake
# --------------------
#
# PYBIND11 cmake module.
# This module sets the following variables in your project::
#
# pybind11_FOUND - true if pybind11 and all required components found on the system
# pybind11_VERSION - pybind11 version in format Major.Minor.Release
# pybind11_INCLUDE_DIRS - Directories where pybind11 and python headers are located.
# pybind11_INCLUDE_DIR - Directory where pybind11 headers are located.
# pybind11_DEFINITIONS - Definitions necessary to use pybind11, namely USING_pybind11.
# pybind11_LIBRARIES - compile flags and python libraries (as needed) to link against.
# pybind11_LIBRARY - empty.
# CMAKE_MODULE_PATH - appends location of accompanying FindPythonLibsNew.cmake and
# pybind11Tools.cmake modules.
#
#
# Available components: None
#
#
# Exported targets::
#
# If pybind11 is found, this module defines the following :prop_tgt:`IMPORTED`
# interface library targets::
#
# pybind11::module - for extension modules
# pybind11::embed - for embedding the Python interpreter
#
# Python headers, libraries (as needed by platform), and the C++ standard
# are attached to the target. Set PythonLibsNew variables to influence
# python detection and PYBIND11_CPP_STANDARD (-std=c++11 or -std=c++14) to
# influence standard setting. ::
#
# find_package(pybind11 CONFIG REQUIRED)
# message(STATUS "Found pybind11 v${pybind11_VERSION}: ${pybind11_INCLUDE_DIRS}")
#
# # Create an extension module
# add_library(mylib MODULE main.cpp)
# target_link_libraries(mylib pybind11::module)
#
# # Or embed the Python interpreter into an executable
# add_executable(myexe main.cpp)
# target_link_libraries(myexe pybind11::embed)
#
# Suggested usage::
#
# find_package with version info is not recommended except for release versions. ::
#
# find_package(pybind11 CONFIG)
# find_package(pybind11 2.0 EXACT CONFIG REQUIRED)
#
#
# The following variables can be set to guide the search for this package::
#
# pybind11_DIR - CMake variable, set to directory containing this Config file
# CMAKE_PREFIX_PATH - CMake variable, set to root directory of this package
# PATH - environment variable, set to bin directory of this package
# CMAKE_DISABLE_FIND_PACKAGE_pybind11 - CMake variable, disables
# find_package(pybind11) when not REQUIRED, perhaps to force internal build
@PACKAGE_INIT@
set(PN pybind11)
# location of pybind11/pybind11.h
set(${PN}_INCLUDE_DIR "${PACKAGE_PREFIX_DIR}/@CMAKE_INSTALL_INCLUDEDIR@")
set(${PN}_LIBRARY "")
set(${PN}_DEFINITIONS USING_${PN})
check_required_components(${PN})
# make detectable the FindPythonLibsNew.cmake module
list(APPEND CMAKE_MODULE_PATH ${CMAKE_CURRENT_LIST_DIR})
include(pybind11Tools)
if(NOT (CMAKE_VERSION VERSION_LESS 3.0))
#-----------------------------------------------------------------------------
# Don't include targets if this file is being picked up by another
# project which has already built this as a subproject
#-----------------------------------------------------------------------------
if(NOT TARGET ${PN}::pybind11)
include("${CMAKE_CURRENT_LIST_DIR}/${PN}Targets.cmake")
find_package(PythonLibsNew ${PYBIND11_PYTHON_VERSION} MODULE REQUIRED)
set_property(TARGET ${PN}::pybind11 APPEND PROPERTY INTERFACE_INCLUDE_DIRECTORIES ${PYTHON_INCLUDE_DIRS})
set_property(TARGET ${PN}::embed APPEND PROPERTY INTERFACE_LINK_LIBRARIES ${PYTHON_LIBRARIES})
if(WIN32 OR CYGWIN)
set_property(TARGET ${PN}::module APPEND PROPERTY INTERFACE_LINK_LIBRARIES ${PYTHON_LIBRARIES})
endif()
set_property(TARGET ${PN}::pybind11 APPEND PROPERTY INTERFACE_COMPILE_OPTIONS "${PYBIND11_CPP_STANDARD}")
get_property(_iid TARGET ${PN}::pybind11 PROPERTY INTERFACE_INCLUDE_DIRECTORIES)
get_property(_ill TARGET ${PN}::module PROPERTY INTERFACE_LINK_LIBRARIES)
set(${PN}_INCLUDE_DIRS ${_iid})
set(${PN}_LIBRARIES ${_ico} ${_ill})
endif()
endif()

View File

@ -0,0 +1,198 @@
# tools/pybind11Tools.cmake -- Build system for the pybind11 modules
#
# Copyright (c) 2015 Wenzel Jakob <wenzel@inf.ethz.ch>
#
# All rights reserved. Use of this source code is governed by a
# BSD-style license that can be found in the LICENSE file.
cmake_minimum_required(VERSION 2.8.12)
# Add a CMake parameter for choosing a desired Python version
if(NOT PYBIND11_PYTHON_VERSION)
set(PYBIND11_PYTHON_VERSION "" CACHE STRING "Python version to use for compiling modules")
endif()
set(Python_ADDITIONAL_VERSIONS 3.7 3.6 3.5 3.4)
find_package(PythonLibsNew ${PYBIND11_PYTHON_VERSION} REQUIRED)
include(CheckCXXCompilerFlag)
include(CMakeParseArguments)
if(NOT PYBIND11_CPP_STANDARD)
if(NOT MSVC)
check_cxx_compiler_flag("-std=c++14" HAS_CPP14_FLAG)
if (HAS_CPP14_FLAG)
set(PYBIND11_CPP_STANDARD -std=c++14)
else()
check_cxx_compiler_flag("-std=c++11" HAS_CPP11_FLAG)
if (HAS_CPP11_FLAG)
set(PYBIND11_CPP_STANDARD -std=c++11)
else()
message(FATAL_ERROR "Unsupported compiler -- pybind11 requires C++11 support!")
endif()
endif()
elseif(MSVC)
set(PYBIND11_CPP_STANDARD /std:c++14)
endif()
set(PYBIND11_CPP_STANDARD ${PYBIND11_CPP_STANDARD} CACHE STRING
"C++ standard flag, e.g. -std=c++11, -std=c++14, /std:c++14. Defaults to C++14 mode." FORCE)
endif()
# Checks whether the given CXX/linker flags can compile and link a cxx file. cxxflags and
# linkerflags are lists of flags to use. The result variable is a unique variable name for each set
# of flags: the compilation result will be cached base on the result variable. If the flags work,
# sets them in cxxflags_out/linkerflags_out internal cache variables (in addition to ${result}).
function(_pybind11_return_if_cxx_and_linker_flags_work result cxxflags linkerflags cxxflags_out linkerflags_out)
set(CMAKE_REQUIRED_LIBRARIES ${linkerflags})
check_cxx_compiler_flag("${cxxflags}" ${result})
if (${result})
set(${cxxflags_out} "${cxxflags}" CACHE INTERNAL "" FORCE)
set(${linkerflags_out} "${linkerflags}" CACHE INTERNAL "" FORCE)
endif()
endfunction()
# Internal: find the appropriate link time optimization flags for this compiler
function(_pybind11_add_lto_flags target_name prefer_thin_lto)
if (NOT DEFINED PYBIND11_LTO_CXX_FLAGS)
set(PYBIND11_LTO_CXX_FLAGS "" CACHE INTERNAL "")
set(PYBIND11_LTO_LINKER_FLAGS "" CACHE INTERNAL "")
if(CMAKE_CXX_COMPILER_ID MATCHES "GNU|Clang")
set(cxx_append "")
set(linker_append "")
if (CMAKE_CXX_COMPILER_ID MATCHES "Clang" AND NOT APPLE)
# Clang Gold plugin does not support -Os; append -O3 to MinSizeRel builds to override it
set(linker_append ";$<$<CONFIG:MinSizeRel>:-O3>")
elseif(CMAKE_CXX_COMPILER_ID MATCHES "GNU")
set(cxx_append ";-fno-fat-lto-objects")
endif()
if (CMAKE_CXX_COMPILER_ID MATCHES "Clang" AND prefer_thin_lto)
_pybind11_return_if_cxx_and_linker_flags_work(HAS_FLTO_THIN
"-flto=thin${cxx_append}" "-flto=thin${linker_append}"
PYBIND11_LTO_CXX_FLAGS PYBIND11_LTO_LINKER_FLAGS)
endif()
if (NOT HAS_FLTO_THIN)
_pybind11_return_if_cxx_and_linker_flags_work(HAS_FLTO
"-flto${cxx_append}" "-flto${linker_append}"
PYBIND11_LTO_CXX_FLAGS PYBIND11_LTO_LINKER_FLAGS)
endif()
elseif (CMAKE_CXX_COMPILER_ID MATCHES "Intel")
# Intel equivalent to LTO is called IPO
_pybind11_return_if_cxx_and_linker_flags_work(HAS_INTEL_IPO
"-ipo" "-ipo" PYBIND11_LTO_CXX_FLAGS PYBIND11_LTO_LINKER_FLAGS)
elseif(MSVC)
# cmake only interprets libraries as linker flags when they start with a - (otherwise it
# converts /LTCG to \LTCG as if it was a Windows path). Luckily MSVC supports passing flags
# with - instead of /, even if it is a bit non-standard:
_pybind11_return_if_cxx_and_linker_flags_work(HAS_MSVC_GL_LTCG
"/GL" "-LTCG" PYBIND11_LTO_CXX_FLAGS PYBIND11_LTO_LINKER_FLAGS)
endif()
if (PYBIND11_LTO_CXX_FLAGS)
message(STATUS "LTO enabled")
else()
message(STATUS "LTO disabled (not supported by the compiler and/or linker)")
endif()
endif()
# Enable LTO flags if found, except for Debug builds
if (PYBIND11_LTO_CXX_FLAGS)
target_compile_options(${target_name} PRIVATE "$<$<NOT:$<CONFIG:Debug>>:${PYBIND11_LTO_CXX_FLAGS}>")
endif()
if (PYBIND11_LTO_LINKER_FLAGS)
target_link_libraries(${target_name} PRIVATE "$<$<NOT:$<CONFIG:Debug>>:${PYBIND11_LTO_LINKER_FLAGS}>")
endif()
endfunction()
# Build a Python extension module:
# pybind11_add_module(<name> [MODULE | SHARED] [EXCLUDE_FROM_ALL]
# [NO_EXTRAS] [THIN_LTO] source1 [source2 ...])
#
function(pybind11_add_module target_name)
set(options MODULE SHARED EXCLUDE_FROM_ALL NO_EXTRAS THIN_LTO)
cmake_parse_arguments(ARG "${options}" "" "" ${ARGN})
if(ARG_MODULE AND ARG_SHARED)
message(FATAL_ERROR "Can't be both MODULE and SHARED")
elseif(ARG_SHARED)
set(lib_type SHARED)
else()
set(lib_type MODULE)
endif()
if(ARG_EXCLUDE_FROM_ALL)
set(exclude_from_all EXCLUDE_FROM_ALL)
endif()
add_library(${target_name} ${lib_type} ${exclude_from_all} ${ARG_UNPARSED_ARGUMENTS})
target_include_directories(${target_name}
PRIVATE ${PYBIND11_INCLUDE_DIR} # from project CMakeLists.txt
PRIVATE ${pybind11_INCLUDE_DIR} # from pybind11Config
PRIVATE ${PYTHON_INCLUDE_DIRS})
# The prefix and extension are provided by FindPythonLibsNew.cmake
set_target_properties(${target_name} PROPERTIES PREFIX "${PYTHON_MODULE_PREFIX}")
set_target_properties(${target_name} PROPERTIES SUFFIX "${PYTHON_MODULE_EXTENSION}")
if(WIN32 OR CYGWIN)
# Link against the Python shared library on Windows
target_link_libraries(${target_name} PRIVATE ${PYTHON_LIBRARIES})
elseif(APPLE)
# It's quite common to have multiple copies of the same Python version
# installed on one's system. E.g.: one copy from the OS and another copy
# that's statically linked into an application like Blender or Maya.
# If we link our plugin library against the OS Python here and import it
# into Blender or Maya later on, this will cause segfaults when multiple
# conflicting Python instances are active at the same time (even when they
# are of the same version).
# Windows is not affected by this issue since it handles DLL imports
# differently. The solution for Linux and Mac OS is simple: we just don't
# link against the Python library. The resulting shared library will have
# missing symbols, but that's perfectly fine -- they will be resolved at
# import time.
target_link_libraries(${target_name} PRIVATE "-undefined dynamic_lookup")
if(ARG_SHARED)
# Suppress CMake >= 3.0 warning for shared libraries
set_target_properties(${target_name} PROPERTIES MACOSX_RPATH ON)
endif()
endif()
# Make sure C++11/14 are enabled
target_compile_options(${target_name} PUBLIC ${PYBIND11_CPP_STANDARD})
if(ARG_NO_EXTRAS)
return()
endif()
_pybind11_add_lto_flags(${target_name} ${ARG_THIN_LTO})
if (NOT MSVC AND NOT ${CMAKE_BUILD_TYPE} MATCHES Debug)
# Set the default symbol visibility to hidden (very important to obtain small binaries)
target_compile_options(${target_name} PRIVATE "-fvisibility=hidden")
# Strip unnecessary sections of the binary on Linux/Mac OS
if(CMAKE_STRIP)
if(APPLE)
add_custom_command(TARGET ${target_name} POST_BUILD
COMMAND ${CMAKE_STRIP} -x $<TARGET_FILE:${target_name}>)
else()
add_custom_command(TARGET ${target_name} POST_BUILD
COMMAND ${CMAKE_STRIP} $<TARGET_FILE:${target_name}>)
endif()
endif()
endif()
if(MSVC)
# /MP enables multithreaded builds (relevant when there are many files), /bigobj is
# needed for bigger binding projects due to the limit to 64k addressable sections
target_compile_options(${target_name} PRIVATE /MP /bigobj)
endif()
endfunction()

View File

@ -1,23 +1,23 @@
cmake_minimum_required(VERSION 3.2)
project(xlntpyarrow)
if(NOT MSVC)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
add_subdirectory(../third-party/pybind11 pybind11)
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_CURRENT_SOURCE_DIR}/../cmake")
find_package(Arrow)
if(NOT ARROW_FOUND)
message(FATAL_ERROR "Arrow not found.")
endif()
option(CONDA_ROOT "Path to Conda directory." "")
pybind11_add_module(xlntpyarrow xlntpyarrow.cpp)
if(NOT CONDA_ROOT)
message(FATAL_ERROR "Missing Conda root directory option (-D CONDA_ROOT).")
endif()
# Replace backslash with forward slash since Python interprets it as an escaped character
string(REGEX REPLACE "\\\\" "/" CONDA_ROOT ${CONDA_ROOT})
configure_file("${CMAKE_CURRENT_SOURCE_DIR}/setup.py.cmake"
"${CMAKE_CURRENT_BINARY_DIR}/setup.py")
add_custom_target(xlntpyarrow ALL
COMMAND python setup.py install --record=record.txt --xlntlib=$<TARGET_FILE:xlnt>
DEPENDS xlnt
SOURCES xlntpyarrow.cpp setup.py.cmake methods.hpp methods.cpp)
target_include_directories(xlntpyarrow
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/../source
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/../third-party/pybind11/include
PRIVATE ${ARROW_INCLUDE_DIR})
target_link_libraries(xlntpyarrow
PRIVATE xlnt
PRIVATE ${ARROW_SHARED_IMP_LIB}
PRIVATE ${ARROW_PYTHON_SHARED_IMP_LIB})

View File

@ -1,322 +0,0 @@
// Copyright (c) 2017 Thomas Fussell
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, WRISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE
//
// @license: http://www.opensource.org/licenses/mit-license.php
// @author: see AUTHORS file
#include <iostream>
#include <memory>
#include <vector>
#pragma warning(push)
#pragma warning(disable: 4458)
#include <arrow/api.h>
#include <arrow/python/pyarrow.h>
#pragma warning(pop)
#include <Python.h> // must be included after Arrow
#include <detail/default_case.hpp>
#include <detail/unicode.hpp>
#include <python_streambuf.hpp>
#include <xlnt/cell/cell.hpp>
#include <xlnt/cell/cell_reference.hpp>
#include <xlnt/workbook/streaming_workbook_reader.hpp>
#include <xlnt/workbook/streaming_workbook_writer.hpp>
#include <xlnt/worksheet/worksheet.hpp>
namespace {
std::unique_ptr<arrow::ArrayBuilder> make_array_builder(xlnt::cell::type type)
{
switch (type)
{
case xlnt::cell::type::number:
return std::unique_ptr<arrow::ArrayBuilder>(new arrow::DoubleBuilder(arrow::default_memory_pool(), arrow::float64()));
case xlnt::cell::type::inline_string:
case xlnt::cell::type::shared_string:
case xlnt::cell::type::error:
case xlnt::cell::type::formula_string:
case xlnt::cell::type::empty:
return std::unique_ptr<arrow::StringBuilder>(new arrow::StringBuilder(arrow::default_memory_pool()));
case xlnt::cell::type::boolean:
return std::unique_ptr<arrow::ArrayBuilder>(new arrow::BooleanBuilder(arrow::default_memory_pool(), std::make_shared<arrow::BooleanType>()));
case xlnt::cell::type::date:
return std::unique_ptr<arrow::Date32Builder>(new arrow::Date32Builder(arrow::default_memory_pool()));
}
default_case(std::unique_ptr<arrow::ArrayBuilder>(nullptrptr));
}
arrow::Field make_type_field(const std::string &name, xlnt::cell::type type)
{
switch (type)
{
case xlnt::cell::type::number:
return arrow::Field(name, arrow::float64());
case xlnt::cell::type::inline_string:
case xlnt::cell::type::shared_string:
case xlnt::cell::type::error:
case xlnt::cell::type::formula_string:
case xlnt::cell::type::empty:
return arrow::Field(name, std::make_shared<arrow::StringType>());
case xlnt::cell::type::boolean:
return arrow::Field(name, arrow::boolean());
case xlnt::cell::type::date:
return arrow::Field(name, arrow::date32());
}
default_case(arrow::Field("", arrow::nullptr()));
}
} // namespace xlnt
bool import_pyarrow()
{
static bool imported = false;
if (!imported)
{
if (arrow::py::import_pyarrow() != 0)
{
if (PyErr_Occurred() != nullptr)
{
PyErr_Print();
PyErr_Clear();
}
}
else
{
imported = true;
}
}
return imported;
}
extern "C" {
PyObject *xlntpyarrow_xlsx2arrow(PyObject *self, PyObject *args, PyObject *kwargs)
{
static const char *keywords[] = { "io", "sheetname", "header", "skiprows",
"skip_footer", "index_col", "names", "converters", "dtype", "true_values",
"false_values", "parse_cols", "squeeze", "na_values", "thousands",
"keep_default_na", "verbose", "convert_float", nullptr };
static auto keywords_nc = const_cast<char **>(keywords);
PyObject *io = nullptr;
PyObject *sheetname = nullptr;
PyObject *header = nullptr;
PyObject *skiprows = nullptr;
auto skip_footer = 0;
PyObject *index_col = nullptr;
PyObject *names = nullptr;
PyObject *converters = nullptr;
PyObject *dtype = nullptr;
PyObject *true_values = nullptr;
PyObject *false_values = nullptr;
PyObject *parse_cols = nullptr;
auto squeeze = false;
PyObject *na_values = nullptr;
const char *thousands = nullptr;
auto keep_default_va = false;
auto verbose = false;
auto convert_float = false;
std::cout << "here" << std::endl;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O|OOOiOOOOOOOpOzppp", keywords_nc,
&io, &sheetname, &header, &skiprows, &skip_footer, &index_col, &names,
&converters, &dtype, &true_values, &false_values, &parse_cols, &squeeze,
&na_values, &thousands, &keep_default_va, &verbose, &convert_float))
{
PyErr_Print();
PyErr_Clear();
Py_RETURN_NONE;
}
std::cout << "here2" << std::endl;
if (!import_pyarrow())
{
Py_RETURN_NONE;
}
std::cout << "here3" << std::endl;
// arg #1, io
xlnt::python_streambuf file_buffer(io);
std::istream file_stream(&file_buffer);
xlnt::streaming_workbook_reader reader;
reader.open(file_stream);
std::cout << "here4" << std::endl;
// arg #2, sheetname
auto sheet_titles = reader.sheet_titles();
auto sheet_title = sheet_titles.front();
std::cout << "here5 " << sheet_title << std::endl;
if (sheetname != nullptr)
{
std::cout << "sheetname" << std::endl;
if (PyLong_Check(sheetname))
{
std::cout << "is long" << std::endl;
// handle int sheetname
auto sheet_index = PyLong_AsLong(sheetname);
sheet_title = sheet_titles.at(sheet_index);
}
else if (PyUnicode_Check(sheetname))
{
std::cout << "is string" << std::endl;
// handle string sheetname
sheet_title = std::string(reinterpret_cast<char *>(PyUnicode_1BYTE_DATA(sheetname)));
}
}
std::cout << sheet_title << std::endl;
reader.begin_worksheet(sheet_title);
auto column_names = std::vector<std::string>();
auto columns = std::vector<std::unique_ptr<arrow::ArrayBuilder>>();
auto fields = std::vector<std::shared_ptr<arrow::Field>>();
auto arrow_check = [](arrow::Status s)
{
if (!s.ok())
{
throw xlnt::exception("conversion error");
}
};
while (reader.has_cell())
{
auto cell = reader.read_cell();
if (cell.row() == 1)
{
column_names.push_back(cell.value<std::string>());
continue;
}
else if (cell.row() == 2)
{
auto column_name = column_names.at(cell.column().index - 1);
auto field = make_type_field(column_name, cell.data_type());
fields.push_back(std::make_shared<arrow::Field>(field));
columns.push_back(make_array_builder(cell.data_type()));
}
auto builder = columns.at(cell.column().index - 1).get();
switch (cell.data_type())
{
case xlnt::cell::type::number:
{
auto typed_builder = static_cast<arrow::DoubleBuilder*>(builder);
typed_builder->Append(0);
break;
}
case xlnt::cell::type::inline_string:
case xlnt::cell::type::shared_string:
case xlnt::cell::type::error:
case xlnt::cell::type::formula_string:
case xlnt::cell::type::empty:
{
auto typed_builder = static_cast<arrow::StringBuilder*>(builder);
typed_builder->Append(cell.value<std::string>());
break;
}
case xlnt::cell::type::boolean:
{
auto typed_builder = static_cast<arrow::BooleanBuilder*>(builder);
typed_builder->Append(cell.value<bool>());
break;
}
case xlnt::cell::type::date:
{
auto typed_builder = static_cast<arrow::Date32Builder*>(builder);
typed_builder->Append(cell.value<int>());
break;
}
}
}
reader.end_worksheet();
auto schema = std::make_shared<arrow::Schema>(fields);
auto arrays = std::vector<std::shared_ptr<arrow::Array>>();
for (size_t i = 0; i != columns.size(); ++i)
{
std::shared_ptr<arrow::Array> array;
columns[i]->Finish(&array);
arrays.emplace_back(array);
}
std::shared_ptr<arrow::Table> table;
arrow_check(MakeTable(schema, arrays, &table));
return arrow::py::wrap_table(table);
}
PyObject *xlntpyarrow_arrow2xlsx(PyObject *self, PyObject *args, PyObject *kwargs)
{
static const char *keywords[] = { "table", "file", nullptr };
static auto keywords_nc = const_cast<char **>(keywords);
PyObject *table = nullptr;
PyObject *file = nullptr;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "OO", keywords_nc, &table, &file))
{
return nullptr;
}
if (!import_pyarrow())
{
Py_RETURN_NONE;
}
/*
auto table = arrow::py::unwrap_table(pytable);
xlnt::python_streambuf buffer(pyfile);
std::ostream stream(&buffer);
xlnt::streaming_workbook_writer writer;
writer.open(s);
writer.add_worksheet("Sheet1");
for (auto i = 0; i < table->num_columns(); ++i)
{
auto column_name = table->schema()->field(i)->name();
writer.add_cell(xlnt::cell_reference(i + 1, 1)).value(column_name);
}
*/
Py_RETURN_NONE;
}
} // extern "C"

View File

@ -1,31 +0,0 @@
// Copyright (c) 2017 Thomas Fussell
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, WRISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE
//
// @license: http://www.opensource.org/licenses/mit-license.php
// @author: see AUTHORS file
#pragma once
extern "C" {
typedef struct _object PyObject;
PyObject *xlntpyarrow_xlsx2arrow(PyObject *self, PyObject *args, PyObject *kwargs);
PyObject *xlntpyarrow_arrow2xlsx(PyObject *self, PyObject *args, PyObject *kwargs);
} // extern "C"

View File

@ -1,88 +1,12 @@
#pragma once
#include <boost/optional.hpp>
#include <boost/utility/typed_in_place_factory.hpp>
#include <cassert>
#include <stdexcept>
#include <iostream>
#include <Python.h>
#include <pybind11/pybind11.h>
namespace xlnt {
/// A stream buffer getting data from and putting data into a Python file object
/** The aims are as follow:
- Given a C++ function acting on a standard stream, e.g.
\code
void read_inputs(std::istream& input) {
...
input >> something >> something_else;
}
\endcode
and given a piece of Python code which creates a file-like object,
to be able to pass this file object to that C++ function, e.g.
\code
import gzip
gzip_file_obj = gzip.GzipFile(...)
read_inputs(gzip_file_obj)
\endcode
and have the standard stream pull data from and put data into the Python
file object.
- When Python \c read_inputs() returns, the Python object is able to
continue reading or writing where the C++ code left off.
- Operations in C++ on mere files should be competitively fast compared
to the direct use of \c std::fstream.
\b Motivation
- the standard Python library offer of file-like objects (files,
compressed files and archives, network, ...) is far superior to the
offer of streams in the C++ standard library and Boost C++ libraries.
- i/o code involves a fair amount of text processing which is more
efficiently prototyped in Python but then one may need to rewrite
a time-critical part in C++, in as seamless a manner as possible.
\b Usage
This is 2-step:
- a trivial wrapper function
\code
using boost_adaptbx::python::streambuf;
void read_inputs_wrapper(streambuf& input)
{
streambuf::istream is(input);
read_inputs(is);
}
def("read_inputs", read_inputs_wrapper);
\endcode
which has to be written every time one wants a Python binding for
such a C++ function.
- the Python side
\code
from boost.python import streambuf
read_inputs(streambuf(python_file_obj=obj, buffer_size=1024))
\endcode
\c buffer_size is optional. See also: \c default_buffer_size
Note: references are to the C++ standard (the numbers between parentheses
at the end of references are margin markers).
*/
class python_streambuf : public std::basic_streambuf<char>
{
private:
@ -100,8 +24,10 @@ class python_streambuf : public std::basic_streambuf<char>
typedef base_t::traits_type traits_type;
// work around Visual C++ 7.1 problem
inline static int
traits_type_eof() { return traits_type::eof(); }
inline static int traits_type_eof()
{
return traits_type::eof();
}
/// The default size of the read and write buffer.
/** They are respectively used to buffer data read from and data written to
@ -113,13 +39,13 @@ class python_streambuf : public std::basic_streambuf<char>
/** if buffer_size is 0 the current default_buffer_size is used.
*/
python_streambuf(
PyObject *python_file_obj,
pybind11::object python_file_obj,
std::size_t buffer_size_ = 0)
:
py_read (PyObject_GetAttrString(python_file_obj, "read")),
py_write(PyObject_GetAttrString(python_file_obj, "write")),
py_seek (PyObject_GetAttrString(python_file_obj, "seek")),
py_tell (PyObject_GetAttrString(python_file_obj, "tell")),
py_read(python_file_obj.attr("read").cast<pybind11::function>()),
py_write(python_file_obj.attr("write").cast<pybind11::function>()),
py_seek(python_file_obj.attr("seek").cast<pybind11::function>()),
py_tell(python_file_obj.attr("tell").cast<pybind11::function>()),
buffer_size(buffer_size_ != 0 ? buffer_size_ : default_buffer_size),
write_buffer(0),
pos_of_read_buffer_end_in_py_file(0),
@ -127,34 +53,40 @@ class python_streambuf : public std::basic_streambuf<char>
farthest_pptr(0)
{
assert(buffer_size != 0);
/* Some Python file objects (e.g. sys.stdout and sys.stdin)
have non-functional seek and tell. If so, assign None to
py_tell and py_seek.
*/
if (py_tell != nullptr) {
PyObject_CallFunction(py_tell, nullptr);
if (PyErr_Occurred() != nullptr)
{
py_tell = nullptr;
py_seek = nullptr;
PyErr_Clear();
}
}
if (!py_tell.is_none())
{
try
{
py_tell();
}
catch(...)
{
py_tell = pybind11::none();
}
}
if (py_write != nullptr) {
if (!py_write.is_none())
{
// C-like string to make debugging easier
write_buffer = new char[buffer_size + 1];
write_buffer[buffer_size] = '\0';
setp(write_buffer, write_buffer + buffer_size); // 27.5.2.4.5 (5)
farthest_pptr = pptr();
}
else {
else
{
// The first attempt at output will result in a call to overflow
setp(0, 0);
}
if (py_tell != nullptr) {
auto py_pos = extract_int<off_type>(PyObject_CallFunction(py_tell, nullptr));
if (!py_tell.is_none())
{
auto py_pos = py_tell().cast<pybind11::int_>();
pos_of_read_buffer_end_in_py_file = py_pos;
pos_of_write_buffer_end_in_py_file = py_pos;
}
@ -170,6 +102,7 @@ class python_streambuf : public std::basic_streambuf<char>
member function readsome to work correctly (c.f. 27.6.1.3, alinea 30)
*/
virtual std::streamsize showmanyc() {
std::cout << "showmanyc" << std::endl;
int_type const failure = traits_type::eof();
int_type status = underflow();
if (status == failure) return -1;
@ -178,15 +111,16 @@ class python_streambuf : public std::basic_streambuf<char>
/// C.f. C++ standard section 27.5.2.4.3
virtual int_type underflow() {
std::cout << "underflow" << std::endl;
int_type const failure = traits_type::eof();
if (py_read == nullptr) {
if (py_read.is_none()) {
throw std::invalid_argument(
"That Python file object has no 'read' attribute");
}
read_buffer = PyObject_CallFunction(py_read, "i", buffer_size);
read_buffer = py_read(buffer_size).cast<pybind11::bytes>();
char *read_buffer_data = nullptr;
Py_ssize_t py_n_read = 0;
if (PyBytes_AsStringAndSize(read_buffer, &read_buffer_data, &py_n_read) == -1) {
if (PyBytes_AsStringAndSize(read_buffer.ptr(), &read_buffer_data, &py_n_read) == -1) {
setg(0, 0, 0);
throw std::invalid_argument(
"The method 'read' of the Python file object "
@ -202,17 +136,18 @@ class python_streambuf : public std::basic_streambuf<char>
/// C.f. C++ standard section 27.5.2.4.5
virtual int_type overflow(int_type c=traits_type_eof()) {
if (py_write == nullptr) {
std::cout << "overflow" << std::endl;
if (py_write.is_none()) {
throw std::invalid_argument(
"That Python file object has no 'write' attribute");
}
farthest_pptr = std::max(farthest_pptr, pptr());
auto n_written = (off_type)(farthest_pptr - pbase());
auto chunk = PyBytes_FromStringAndSize(pbase(), farthest_pptr - pbase());
PyObject_CallFunction(py_write, "O", chunk);
py_write(chunk);
if (!traits_type::eq_int_type(c, traits_type::eof())) {
auto ch = traits_type::to_char_type(c);
PyObject_CallFunction(py_write, "y#", reinterpret_cast<char *>(&ch), 1);
auto ch = traits_type::to_char_type(c);
py_write(reinterpret_cast<char *>(&ch), 1);
n_written++;
}
if (n_written) {
@ -233,21 +168,22 @@ class python_streambuf : public std::basic_streambuf<char>
seek position in that read buffer.
*/
virtual int sync() {
std::cout << "sync" << std::endl;
int result = 0;
farthest_pptr = std::max(farthest_pptr, pptr());
if (farthest_pptr && farthest_pptr > pbase()) {
off_type delta = pptr() - farthest_pptr;
int_type status = overflow();
if (traits_type::eq_int_type(status, traits_type::eof())) result = -1;
if (py_seek != nullptr)
if (!py_seek.is_none())
{
PyObject_CallFunction(py_seek, "i", delta);
py_seek(delta);
}
}
else if (gptr() && gptr() < egptr()) {
if (py_seek != nullptr)
if (!py_seek.is_none())
{
PyObject_CallFunction(py_seek, "ii", gptr() - egptr(), 1);
py_seek(gptr() - egptr(), 1);
}
}
return result;
@ -265,6 +201,7 @@ class python_streambuf : public std::basic_streambuf<char>
std::ios_base::openmode which= std::ios_base::in
| std::ios_base::out)
{
std::cout << "seekoff" << std::endl;
/* In practice, "which" is either std::ios_base::in or out
since we end up here because either seekp or seekg was called
on the stream using this buffer. That simplifies the code
@ -272,7 +209,7 @@ class python_streambuf : public std::basic_streambuf<char>
*/
int const failure = off_type(-1);
if (py_seek == nullptr) {
if (py_seek.is_none()) {
throw std::invalid_argument(
"That Python file object has no 'seek' attribute");
}
@ -301,20 +238,19 @@ class python_streambuf : public std::basic_streambuf<char>
}
// Let's have a go
boost::optional<off_type> result = seekoff_without_calling_python(
off, way, which);
if (!result) {
auto result = seekoff_without_calling_python(off, way, which);
if (!result.second) {
// we need to call Python
if (which == std::ios_base::out) overflow();
if (way == std::ios_base::cur) {
if (which == std::ios_base::in) off -= egptr() - gptr();
else if (which == std::ios_base::out) off += pptr() - pbase();
}
PyObject_CallFunction(py_seek, "ii", off, whence);
result = extract_int<off_type>(PyObject_CallFunction(py_tell, nullptr));
py_seek(off, whence);
result.first = py_tell().cast<pybind11::int_>();
if (which == std::ios_base::in) underflow();
}
return *result;
return result.first;
}
/// C.f. C++ standard section 27.5.2.4.2
@ -323,14 +259,15 @@ class python_streambuf : public std::basic_streambuf<char>
std::ios_base::openmode which= std::ios_base::in
| std::ios_base::out)
{
std::cout << "seekpos" << std::endl;
return python_streambuf::seekoff(sp, std::ios_base::beg, which);
}
private:
PyObject *py_read = nullptr;
PyObject *py_write = nullptr;
PyObject *py_seek = nullptr;
PyObject *py_tell = nullptr;
pybind11::function py_read;
pybind11::function py_write;
pybind11::function py_seek;
pybind11::function py_tell;
std::size_t buffer_size;
@ -339,7 +276,7 @@ class python_streambuf : public std::basic_streambuf<char>
object so as to hold on it: as a result, the actual buffer can't
go away.
*/
PyObject *read_buffer = nullptr;
pybind11::bytes read_buffer;
/* A mere array of char's allocated on the heap at construction time and
de-allocated only at destruction time.
@ -353,12 +290,12 @@ class python_streambuf : public std::basic_streambuf<char>
char *farthest_pptr = nullptr;
boost::optional<off_type> seekoff_without_calling_python(
std::pair<off_type, bool> seekoff_without_calling_python(
off_type off,
std::ios_base::seekdir way,
std::ios_base::openmode which)
{
boost::optional<off_type> const failure;
const auto failure = std::make_pair<off_type, bool>(off_type(), false);
// Buffer range and current position
off_type buf_begin, buf_end, buf_cur, upper_bound;
@ -403,17 +340,8 @@ class python_streambuf : public std::basic_streambuf<char>
// we are in wonderland
if (which == std::ios_base::in) gbump(static_cast<int>(buf_sought - buf_cur));
else if (which == std::ios_base::out) pbump(static_cast<int>(buf_sought - buf_cur));
return pos_of_buffer_end_in_py_file + (buf_sought - buf_end);
return std::make_pair<off_type, bool>(pos_of_buffer_end_in_py_file + (buf_sought - buf_end), true);
}
template<typename T>
T extract_int(PyObject *o)
{
auto value = PyLong_AsLong(o);
Py_DECREF(o);
return static_cast<T>(value);
}
};
std::size_t python_streambuf::default_buffer_size = 1024;

View File

@ -1,94 +0,0 @@
import os
import sys
from distutils.core import setup, Extension
from distutils import sysconfig
description = """
xlntpyarrow allows Apache Arrow tables to be written to and read from an XLSX
file efficiently using the C++ library xlnt.
""".strip()
cfg_vars = sysconfig.get_config_vars()
if 'CFLAGS' in cfg_vars:
cfg_vars['CFLAGS'] = cfg_vars['CFLAGS'].replace('-Wstrict-prototypes', '')
project_root = '${CMAKE_SOURCE_DIR}'
conda_root = '${CONDA_ROOT}'
xlntlib = None
for arg in sys.argv:
if arg[:2] == '--' and arg.split('=')[0][2:] == 'xlntlib':
xlntlib = arg.split('=')[1]
sys.argv.remove(arg)
break
include_dirs = [
os.path.join(project_root, 'include'),
os.path.join(project_root, 'source'),
os.path.join(project_root, 'xlntpyarrow'),
os.path.join(conda_root, 'include')
]
library_dir = 'lib'
if os.name == 'nt':
library_dir = 'Lib/site-packages'
library_dirs = [
os.path.dirname(xlntlib),
os.path.join(conda_root, 'lib')
]
compile_args = '${CMAKE_CXX_FLAGS}'.split()
xlntpyarrow_extension = Extension(
'xlntpyarrow',
['${CMAKE_CURRENT_SOURCE_DIR}/xlntpyarrow.cpp', '${CMAKE_CURRENT_SOURCE_DIR}/methods.cpp'],
language = 'c++',
include_dirs = include_dirs,
libraries = [
'arrow',
'arrow_python',
'xlnt'
],
library_dirs = library_dirs,
extra_compile_args = compile_args
)
classifiers = [
'Development Status :: 5 - Production/Stable',
'Environment :: Plugins',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: MIT License',
'Natural Language :: English',
'Operating System :: Microsoft :: Windows',
'Operating System :: MacOS :: MacOS X',
'Operating System :: POSIX :: Linux',
'Programming Language :: C',
'Programming Language :: C++',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: Implementation :: CPython',
'Topic :: Database',
'Topic :: Office/Business :: Financial :: Spreadsheet',
'Topic :: Scientific/Engineering :: Information Analysis',
'Topic :: Software Development :: Libraries :: Python Modules'
]
data_files = []
if xlntlib:
data_files.append((library_dir, [os.path.relpath(xlntlib).replace('\\', '/')]))
setup(
name = 'xlntpyarrow',
version = '1.1.0',
classifiers = classifiers,
description = description,
ext_modules = [xlntpyarrow_extension],
author = 'Thomas Fussell',
author_email = 'thomas.fussell@gmail.com',
url = 'https://github.com/tfussell/xlnt',
data_files = data_files
)

68
xlntpyarrow/test.py Normal file
View File

@ -0,0 +1,68 @@
import pyarrow as pa
import xlntpyarrow as xpa
print(xpa)
COLUMN_TYPE_FIELD = {
xpa.Cell.Type.Number: pa.float64,
xpa.Cell.Type.SharedString: pa.string,
xpa.Cell.Type.InlineString: pa.string,
xpa.Cell.Type.FormulaString: pa.string,
xpa.Cell.Type.Error: pa.string,
xpa.Cell.Type.Boolean: pa.bool_,
xpa.Cell.Type.Date: pa.date32,
xpa.Cell.Type.Empty: pa.string,
}
def xlsx2arrow(io, sheetname):
reader = xpa.StreamingWorkbookReader()
reader.open(io)
print('after open')
print('before titles')
sheet_titles = reader.sheet_titles()
print('after titles', sheet_titles)
sheet_title = sheet_titles[0]
if sheetname is not None:
if isinstance(sheetname, int):
sheet_title = sheet_titles[sheetname]
elif isinstance(sheetname, str):
sheet_title = sheetname
print('before begin', sheet_title)
reader.begin_worksheet(sheet_title)
print('after begin', sheet_title)
column_names = []
fields = []
batches = []
while reader.has_cell():
print('read_cell')
cell = reader.read_cell()
type = cell.data_type()
if cell.row() == 1:
column_names.push_back(cell.value_string())
continue
elif cell.row() == 2:
column_name = column_names[cell.column() - 1]
fields.append(pa.Field(column_name, COLUMN_TYPE_FIELD[type]()))
continue
elif schema is None:
schema = pa.schema(fields)
batch = xpa.read_batch(schema, 0)
print(batch)
batches.append(batch)
break
reader.end_worksheet()
return pa.Table.from_batches(batches)
if __name__ == '__main__':
file = open('tmp.xlsx', 'rb')
print(xlsx2arrow(file, 'Sheet1'))

View File

@ -21,63 +21,328 @@
// @license: http://www.opensource.org/licenses/mit-license.php
// @author: see AUTHORS file
#include <Python.h>
#include <methods.hpp>
#include <arrow/api.h>
#include <arrow/python/pyarrow.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <xlnt/xlnt.hpp>
#include <xlnt/workbook/streaming_workbook_reader.hpp>
#include <python_streambuf.hpp>
extern "C" {
PyDoc_STRVAR(xlntpyarrow_xlsx2arrow_doc, "xlsx2arrow(in_file)\
\
Returns an arrow table representing the given XLSX file object.");
PyDoc_STRVAR(xlntpyarrow_arrow2xlsx_doc, "arrow2xlsx(table, out_file)\
\
Writes the given arrow table to out_file as an XLSX file.");
// 2.7/3 compatible based on https://docs.python.org/3/howto/cporting.html
static PyMethodDef xlntpyarrow_methods[] =
void import_pyarrow()
{
{ "xlsx2arrow", (PyCFunction)xlntpyarrow_xlsx2arrow,
METH_VARARGS | METH_KEYWORDS, xlntpyarrow_xlsx2arrow_doc },
{ "arrow2xlsx", (PyCFunction)xlntpyarrow_arrow2xlsx,
METH_VARARGS | METH_KEYWORDS, xlntpyarrow_arrow2xlsx_doc },
{ nullptr, nullptr, 0, nullptr }
};
static auto imported = false;
#if PY_MAJOR_VERSION >= 3
if (!imported)
{
if (arrow::py::import_pyarrow() != 0)
{
throw std::exception("Import of pyarrow failed.");
}
PyDoc_STRVAR(xlntpyarrow_doc, "The xlntpyarrow module");
static PyModuleDef xlntpyarrow_def =
{
PyModuleDef_HEAD_INIT, // m_base
"xlntpyarrow", // m_name
xlntpyarrow_doc, // m_doc
0, // m_size
xlntpyarrow_methods, // m_methods
nullptr, // m_slots
nullptr, // m_traverse
nullptr, // m_clear
nullptr, // m_free
};
PyMODINIT_FUNC
PyInit_xlntpyarrow(void)
#else
void
initxlntpyarrow(void)
#endif
{
PyObject *module = nullptr;
#if PY_MAJOR_VERSION >= 3
module = PyModule_Create(&xlntpyarrow_def);
return module;
#else
module = Py_InitModule("xlntpyarrow", xlntpyarrow_methods);
return;
#endif
imported = true;
}
}
} // extern "C"
std::vector<arrow::Type::type> extract_schema_types(std::shared_ptr<arrow::Schema> &schema)
{
auto types = std::vector<arrow::Type::type>();
for (auto i = 0; i < schema->num_fields(); ++i)
{
types.push_back(schema->field(i)->type()->id());
}
return types;
}
std::unique_ptr<arrow::ArrayBuilder> make_array_builder(arrow::Type::type type)
{
std::unique_ptr<arrow::ArrayBuilder> builder;
auto pool = arrow::default_memory_pool();
switch (type)
{
case arrow::Type::NA:
break;
case arrow::Type::BOOL:
builder.reset(new arrow::BooleanBuilder(pool));
break;
case arrow::Type::UINT8:
break;
case arrow::Type::INT8:
break;
case arrow::Type::UINT16:
break;
case arrow::Type::INT16:
break;
case arrow::Type::UINT32:
break;
case arrow::Type::INT32:
break;
case arrow::Type::UINT64:
break;
case arrow::Type::INT64:
break;
case arrow::Type::HALF_FLOAT:
break;
case arrow::Type::FLOAT:
break;
case arrow::Type::DOUBLE:
builder.reset(new arrow::DoubleBuilder(pool));
break;
case arrow::Type::STRING:
builder.reset(new arrow::StringBuilder(pool));
break;
case arrow::Type::BINARY:
break;
case arrow::Type::FIXED_SIZE_BINARY:
break;
case arrow::Type::DATE32:
builder.reset(new arrow::Date32Builder(pool));
break;
case arrow::Type::DATE64:
break;
case arrow::Type::TIMESTAMP:
break;
case arrow::Type::TIME32:
break;
case arrow::Type::TIME64:
break;
case arrow::Type::INTERVAL:
break;
case arrow::Type::DECIMAL:
break;
case arrow::Type::LIST:
break;
case arrow::Type::STRUCT:
break;
case arrow::Type::UNION:
break;
case arrow::Type::DICTIONARY:
break;
}
return builder;
}
void open_file(xlnt::streaming_workbook_reader &reader, pybind11::object file)
{
xlnt::python_streambuf buffer(file);
std::istream stream(&buffer);
reader.open(stream);
}
pybind11::handle read_batch(xlnt::streaming_workbook_reader &reader,
pybind11::object pyschema, int max_rows)
{
import_pyarrow();
std::shared_ptr<arrow::Schema> schema;
arrow::py::unwrap_schema(pyschema.ptr(), &schema);
std::cout << "1" << std::endl;
auto column_types = extract_schema_types(schema);
auto builders = std::vector<std::shared_ptr<arrow::ArrayBuilder>>();
auto num_rows = std::int64_t(0);
std::cout << "2" << std::endl;
for (auto type : column_types)
{
builders.push_back(make_array_builder(type));
}
std::cout << "3" << std::endl;
for (auto row = 0; row < max_rows; ++row)
{
if (!reader.has_cell()) break;
std::cout << "4" << std::endl;
for (auto column = 0; column < schema->num_fields(); ++column)
{
if (!reader.has_cell()) break;
std::cout << "5" << std::endl;
auto cell = reader.read_cell();
/*
auto column_type = column_types.at(column);
auto builder = builders.at(cell.column().index - 1).get();
switch (column_type)
{
case arrow::Type::NA:
break;
case arrow::Type::BOOL:
static_cast<arrow::BooleanBuilder *>(builder)->Append(cell.value<bool>());
break;
case arrow::Type::UINT8:
break;
case arrow::Type::INT8:
break;
case arrow::Type::UINT16:
break;
case arrow::Type::INT16:
break;
case arrow::Type::UINT32:
break;
case arrow::Type::INT32:
break;
case arrow::Type::UINT64:
break;
case arrow::Type::INT64:
break;
case arrow::Type::HALF_FLOAT:
break;
case arrow::Type::FLOAT:
break;
case arrow::Type::DOUBLE:
static_cast<arrow::DoubleBuilder *>(builder)->Append(cell.value<long double>());
break;
case arrow::Type::STRING:
static_cast<arrow::StringBuilder *>(builder)->Append(cell.value<std::string>());
break;
case arrow::Type::BINARY:
break;
case arrow::Type::FIXED_SIZE_BINARY:
break;
case arrow::Type::DATE32:
static_cast<arrow::Date32Builder *>(builder)->Append(cell.value<int>());
break;
case arrow::Type::DATE64:
break;
case arrow::Type::TIMESTAMP:
break;
case arrow::Type::TIME32:
break;
case arrow::Type::TIME64:
break;
case arrow::Type::INTERVAL:
break;
case arrow::Type::DECIMAL:
break;
case arrow::Type::LIST:
break;
case arrow::Type::STRUCT:
break;
case arrow::Type::UNION:
break;
case arrow::Type::DICTIONARY:
break;
}
*/
}
++num_rows;
}
std::cout << "6" << std::endl;
auto columns = std::vector<std::shared_ptr<arrow::Array>>();
for (auto &builder : builders)
{
std::shared_ptr<arrow::Array> column;
builder->Finish(&column);
columns.emplace_back(column);
}
std::cout << "7" << std::endl;
auto batch_pointer = std::make_shared<arrow::RecordBatch>(schema, num_rows, columns);
auto batch_object = arrow::py::wrap_record_batch(batch_pointer);
auto batch_handle = pybind11::handle(batch_object); // don't need to incr. reference count, right?
std::cout << "8" << std::endl;
return batch_handle;
}
PYBIND11_MODULE(xlntpyarrow, m)
{
m.doc() = "streaming read/write interface for C++ XLSX library xlnt";
pybind11::class_<xlnt::streaming_workbook_reader>(m, "StreamingWorkbookReader")
.def(pybind11::init<>())
.def("has_cell", &xlnt::streaming_workbook_reader::has_cell)
.def("read_cell", &xlnt::streaming_workbook_reader::read_cell)
.def("has_worksheet", &xlnt::streaming_workbook_reader::has_worksheet)
.def("begin_worksheet", &xlnt::streaming_workbook_reader::begin_worksheet)
.def("end_worksheet", &xlnt::streaming_workbook_reader::end_worksheet)
.def("sheet_titles", &xlnt::streaming_workbook_reader::sheet_titles)
.def("open", &open_file)
.def("read_batch", &read_batch);
pybind11::class_<xlnt::cell> cell(m, "Cell");
cell.def("value_string", [](xlnt::cell cell)
{
return cell.value<std::string>();
});
pybind11::enum_<xlnt::cell::type>(cell, "Type")
.value("Empty", xlnt::cell::type::empty)
.value("Boolean", xlnt::cell::type::boolean)
.value("Date", xlnt::cell::type::date)
.value("Error", xlnt::cell::type::error)
.value("InlineString", xlnt::cell::type::inline_string)
.value("Number", xlnt::cell::type::number)
.value("SharedString", xlnt::cell::type::shared_string)
.value("FormulaString", xlnt::cell::type::formula_string);
}