xlnt/third-party/pole/pole.cpp

1191 lines
31 KiB
C++
Raw Normal View History

/* POLE - Portable C++ library to access OLE Storage
Copyright (C) 2002-2007 Ariya Hidayat (ariya@kde.org).
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cstring>
#include <fstream>
#include <iostream>
#include <list>
#include <string>
#include <vector>
#include <cassert>
#include "pole.h"
// enable to activate debugging output
// #define POLE_DEBUG
namespace POLE
{
} // namespace POLE
using namespace POLE;
static inline unsigned long readU16( const unsigned char* ptr )
{
return ptr[0]+(ptr[1]<<8);
}
static inline unsigned long readU32( const unsigned char* ptr )
{
return ptr[0]+(ptr[1]<<8)+(ptr[2]<<16)+(ptr[3]<<24);
}
static inline void writeU16( unsigned char* ptr, unsigned long data )
{
ptr[0] = (unsigned char)(data & 0xff);
ptr[1] = (unsigned char)((data >> 8) & 0xff);
}
static inline void writeU32( unsigned char* ptr, unsigned long data )
{
ptr[0] = (unsigned char)(data & 0xff);
ptr[1] = (unsigned char)((data >> 8) & 0xff);
ptr[2] = (unsigned char)((data >> 16) & 0xff);
ptr[3] = (unsigned char)((data >> 24) & 0xff);
}
static const unsigned char pole_magic[] =
{ 0xd0, 0xcf, 0x11, 0xe0, 0xa1, 0xb1, 0x1a, 0xe1 };
// =========== Header ==========
Header::Header():
b_shift( 9 ),
s_shift( 6 ),
num_bat( 0 ),
dirent_start( 0 ),
threshold( 4096 ),
sbat_start( 0 ),
num_sbat( 0 ),
mbat_start( 0 ),
num_mbat( 0 )
{
for( unsigned i = 0; i < 8; i++ )
id[i] = pole_magic[i];
for( unsigned i=0; i<109; i++ )
bb_blocks[i] = AllocTable::Avail;
}
bool Header::valid()
{
if( threshold != 4096 ) return false;
if( num_bat == 0 ) return false;
if( (num_bat > 109) && (num_bat > (num_mbat * 127) + 109)) return false;
if( (num_bat < 109) && (num_mbat != 0) ) return false;
if( s_shift > b_shift ) return false;
if( b_shift <= 6 ) return false;
if( b_shift >=31 ) return false;
return true;
}
void Header::load( const unsigned char* buffer )
{
b_shift = readU16( buffer + 0x1e );
s_shift = readU16( buffer + 0x20 );
num_bat = readU32( buffer + 0x2c );
dirent_start = readU32( buffer + 0x30 );
threshold = readU32( buffer + 0x38 );
sbat_start = readU32( buffer + 0x3c );
num_sbat = readU32( buffer + 0x40 );
mbat_start = readU32( buffer + 0x44 );
num_mbat = readU32( buffer + 0x48 );
for( unsigned i = 0; i < 8; i++ )
id[i] = buffer[i];
for( unsigned i=0; i<109; i++ )
bb_blocks[i] = readU32( buffer + 0x4C+i*4 );
}
void Header::save( unsigned char* buffer )
{
memset( buffer, 0, 0x4c );
memcpy( buffer, pole_magic, 8 ); // ole signature
writeU32( buffer + 8, 0 ); // unknown
writeU32( buffer + 12, 0 ); // unknown
writeU32( buffer + 16, 0 ); // unknown
writeU16( buffer + 24, 0x003e ); // revision ?
writeU16( buffer + 26, 3 ); // version ?
writeU16( buffer + 28, 0xfffe ); // unknown
writeU16( buffer + 0x1e, b_shift );
writeU16( buffer + 0x20, s_shift );
writeU32( buffer + 0x2c, num_bat );
writeU32( buffer + 0x30, dirent_start );
writeU32( buffer + 0x38, threshold );
writeU32( buffer + 0x3c, sbat_start );
writeU32( buffer + 0x40, num_sbat );
writeU32( buffer + 0x44, mbat_start );
writeU32( buffer + 0x48, num_mbat );
for( unsigned i=0; i<109; i++ )
writeU32( buffer + 0x4C+i*4, bb_blocks[i] );
}
void Header::debug()
{
std::cout << std::endl;
std::cout << "b_shift " << b_shift << std::endl;
std::cout << "s_shift " << s_shift << std::endl;
std::cout << "num_bat " << num_bat << std::endl;
std::cout << "dirent_start " << dirent_start << std::endl;
std::cout << "threshold " << threshold << std::endl;
std::cout << "sbat_start " << sbat_start << std::endl;
std::cout << "num_sbat " << num_sbat << std::endl;
std::cout << "mbat_start " << mbat_start << std::endl;
std::cout << "num_mbat " << num_mbat << std::endl;
unsigned s = (num_bat<=109) ? num_bat : 109;
std::cout << "bat blocks: ";
for( unsigned i = 0; i < s; i++ )
std::cout << bb_blocks[i] << " ";
std::cout << std::endl;
}
// =========== AllocTable ==========
const unsigned AllocTable::Avail = 0xffffffff;
const unsigned AllocTable::Eof = 0xfffffffe;
const unsigned AllocTable::Bat = 0xfffffffd;
const unsigned AllocTable::MetaBat = 0xfffffffc;
AllocTable::AllocTable(): blockSize( 4096 ), data()
{
// initial size
resize( 128 );
}
unsigned long AllocTable::count()
{
return data.size();
}
void AllocTable::resize( unsigned long newsize )
{
unsigned oldsize = data.size();
data.resize( newsize );
if( newsize > oldsize )
for( unsigned i = oldsize; i<newsize; i++ )
data[i] = Avail;
}
// make sure there're still free blocks
void AllocTable::preserve( unsigned long n )
{
std::vector<unsigned long> pre;
for( unsigned i=0; i < n; i++ )
pre.push_back( unused() );
}
unsigned long AllocTable::operator[]( unsigned long index )
{
unsigned long result;
result = data[index];
return result;
}
void AllocTable::set( unsigned long index, unsigned long value )
{
if( index >= count() ) resize( index + 1);
data[ index ] = value;
}
void AllocTable::setChain( std::vector<unsigned long> chain )
{
if( chain.size() )
{
for( unsigned i=0; i<chain.size()-1; i++ )
set( chain[i], chain[i+1] );
set( chain[ chain.size()-1 ], AllocTable::Eof );
}
}
// TODO: optimize this with better search
static bool already_exist(const std::vector<unsigned long>& chain,
unsigned long item)
{
for(unsigned i = 0; i < chain.size(); i++)
if(chain[i] == item) return true;
return false;
}
// follow
std::vector<unsigned long> AllocTable::follow( unsigned long start )
{
std::vector<unsigned long> chain;
if( start >= count() ) return chain;
unsigned long p = start;
while( p < count() )
{
if( p == (unsigned long)Eof ) break;
if( p == (unsigned long)Bat ) break;
if( p == (unsigned long)MetaBat ) break;
if( already_exist(chain, p) ) break;
chain.push_back(p);
if( data[p] >= count() ) break;
p = data[ p ];
}
return chain;
}
unsigned AllocTable::unused()
{
// find first available block
for( unsigned i = 0; i < data.size(); i++ )
if( data[i] == Avail )
return i;
// completely full, so enlarge the table
unsigned block = data.size();
resize( data.size()+10 );
return block;
}
void AllocTable::load( const unsigned char* buffer, unsigned len )
{
resize( len / 4 );
for( unsigned i = 0; i < count(); i++ )
set( i, readU32( buffer + i*4 ) );
}
// return space required to save this dirtree
unsigned AllocTable::size()
{
return count() * 4;
}
void AllocTable::save( unsigned char* buffer )
{
for( unsigned i = 0; i < count(); i++ )
writeU32( buffer + i*4, data[i] );
}
void AllocTable::debug()
{
std::cout << "block size " << data.size() << std::endl;
for( unsigned i=0; i< data.size(); i++ )
{
if( data[i] == Avail ) continue;
std::cout << i << ": ";
if( data[i] == Eof ) std::cout << "[eof]";
else if( data[i] == Bat ) std::cout << "[bat]";
else if( data[i] == MetaBat ) std::cout << "[metabat]";
else std::cout << data[i];
std::cout << std::endl;
}
}
// =========== DirTree ==========
const unsigned DirTree::End = 0xffffffff;
DirTree::DirTree(): entries()
{
clear();
}
void DirTree::clear()
{
// leave only root entry
entries.resize( 1 );
entries[0].valid = true;
entries[0].name = "Root Entry";
entries[0].dir = true;
entries[0].size = 0;
entries[0].start = End;
entries[0].prev = End;
entries[0].next = End;
entries[0].child = End;
}
unsigned DirTree::entryCount()
{
return entries.size();
}
DirEntry* DirTree::entry( unsigned index )
{
if( index >= entryCount() ) return (DirEntry*) 0;
return &entries[ index ];
}
int DirTree::indexOf( DirEntry* e )
{
for( unsigned i = 0; i < entryCount(); i++ )
if( entry( i ) == e ) return i;
return -1;
}
int DirTree::parent( unsigned index )
{
// brute-force, basically we iterate for each entries, find its children
// and check if one of the children is 'index'
for( unsigned j=0; j<entryCount(); j++ )
{
std::vector<unsigned> chi = children( j );
for( unsigned i=0; i<chi.size();i++ )
if( chi[i] == index )
return j;
}
return -1;
}
std::string DirTree::fullName( unsigned index )
{
// don't use root name ("Root Entry"), just give "/"
if( index == 0 ) return "/";
std::string result = entry( index )->name;
result.insert( 0, "/" );
int p = parent( index );
DirEntry * _entry = 0;
while( p > 0 )
{
_entry = entry( p );
if (_entry->dir && _entry->valid)
{
result.insert( 0, _entry->name);
result.insert( 0, "/" );
}
--p;
index = p;
if( index <= 0 ) break;
}
return result;
}
// given a fullname (e.g "/ObjectPool/_1020961869"), find the entry
// if not found and create is false, return 0
// if create is true, a new entry is returned
DirEntry* DirTree::entry( const std::string& name, bool create )
{
if( !name.length() ) return (DirEntry*)0;
// quick check for "/" (that's root)
if( name == "/" ) return entry( 0 );
// split the names, e.g "/ObjectPool/_1020961869" will become:
// "ObjectPool" and "_1020961869"
std::list<std::string> names;
std::string::size_type start = 0, end = 0;
if( name[0] == '/' ) start++;
while( start < name.length() )
{
end = name.find_first_of( '/', start );
if( end == std::string::npos ) end = name.length();
names.push_back( name.substr( start, end-start ) );
start = end+1;
}
// start from root
int index = 0 ;
// trace one by one
std::list<std::string>::iterator it;
for( it = names.begin(); it != names.end(); ++it )
{
// find among the children of index
std::vector<unsigned> chi = children( index );
unsigned child = 0;
for( unsigned i = 0; i < chi.size(); i++ )
{
DirEntry* ce = entry( chi[i] );
if( ce )
if( ce->valid && ( ce->name.length()>1 ) )
if( ce->name == *it )
child = chi[i];
}
// traverse to the child
if( child > 0 ) index = child;
else
{
// not found among children
if( !create ) return (DirEntry*)0;
// create a new entry
unsigned parent = index;
entries.push_back( DirEntry() );
index = entryCount()-1;
DirEntry* e = entry( index );
e->valid = true;
e->name = *it;
e->dir = false;
e->size = 0;
e->start = 0;
e->child = End;
e->prev = End;
e->next = entry(parent)->child;
entry(parent)->child = index;
}
}
return entry( index );
}
// helper function: recursively find siblings of index
void dirtree_find_siblings( DirTree* dirtree, std::vector<unsigned>& result,
unsigned index )
{
DirEntry* e = dirtree->entry( index );
if( !e ) return;
if( !e->valid ) return;
// prevent infinite loop
for( unsigned i = 0; i < result.size(); i++ )
if( result[i] == index ) return;
// add myself
result.push_back( index );
// visit previous sibling, don't go infinitely
unsigned prev = e->prev;
if( ( prev > 0 ) && ( prev < dirtree->entryCount() ) )
{
for( unsigned i = 0; i < result.size(); i++ )
if( result[i] == prev ) prev = 0;
if( prev ) dirtree_find_siblings( dirtree, result, prev );
}
// visit next sibling, don't go infinitely
unsigned next = e->next;
if( ( next > 0 ) && ( next < dirtree->entryCount() ) )
{
for( unsigned i = 0; i < result.size(); i++ )
if( result[i] == next ) next = 0;
if( next ) dirtree_find_siblings( dirtree, result, next );
}
}
std::vector<unsigned> DirTree::children( unsigned index )
{
std::vector<unsigned> result;
DirEntry* e = entry( index );
if( e ) if( e->valid && e->child < entryCount() )
dirtree_find_siblings( this, result, e->child );
return result;
}
void DirTree::load( unsigned char* buffer, unsigned size )
{
entries.clear();
for( unsigned i = 0; i < size/128; i++ )
{
unsigned p = i * 128;
// would be < 32 if first char in the name isn't printable
unsigned prefix = 32;
// parse name of this entry, which stored as Unicode 16-bit
std::string name;
int name_len = readU16( buffer + 0x40+p );
if( name_len > 64 ) name_len = 64;
for( int j=0; ( buffer[j+p]) && (j<name_len); j+= 2 )
name.append( 1, buffer[j+p] );
// first char isn't printable ? remove it...
if( buffer[p] < 32 )
{
prefix = buffer[0];
name.erase( 0,1 );
}
// 2 = file (aka stream), 1 = directory (aka storage), 5 = root
unsigned type = buffer[ 0x42 + p];
DirEntry e;
e.valid = true;
e.name = name;
e.start = readU32( buffer + 0x74+p );
e.size = readU32( buffer + 0x78+p );
e.prev = readU32( buffer + 0x44+p );
e.next = readU32( buffer + 0x48+p );
e.child = readU32( buffer + 0x4C+p );
e.dir = ( type!=2 );
// sanity checks
if( (type != 2) && (type != 1 ) && (type != 5 ) ) e.valid = false;
if( name_len < 1 ) e.valid = false;
entries.push_back( e );
}
}
// return space required to save this dirtree
unsigned DirTree::size()
{
return entryCount() * 128;
}
void DirTree::save( unsigned char* buffer )
{
memset( buffer, 0, size() );
// root is fixed as "Root Entry"
DirEntry* root = entry( 0 );
std::string name = "Root Entry";
for( unsigned j = 0; j < name.length(); j++ )
buffer[ j*2 ] = name[j];
writeU16( buffer + 0x40, name.length()*2 + 2 );
writeU32( buffer + 0x74, 0xffffffff );
writeU32( buffer + 0x78, 0 );
writeU32( buffer + 0x44, 0xffffffff );
writeU32( buffer + 0x48, 0xffffffff );
writeU32( buffer + 0x4c, root->child );
buffer[ 0x42 ] = 5;
buffer[ 0x43 ] = 1;
for( unsigned i = 1; i < entryCount(); i++ )
{
DirEntry* e = entry( i );
if( !e ) continue;
if( e->dir )
{
e->start = 0xffffffff;
e->size = 0;
}
// max length for name is 32 chars
std::string name = e->name;
if( name.length() > 32 )
name.erase( 32, name.length() );
// write name as Unicode 16-bit
for( unsigned j = 0; j < name.length(); j++ )
buffer[ i*128 + j*2 ] = name[j];
writeU16( buffer + i*128 + 0x40, name.length()*2 + 2 );
writeU32( buffer + i*128 + 0x74, e->start );
writeU32( buffer + i*128 + 0x78, e->size );
writeU32( buffer + i*128 + 0x44, e->prev );
writeU32( buffer + i*128 + 0x48, e->next );
writeU32( buffer + i*128 + 0x4c, e->child );
buffer[ i*128 + 0x42 ] = e->dir ? 1 : 2;
buffer[ i*128 + 0x43 ] = 1; // always black
}
}
void DirTree::debug()
{
for( unsigned i = 0; i < entryCount(); i++ )
{
DirEntry* e = entry( i );
if( !e ) continue;
std::cout << i << ": ";
if( !e->valid ) std::cout << "INVALID ";
std::cout << e->name << " ";
if( e->dir ) std::cout << "(Dir) ";
else std::cout << "(File) ";
std::cout << e->size << " ";
std::cout << "s:" << e->start << " ";
std::cout << "(";
if( e->child == End ) std::cout << "-"; else std::cout << e->child;
std::cout << " ";
if( e->prev == End ) std::cout << "-"; else std::cout << e->prev;
std::cout << ":";
if( e->next == End ) std::cout << "-"; else std::cout << e->next;
std::cout << ")";
std::cout << std::endl;
}
}
// =========== StorageIO ==========
StorageIO::StorageIO( Storage* st, char* bytes, unsigned long length ):
storage( st ),
filedata((unsigned char *)bytes),
dataLength(length),
result( Storage::Ok ),
opened( false ),
filesize( 0 ),
header( new Header() ),
dirtree( new DirTree() ),
bbat ( new AllocTable() ),
sbat ( new AllocTable() ),
sb_blocks(),
streams()
{
bbat->blockSize = 1 << header->b_shift;
sbat->blockSize = 1 << header->s_shift;
}
StorageIO::~StorageIO()
{
if( opened ) close();
delete sbat;
delete bbat;
delete dirtree;
delete header;
}
bool StorageIO::open()
{
// already opened ? close first
if( opened ) close();
load();
return result == Storage::Ok;
}
void StorageIO::load()
{
unsigned char* buffer = 0;
unsigned long buflen = 0;
std::vector<unsigned long> blocks;
// open the file, check for error
result = Storage::OpenFailed;
//FSTREAM file.open( filename.c_str(), std::ios::binary | std::ios::in );
//FSTREAM if( !file.good() ) return;
// find size of input file
//FSTREAM file.seekg( 0, std::ios::end );
//FSTREAM filesize = file.tellg();
filesize = dataLength;
// load header
buffer = new unsigned char[512];
//FSTREAM file.seekg( 0 );
//FSTREAM file.read( (char*)buffer, 512 );
memcpy(buffer, filedata, 512);
header->load( buffer );
delete[] buffer;
// check OLE magic id
result = Storage::NotOLE;
for( unsigned i=0; i<8; i++ )
if( header->id[i] != pole_magic[i] )
return;
// sanity checks
result = Storage::BadOLE;
if( !header->valid() ) return;
if( header->threshold != 4096 ) return;
// important block size
bbat->blockSize = 1 << header->b_shift;
sbat->blockSize = 1 << header->s_shift;
// find blocks allocated to store big bat
// the first 109 blocks are in header, the rest in meta bat
blocks.clear();
blocks.resize( header->num_bat );
for( unsigned i = 0; i < 109; i++ )
if( i >= header->num_bat ) break;
else blocks[i] = header->bb_blocks[i];
if( (header->num_bat > 109) && (header->num_mbat > 0) )
{
unsigned char* buffer2 = new unsigned char[ bbat->blockSize ];
memset(buffer2, 0, bbat->blockSize);
unsigned k = 109;
unsigned mblock = header->mbat_start;
for( unsigned r = 0; r < header->num_mbat; r++ )
{
loadBigBlock( mblock, buffer2, bbat->blockSize );
for( unsigned s=0; s < bbat->blockSize-4; s+=4 )
{
if( k >= header->num_bat ) break;
else blocks[k++] = readU32( buffer2 + s );
}
mblock = readU32( buffer2 + bbat->blockSize-4 );
}
delete[] buffer2;
}
// load big bat
buflen = blocks.size()*bbat->blockSize;
if( buflen > 0 )
{
buffer = new unsigned char[ buflen ];
memset(buffer, 0, buflen);
loadBigBlocks( blocks, buffer, buflen );
bbat->load( buffer, buflen );
delete[] buffer;
}
// load small bat
blocks.clear();
blocks = bbat->follow( header->sbat_start );
buflen = blocks.size()*bbat->blockSize;
if( buflen > 0 )
{
buffer = new unsigned char[ buflen ];
memset(buffer, 0, buflen);
loadBigBlocks( blocks, buffer, buflen );
sbat->load( buffer, buflen );
delete[] buffer;
}
// load directory tree
blocks.clear();
blocks = bbat->follow( header->dirent_start );
buflen = blocks.size()*bbat->blockSize;
buffer = new unsigned char[ buflen ];
memset(buffer, 0, buflen);
loadBigBlocks( blocks, buffer, buflen );
dirtree->load( buffer, buflen );
unsigned sb_start = readU32( buffer + 0x74 );
delete[] buffer;
// fetch block chain as data for small-files
sb_blocks = bbat->follow( sb_start ); // small files
// for troubleshooting, just enable this block
#if 0
header->debug();
sbat->debug();
bbat->debug();
dirtree->debug();
#endif
// so far so good
result = Storage::Ok;
opened = true;
}
void StorageIO::create()
{
// std::cout << "Creating " << filename << std::endl;
/*FSTREAM file.open( filename.c_str(), std::ios::out|std::ios::binary );
if( !file.good() )
{
std::cerr << "Can't create " << filename << std::endl;
result = Storage::OpenFailed;
return;
}*/
// so far so good
opened = true;
result = Storage::Ok;
}
void StorageIO::flush()
{
/* Note on Microsoft implementation:
- directory entries are stored in the last block(s)
- BATs are as second to the last
- Meta BATs are third to the last
*/
}
void StorageIO::close()
{
if( !opened ) return;
//FSTREAM file.close();
opened = false;
std::list<Stream*>::iterator it;
for( it = streams.begin(); it != streams.end(); ++it )
delete *it;
}
StreamIO* StorageIO::streamIO( const std::string& name )
{
// sanity check
if( !name.length() ) return (StreamIO*)0;
// search in the entries
DirEntry* entry = dirtree->entry( name );
//if( entry) std::cout << "FOUND\n";
if( !entry ) return (StreamIO*)0;
//if( !entry->dir ) std::cout << " NOT DIR\n";
if( entry->dir ) return (StreamIO*)0;
StreamIO* result = new StreamIO( this, entry );
result->fullName = name;
return result;
}
unsigned long StorageIO::loadBigBlocks( std::vector<unsigned long> blocks,
unsigned char* data, unsigned long maxlen )
{
// sentinel
if( !data ) return 0;
if( blocks.size() < 1 ) return 0;
if( maxlen == 0 ) return 0;
// read block one by one, seems fast enough
unsigned long bytes = 0;
for( unsigned long i=0; (i < blocks.size() ) && ( bytes<maxlen ); i++ )
{
unsigned long block = blocks[i];
unsigned long pos = bbat->blockSize * ( block+1 );
unsigned long p = (bbat->blockSize < maxlen-bytes) ? bbat->blockSize : maxlen-bytes;
if( pos + p > filesize ) p = filesize - pos;
//FSTREAM file.seekg( pos );
//FSTREAM file.read( (char*)data + bytes, p );
memcpy((char*)data + bytes, filedata + pos, p);
bytes += p;
}
return bytes;
}
unsigned long StorageIO::loadBigBlock( unsigned long block,
unsigned char* data, unsigned long maxlen )
{
// sentinel
if( !data ) return 0;
// wraps call for loadBigBlocks
std::vector<unsigned long> blocks;
blocks.resize( 1 );
blocks[ 0 ] = block;
return loadBigBlocks( blocks, data, maxlen );
}
// return number of bytes which has been read
unsigned long StorageIO::loadSmallBlocks( std::vector<unsigned long> blocks,
unsigned char* data, unsigned long maxlen )
{
// sentinel
if( !data ) return 0;
if( blocks.size() < 1 ) return 0;
if( maxlen == 0 ) return 0;
// our own local buffer
unsigned char* buf = new unsigned char[ bbat->blockSize ];
// read small block one by one
unsigned long bytes = 0;
for( unsigned long i=0; ( i<blocks.size() ) && ( bytes<maxlen ); i++ )
{
unsigned long block = blocks[i];
// find where the small-block exactly is
unsigned long pos = block * sbat->blockSize;
unsigned long bbindex = pos / bbat->blockSize;
if( bbindex >= sb_blocks.size() ) break;
loadBigBlock( sb_blocks[ bbindex ], buf, bbat->blockSize );
// copy the data
unsigned offset = pos % bbat->blockSize;
unsigned long p = (maxlen-bytes < bbat->blockSize-offset ) ? maxlen-bytes : bbat->blockSize-offset;
p = (sbat->blockSize<p ) ? sbat->blockSize : p;
memcpy( data + bytes, buf + offset, p );
bytes += p;
}
delete[] buf;
return bytes;
}
unsigned long StorageIO::loadSmallBlock( unsigned long block,
unsigned char* data, unsigned long maxlen )
{
// sentinel
if( !data ) return 0;
// wraps call for loadSmallBlocks
std::vector<unsigned long> blocks;
blocks.resize( 1 );
blocks.assign( 1, block );
return loadSmallBlocks( blocks, data, maxlen );
}
// =========== StreamIO ==========
StreamIO::StreamIO( StorageIO* s, DirEntry* e ):
io( s ),
entry( e ),
fullName(),
eof( false ),
fail( false ),
blocks(),
m_pos( 0 ),
cache_data( 0 ),
cache_size( 4096 ), // optimal ?
cache_pos( 0 )
{
if( entry->size >= io->header->threshold )
blocks = io->bbat->follow( entry->start );
else
blocks = io->sbat->follow( entry->start );
// prepare cache
cache_data = new unsigned char[cache_size];
updateCache();
}
// FIXME tell parent we're gone
StreamIO::~StreamIO()
{
delete[] cache_data;
}
void StreamIO::seek( unsigned long pos )
{
m_pos = pos;
}
unsigned long StreamIO::tell()
{
return m_pos;
}
int StreamIO::getch()
{
// past end-of-file ?
if( m_pos > entry->size ) return -1;
// need to update cache ?
if( !cache_size || ( m_pos < cache_pos ) ||
( m_pos >= cache_pos + cache_size ) )
updateCache();
// something bad if we don't get good cache
if( !cache_size ) return -1;
int data = cache_data[m_pos - cache_pos];
m_pos++;
return data;
}
unsigned long StreamIO::read( unsigned long pos, unsigned char* data, unsigned long maxlen )
{
// sanity checks
if( !data ) return 0;
if( maxlen == 0 ) return 0;
unsigned long totalbytes = 0;
if ( entry->size < io->header->threshold )
{
// small file
unsigned long index = pos / io->sbat->blockSize;
if( index >= blocks.size() ) return 0;
unsigned char* buf = new unsigned char[ io->sbat->blockSize ];
unsigned long offset = pos % io->sbat->blockSize;
while( totalbytes < maxlen )
{
if( index >= blocks.size() ) break;
io->loadSmallBlock( blocks[index], buf, io->bbat->blockSize );
unsigned long count = io->sbat->blockSize - offset;
if( count > maxlen-totalbytes ) count = maxlen-totalbytes;
memcpy( data+totalbytes, buf + offset, count );
totalbytes += count;
offset = 0;
index++;
}
delete[] buf;
}
else
{
// big file
unsigned long index = pos / io->bbat->blockSize;
if( index >= blocks.size() ) return 0;
unsigned char* buf = new unsigned char[ io->bbat->blockSize ];
unsigned long offset = pos % io->bbat->blockSize;
while( totalbytes < maxlen )
{
if( index >= blocks.size() ) break;
io->loadBigBlock( blocks[index], buf, io->bbat->blockSize );
unsigned long count = io->bbat->blockSize - offset;
if( count > maxlen-totalbytes ) count = maxlen-totalbytes;
memcpy( data+totalbytes, buf + offset, count );
totalbytes += count;
index++;
offset = 0;
}
delete [] buf;
}
return totalbytes;
}
unsigned long StreamIO::read( unsigned char* data, unsigned long maxlen )
{
unsigned long bytes = read( tell(), data, maxlen );
m_pos += bytes;
return bytes;
}
void StreamIO::updateCache()
{
// sanity check
if( !cache_data ) return;
cache_pos = m_pos - ( m_pos % cache_size );
unsigned long bytes = cache_size;
if( cache_pos + bytes > entry->size ) bytes = entry->size - cache_pos;
cache_size = read( cache_pos, cache_data, bytes );
}
// =========== Storage ==========
Storage::Storage( char* bytes, unsigned long length ):
io( new StorageIO( this, bytes, length ) )
{
}
Storage::~Storage()
{
delete io;
}
int Storage::result()
{
return io->result;
}
bool Storage::open()
{
return io->open();
}
void Storage::close()
{
io->close();
}
std::list<std::string> Storage::entries( const std::string& path )
{
std::list<std::string> result;
DirTree* dt = io->dirtree;
DirEntry* e = dt->entry( path, false );
if( e && e->dir )
{
unsigned parent = dt->indexOf( e );
std::vector<unsigned> children = dt->children( parent );
for( unsigned i = 0; i < children.size(); i++ )
result.push_back( dt->entry( children[i] )->name );
}
return result;
}
bool Storage::isDirectory( const std::string& name )
{
DirEntry* e = io->dirtree->entry( name, false );
return e ? e->dir : false;
}
DirTree* Storage::dirTree()
{
return io->dirtree;
}
StorageIO* Storage::storageIO()
{
return io;
}
std::list<DirEntry*> Storage::dirEntries( const std::string& path )
{
std::list<DirEntry*> result;
DirTree* dt = io->dirtree;
DirEntry* e = dt->entry( path, false );
if( e && e->dir )
{
unsigned parent = dt->indexOf( e );
std::vector<unsigned> children = dt->children( parent );
for( unsigned i = 0; i < children.size(); i++ )
result.push_back( dt->entry( children[i] ) );
}
return result;
}
// =========== Stream ==========
Stream::Stream( Storage* storage, const std::string& name ):
io( storage->io->streamIO( name ) )
{
}
// FIXME tell parent we're gone
Stream::~Stream()
{
delete io;
}
std::string Stream::fullName()
{
return io ? io->fullName : std::string();
}
unsigned long Stream::tell()
{
return io ? io->tell() : 0;
}
void Stream::seek( unsigned long newpos )
{
if( io ) io->seek( newpos );
}
unsigned long Stream::size()
{
return io ? io->entry->size : 0;
}
int Stream::getch()
{
return io ? io->getch() : 0;
}
unsigned long Stream::read( unsigned char* data, unsigned long maxlen )
{
return io ? io->read( data, maxlen ) : 0;
}
bool Stream::eof()
{
return io ? io->eof : false;
}
bool Stream::fail()
{
return io ? io->fail : true;
}