toxcore/testing/fuzzing/fuzz_support.h
iphydf 50f1b30fa9
test: Add fuzz tests to the coverage run.
So we don't need to write so many edge case tests ourselves for things
like parsers, which really don't need those manual tests, as long as we
can check for some properties like "can output the parsed data and it'll
be the same as the input".
2024-01-12 12:33:41 +00:00

270 lines
8.1 KiB
C++

/* SPDX-License-Identifier: GPL-3.0-or-later
* Copyright © 2021-2022 The TokTok team.
*/
#ifndef C_TOXCORE_TESTING_FUZZING_FUZZ_SUPPORT_H
#define C_TOXCORE_TESTING_FUZZING_FUZZ_SUPPORT_H
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <memory>
#include <unordered_map>
#include <utility>
#include <vector>
#include "../../toxcore/tox.h"
struct Fuzz_Data {
const uint8_t *data;
std::size_t size;
Fuzz_Data(const uint8_t *input_data, std::size_t input_size)
: data(input_data)
, size(input_size)
{
}
Fuzz_Data &operator=(const Fuzz_Data &rhs) = delete;
Fuzz_Data(const Fuzz_Data &rhs) = delete;
struct Consumer {
Fuzz_Data &fd;
template <typename T>
operator T()
{
const uint8_t *bytes = fd.consume(sizeof(T));
T val;
std::memcpy(&val, bytes, sizeof(T));
return val;
}
};
Consumer consume1() { return Consumer{*this}; }
const uint8_t *consume(std::size_t count)
{
const uint8_t *val = data;
data += count;
size -= count;
return val;
}
};
/** @brief Consumes 1 byte of the fuzzer input or returns if no data available.
*
* This advances the fuzzer input data by 1 byte and consumes that byte in the
* declaration.
*
* @example
* @code
* CONSUME1_OR_RETURN(const uint8_t one_byte, input);
* @endcode
*/
#define CONSUME1_OR_RETURN(DECL, INPUT) \
if (INPUT.size < 1) { \
return; \
} \
DECL = INPUT.consume1()
/** @brief Consumes 1 byte of the fuzzer input or returns a value if no data
* available.
*
* This advances the fuzzer input data by 1 byte and consumes that byte in the
* declaration.
*
* @example
* @code
* CONSUME1_OR_RETURN_VAL(const uint8_t one_byte, input, nullptr);
* @endcode
*/
#define CONSUME1_OR_RETURN_VAL(DECL, INPUT, VAL) \
if (INPUT.size < 1) { \
return VAL; \
} \
DECL = INPUT.consume1()
/** @brief Consumes SIZE bytes of the fuzzer input or returns if not enough data available.
*
* This advances the fuzzer input data by SIZE byte and consumes those bytes in
* the declaration. If less than SIZE bytes are available in the fuzzer input,
* this macro returns from the enclosing function.
*
* @example
* @code
* CONSUME_OR_RETURN(const uint8_t *ten_bytes, input, 10);
* @endcode
*/
#define CONSUME_OR_RETURN(DECL, INPUT, SIZE) \
if (INPUT.size < SIZE) { \
return; \
} \
DECL = INPUT.consume(SIZE)
#define CONSUME_OR_RETURN_VAL(DECL, INPUT, SIZE, VAL) \
if (INPUT.size < SIZE) { \
return VAL; \
} \
DECL = INPUT.consume(SIZE)
inline void fuzz_select_target(uint8_t selector, Fuzz_Data &input)
{
// The selector selected no function, so we do nothing and rely on the
// fuzzer to come up with a better selector.
}
template <typename Arg, typename... Args>
void fuzz_select_target(uint8_t selector, Fuzz_Data &input, Arg &&fn, Args &&...args)
{
if (selector == sizeof...(Args)) {
return fn(input);
}
return fuzz_select_target(selector - 1, input, std::forward<Args>(args)...);
}
template <typename... Args>
void fuzz_select_target(const uint8_t *data, std::size_t size, Args &&...args)
{
Fuzz_Data input{data, size};
CONSUME1_OR_RETURN(uint8_t selector, input);
return fuzz_select_target(selector, input, std::forward<Args>(args)...);
}
struct Memory;
struct Network;
struct Random;
struct System {
std::unique_ptr<Tox_System> sys;
std::unique_ptr<Memory> mem;
std::unique_ptr<Network> ns;
std::unique_ptr<Random> rng;
System(std::unique_ptr<Tox_System> sys, std::unique_ptr<Memory> mem,
std::unique_ptr<Network> ns, std::unique_ptr<Random> rng);
System(System &&);
// Not inline because sizeof of the above 2 structs is not known everywhere.
~System();
/** @brief Deterministic system clock for this instance.
*
* Different instances can evolve independently. The time is initialised
* with a large number, because otherwise many zero-initialised "empty"
* friends inside toxcore will be "not timed out" for a long time, messing
* up some logic. Tox moderately depends on the clock being fairly high up
* (not close to 0).
*/
uint64_t clock = UINT32_MAX;
/**
* During bootstrap, move the time forward a decent amount, because friend
* finding and bootstrapping takes significant (around 10 seconds) wall
* clock time that should be advanced more quickly in the test.
*/
static constexpr uint8_t BOOTSTRAP_ITERATION_INTERVAL = 200;
/**
* Less than BOOTSTRAP_ITERATION_INTERVAL because otherwise we'll spam
* onion announce packets.
*/
static constexpr uint8_t MESSAGE_ITERATION_INTERVAL = 20;
/**
* Move the clock forward at least 20ms so at least some amount of
* time passes on each iteration.
*/
static constexpr uint8_t MIN_ITERATION_INTERVAL = 20;
};
/**
* A Tox_System implementation that consumes fuzzer input to produce network
* inputs and random numbers. Once it runs out of fuzzer input, network receive
* functions return no more data and the random numbers are always zero.
*/
struct Fuzz_System : System {
Fuzz_Data &data;
explicit Fuzz_System(Fuzz_Data &input);
};
/**
* A Tox_System implementation that consumes no fuzzer input but still has a
* working and deterministic RNG. Network receive functions always fail, send
* always succeeds.
*/
struct Null_System : System {
uint64_t seed = 4; // chosen by fair dice roll. guaranteed to be random.
Null_System();
};
/**
* A Tox_System implementation that records all I/O but does not actually
* perform any real I/O. Everything inside this system is hermetic in-process
* and fully deterministic.
*
* Note: take care not to initialise two systems with the same seed, since
* that's the only thing distinguishing the system's behaviour. Two toxes
* initialised with the same seed will be identical (same keys, etc.).
*/
struct Record_System : System {
/** @brief State shared between all tox instances. */
struct Global {
/** @brief Bound UDP ports and their system instance.
*
* This implements an in-process network where instances can send
* packets to other instances by inserting them into the receiver's
* recvq using the receive function.
*
* We need to keep track of ports associated with recv queues because
* toxcore sends packets to itself sometimes when doing onion routing
* with only 2 nodes in the network.
*/
std::unordered_map<uint16_t, Record_System *> bound;
};
Global &global_;
uint64_t seed_; //!< Current PRNG state.
const char *name_; //!< Tox system name ("tox1"/"tox2") for logging.
std::deque<std::pair<uint16_t, std::vector<uint8_t>>> recvq;
uint16_t port = 0; //!< Sending port for this system instance.
std::vector<uint8_t> recording;
explicit Record_System(Global &global, uint64_t seed, const char *name);
/** @brief Deposit a network packet in this instance's recvq.
*/
void receive(uint16_t send_port, const uint8_t *buf, size_t len);
};
/** @brief Enable debug logging.
*
* This should not be enabled in fuzzer code while fuzzing, as console I/O slows
* everything down drastically. It's useful while developing the fuzzer and the
* protodump program.
*/
extern const bool DEBUG;
inline constexpr char tox_log_level_name(Tox_Log_Level level)
{
switch (level) {
case TOX_LOG_LEVEL_TRACE:
return 'T';
case TOX_LOG_LEVEL_DEBUG:
return 'D';
case TOX_LOG_LEVEL_INFO:
return 'I';
case TOX_LOG_LEVEL_WARNING:
return 'W';
case TOX_LOG_LEVEL_ERROR:
return 'E';
}
return '?';
}
#endif // C_TOXCORE_TESTING_FUZZING_FUZZ_SUPPORT_H