xlnt/source/detail/cryptography/encryption_info.cpp

182 lines
6.5 KiB
C++
Raw Normal View History

2018-01-22 09:38:48 -05:00
// Copyright (c) 2017-2018 Thomas Fussell
2017-04-21 19:52:02 -04:00
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, WRISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE
//
// @license: http://www.opensource.org/licenses/mit-license.php
// @author: see AUTHORS file
#include <array>
2017-04-23 18:18:35 -04:00
#include <detail/binary.hpp>
2017-04-21 19:52:02 -04:00
#include <detail/cryptography/aes.hpp>
#include <detail/cryptography/encryption_info.hpp>
namespace {
using xlnt::detail::encryption_info;
std::vector<std::uint8_t> calculate_standard_key(
encryption_info::standard_encryption_info info,
const std::u16string &password)
{
// H_0 = H(salt + password)
auto salt_plus_password = info.salt;
2017-04-23 18:18:35 -04:00
auto password_bytes = xlnt::detail::string_to_bytes(password);
2017-04-21 19:52:02 -04:00
std::copy(password_bytes.begin(),
password_bytes.end(),
std::back_inserter(salt_plus_password));
auto h_0 = hash(info.hash, salt_plus_password);
// H_n = H(iterator + H_n-1)
std::vector<std::uint8_t> iterator_plus_h_n(4, 0);
iterator_plus_h_n.insert(iterator_plus_h_n.end(), h_0.begin(), h_0.end());
std::uint32_t &iterator = *reinterpret_cast<std::uint32_t *>(iterator_plus_h_n.data());
std::vector<std::uint8_t> h_n;
for (iterator = 0; iterator < info.spin_count; ++iterator)
{
hash(info.hash, iterator_plus_h_n, h_n);
std::copy(h_n.begin(), h_n.end(), iterator_plus_h_n.begin() + 4);
}
// H_final = H(H_n + block)
auto h_n_plus_block = h_n;
const std::uint32_t block_number = 0;
h_n_plus_block.insert(
h_n_plus_block.end(),
reinterpret_cast<const std::uint8_t *>(&block_number),
reinterpret_cast<const std::uint8_t *>(&block_number) + sizeof(std::uint32_t));
auto h_final = hash(info.hash, h_n_plus_block);
// X1 = H(h_final ^ 0x36)
std::vector<std::uint8_t> buffer(64, 0x36);
for (std::size_t i = 0; i < h_final.size(); ++i)
{
buffer[i] = static_cast<std::uint8_t>(0x36 ^ h_final[i]);
}
auto X1 = hash(info.hash, buffer);
// X2 = H(h_final ^ 0x5C)
buffer.assign(64, 0x5c);
for (std::size_t i = 0; i < h_final.size(); ++i)
{
buffer[i] = static_cast<std::uint8_t>(0x5c ^ h_final[i]);
}
auto X2 = hash(info.hash, buffer);
auto X3 = X1;
X3.insert(X3.end(), X2.begin(), X2.end());
auto key = std::vector<std::uint8_t>(X3.begin(),
X3.begin() + static_cast<std::ptrdiff_t>(info.key_bytes));
using xlnt::detail::aes_ecb_decrypt;
auto calculated_verifier_hash = hash(info.hash,
aes_ecb_decrypt(info.encrypted_verifier, key));
2017-04-21 19:52:02 -04:00
auto decrypted_verifier_hash = aes_ecb_decrypt(
info.encrypted_verifier_hash, key);
decrypted_verifier_hash.resize(calculated_verifier_hash.size());
2017-04-21 19:52:02 -04:00
if (calculated_verifier_hash != decrypted_verifier_hash)
{
throw xlnt::exception("bad password");
}
return key;
}
std::vector<std::uint8_t> calculate_agile_key(
encryption_info::agile_encryption_info info,
const std::u16string &password)
{
// H_0 = H(salt + password)
auto salt_plus_password = info.key_encryptor.salt_value;
2017-04-23 18:18:35 -04:00
auto password_bytes = xlnt::detail::string_to_bytes(password);
2017-04-21 19:52:02 -04:00
std::copy(password_bytes.begin(),
password_bytes.end(),
std::back_inserter(salt_plus_password));
auto h_0 = hash(info.key_encryptor.hash, salt_plus_password);
// H_n = H(iterator + H_n-1)
std::vector<std::uint8_t> iterator_plus_h_n(4, 0);
iterator_plus_h_n.insert(iterator_plus_h_n.end(), h_0.begin(), h_0.end());
std::uint32_t &iterator = *reinterpret_cast<std::uint32_t *>(iterator_plus_h_n.data());
std::vector<std::uint8_t> h_n;
for (iterator = 0; iterator < info.key_encryptor.spin_count; ++iterator)
{
hash(info.key_encryptor.hash, iterator_plus_h_n, h_n);
std::copy(h_n.begin(), h_n.end(), iterator_plus_h_n.begin() + 4);
}
static const std::size_t block_size = 8;
auto calculate_block = [&info](
const std::vector<std::uint8_t> &raw_key,
const std::array<std::uint8_t, block_size> &block,
const std::vector<std::uint8_t> &encrypted)
{
auto combined = raw_key;
combined.insert(combined.end(), block.begin(), block.end());
auto key = hash(info.key_encryptor.hash, combined);
key.resize(info.key_encryptor.key_bits / 8);
using xlnt::detail::aes_cbc_decrypt;
return aes_cbc_decrypt(encrypted, key, info.key_encryptor.salt_value);
};
const std::array<std::uint8_t, block_size> input_block_key = { { 0xfe, 0xa7, 0xd2, 0x76, 0x3b, 0x4b, 0x9e, 0x79 } };
auto hash_input = calculate_block(h_n, input_block_key, info.key_encryptor.verifier_hash_input);
auto calculated_verifier = hash(info.key_encryptor.hash, hash_input);
const std::array<std::uint8_t, block_size> verifier_block_key = {
{ 0xd7, 0xaa, 0x0f, 0x6d, 0x30, 0x61, 0x34, 0x4e } };
auto expected_verifier = calculate_block(h_n, verifier_block_key, info.key_encryptor.verifier_hash_value);
expected_verifier.resize(calculated_verifier.size());
if (calculated_verifier != expected_verifier)
{
throw xlnt::exception("bad password");
}
const std::array<std::uint8_t, block_size> key_value_block_key =
{
{ 0x14, 0x6e, 0x0b, 0xe7, 0xab, 0xac, 0xd0, 0xd6 }
};
return calculate_block(h_n, key_value_block_key, info.key_encryptor.encrypted_key_value);
}
} // namespace
namespace xlnt {
namespace detail {
std::vector<std::uint8_t> encryption_info::calculate_key() const
{
return is_agile
? calculate_agile_key(agile, password)
: calculate_standard_key(standard, password);
}
} // namespace detail
} // namespace xlnt