toxcore/toxcore/network.c
iphydf ae1e20f4cd
Fix warning on Mac OS X and FreeBSD.
This currently fails the nightly build.
2018-02-25 10:29:29 +00:00

1530 lines
40 KiB
C

/*
* Functions for the core networking.
*/
/*
* Copyright © 2016-2017 The TokTok team.
* Copyright © 2013 Tox project.
*
* This file is part of Tox, the free peer to peer instant messenger.
*
* Tox is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Tox is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Tox. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef __APPLE__
#define _DARWIN_C_SOURCE
#endif
#ifndef _XOPEN_SOURCE
#define _XOPEN_SOURCE 600
#endif
#if defined(_WIN32) && _WIN32_WINNT >= _WIN32_WINNT_WINXP
#undef _WIN32_WINNT
#define _WIN32_WINNT 0x501
#endif
#include "network.h"
#include "logger.h"
#include "util.h"
#include <assert.h>
#ifdef __APPLE__
#include <mach/clock.h>
#include <mach/mach.h>
#endif
#ifndef IPV6_ADD_MEMBERSHIP
#ifdef IPV6_JOIN_GROUP
#define IPV6_ADD_MEMBERSHIP IPV6_JOIN_GROUP
#endif
#endif
#if !(defined(_WIN32) || defined(__WIN32__) || defined(WIN32))
#include <errno.h>
#include <fcntl.h>
#include <netdb.h>
#include <sys/time.h>
#include <sys/types.h>
#else
#ifndef IPV6_V6ONLY
#define IPV6_V6ONLY 27
#endif
#ifndef EWOULDBLOCK
#define EWOULDBLOCK WSAEWOULDBLOCK
#endif
static const char *inet_ntop(Family family, const void *addr, char *buf, size_t bufsize)
{
if (family == TOX_AF_INET) {
struct sockaddr_in saddr;
memset(&saddr, 0, sizeof(saddr));
saddr.sin_family = AF_INET;
saddr.sin_addr = *(const struct in_addr *)addr;
DWORD len = bufsize;
if (WSAAddressToString((LPSOCKADDR)&saddr, sizeof(saddr), nullptr, buf, &len)) {
return nullptr;
}
return buf;
} else if (family == TOX_AF_INET6) {
struct sockaddr_in6 saddr;
memset(&saddr, 0, sizeof(saddr));
saddr.sin6_family = AF_INET6;
saddr.sin6_addr = *(const struct in6_addr *)addr;
DWORD len = bufsize;
if (WSAAddressToString((LPSOCKADDR)&saddr, sizeof(saddr), nullptr, buf, &len)) {
return nullptr;
}
return buf;
}
return nullptr;
}
static int inet_pton(Family family, const char *addrString, void *addrbuf)
{
if (family == TOX_AF_INET) {
struct sockaddr_in saddr;
memset(&saddr, 0, sizeof(saddr));
INT len = sizeof(saddr);
if (WSAStringToAddress((LPTSTR)addrString, AF_INET, nullptr, (LPSOCKADDR)&saddr, &len)) {
return 0;
}
*(struct in_addr *)addrbuf = saddr.sin_addr;
return 1;
} else if (family == TOX_AF_INET6) {
struct sockaddr_in6 saddr;
memset(&saddr, 0, sizeof(saddr));
INT len = sizeof(saddr);
if (WSAStringToAddress((LPTSTR)addrString, AF_INET6, nullptr, (LPSOCKADDR)&saddr, &len)) {
return 0;
}
*(struct in6_addr *)addrbuf = saddr.sin6_addr;
return 1;
}
return 0;
}
#endif
#if TOX_INET6_ADDRSTRLEN < INET6_ADDRSTRLEN
#error TOX_INET6_ADDRSTRLEN should be greater or equal to INET6_ADDRSTRLEN (#INET6_ADDRSTRLEN)
#endif
#if TOX_INET_ADDRSTRLEN < INET_ADDRSTRLEN
#error TOX_INET_ADDRSTRLEN should be greater or equal to INET_ADDRSTRLEN (#INET_ADDRSTRLEN)
#endif
static int make_proto(int proto);
static int make_socktype(int type);
static int make_family(int tox_family);
static int make_tox_family(int family);
static void get_ip4(IP4 *result, const struct in_addr *addr)
{
result->uint32 = addr->s_addr;
}
static void get_ip6(IP6 *result, const struct in6_addr *addr)
{
assert(sizeof(result->uint8) == sizeof(addr->s6_addr));
memcpy(result->uint8, addr->s6_addr, sizeof(result->uint8));
}
static void fill_addr4(IP4 ip, struct in_addr *addr)
{
addr->s_addr = ip.uint32;
}
static void fill_addr6(IP6 ip, struct in6_addr *addr)
{
assert(sizeof(ip.uint8) == sizeof(addr->s6_addr));
memcpy(addr->s6_addr, ip.uint8, sizeof(ip.uint8));
}
#if !defined(INADDR_LOOPBACK)
#define INADDR_LOOPBACK 0x7f000001
#endif
const IP4 IP4_BROADCAST = { INADDR_BROADCAST };
const IP6 IP6_BROADCAST = {
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }
};
IP4 get_ip4_loopback(void)
{
IP4 loopback;
loopback.uint32 = htonl(INADDR_LOOPBACK);
return loopback;
}
IP6 get_ip6_loopback(void)
{
IP6 loopback;
get_ip6(&loopback, &in6addr_loopback);
return loopback;
}
/* Check if socket is valid.
*
* return 1 if valid
* return 0 if not valid
*/
int sock_valid(Socket sock)
{
#if defined(_WIN32) || defined(__WIN32__) || defined (WIN32)
if (sock == INVALID_SOCKET) {
#else
if (sock < 0) {
#endif
return 0;
}
return 1;
}
/* Close the socket.
*/
void kill_sock(Socket sock)
{
#if defined(_WIN32) || defined(__WIN32__) || defined (WIN32)
closesocket(sock);
#else
close(sock);
#endif
}
/* Set socket as nonblocking
*
* return 1 on success
* return 0 on failure
*/
int set_socket_nonblock(Socket sock)
{
#if defined(_WIN32) || defined(__WIN32__) || defined (WIN32)
u_long mode = 1;
return (ioctlsocket(sock, FIONBIO, &mode) == 0);
#else
return (fcntl(sock, F_SETFL, O_NONBLOCK, 1) == 0);
#endif
}
/* Set socket to not emit SIGPIPE
*
* return 1 on success
* return 0 on failure
*/
int set_socket_nosigpipe(Socket sock)
{
#if defined(__MACH__)
int set = 1;
return (setsockopt(sock, SOL_SOCKET, SO_NOSIGPIPE, (const char *)&set, sizeof(int)) == 0);
#else
return 1;
#endif
}
/* Enable SO_REUSEADDR on socket.
*
* return 1 on success
* return 0 on failure
*/
int set_socket_reuseaddr(Socket sock)
{
int set = 1;
return (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (const char *)&set, sizeof(set)) == 0);
}
/* Set socket to dual (IPv4 + IPv6 socket)
*
* return 1 on success
* return 0 on failure
*/
int set_socket_dualstack(Socket sock)
{
int ipv6only = 0;
socklen_t optsize = sizeof(ipv6only);
int res = getsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY, (char *)&ipv6only, &optsize);
if ((res == 0) && (ipv6only == 0)) {
return 1;
}
ipv6only = 0;
return (setsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY, (const char *)&ipv6only, sizeof(ipv6only)) == 0);
}
/* return current UNIX time in microseconds (us). */
static uint64_t current_time_actual(void)
{
uint64_t time;
#if defined(_WIN32) || defined(__WIN32__) || defined (WIN32)
/* This probably works fine */
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
time = ft.dwHighDateTime;
time <<= 32;
time |= ft.dwLowDateTime;
time -= 116444736000000000ULL;
return time / 10;
#else
struct timeval a;
gettimeofday(&a, nullptr);
time = 1000000ULL * a.tv_sec + a.tv_usec;
return time;
#endif
}
#if defined(_WIN32) || defined(__WIN32__) || defined (WIN32)
static uint64_t last_monotime;
static uint64_t add_monotime;
#endif
/* return current monotonic time in milliseconds (ms). */
uint64_t current_time_monotonic(void)
{
uint64_t time;
#if defined(_WIN32) || defined(__WIN32__) || defined (WIN32)
uint64_t old_add_monotime = add_monotime;
time = (uint64_t)GetTickCount() + add_monotime;
/* Check if time has decreased because of 32 bit wrap from GetTickCount(), while avoiding false positives from race
* conditions when multiple threads call this function at once */
if (time + 0x10000 < last_monotime) {
uint32_t add = ~0;
/* use old_add_monotime rather than simply incrementing add_monotime, to handle the case that many threads
* simultaneously detect an overflow */
add_monotime = old_add_monotime + add;
time += add;
}
last_monotime = time;
#else
struct timespec monotime;
#if defined(__linux__) && defined(CLOCK_MONOTONIC_RAW)
clock_gettime(CLOCK_MONOTONIC_RAW, &monotime);
#elif defined(__APPLE__)
clock_serv_t muhclock;
mach_timespec_t machtime;
host_get_clock_service(mach_host_self(), SYSTEM_CLOCK, &muhclock);
clock_get_time(muhclock, &machtime);
mach_port_deallocate(mach_task_self(), muhclock);
monotime.tv_sec = machtime.tv_sec;
monotime.tv_nsec = machtime.tv_nsec;
#else
clock_gettime(CLOCK_MONOTONIC, &monotime);
#endif
time = 1000ULL * monotime.tv_sec + (monotime.tv_nsec / 1000000ULL);
#endif
return time;
}
static uint32_t data_0(uint16_t buflen, const uint8_t *buffer)
{
return buflen > 4 ? net_ntohl(*(const uint32_t *)&buffer[1]) : 0;
}
static uint32_t data_1(uint16_t buflen, const uint8_t *buffer)
{
return buflen > 7 ? net_ntohl(*(const uint32_t *)&buffer[5]) : 0;
}
static void loglogdata(Logger *log, const char *message, const uint8_t *buffer,
uint16_t buflen, IP_Port ip_port, int res)
{
char ip_str[IP_NTOA_LEN];
if (res < 0) { /* Windows doesn't necessarily know %zu */
LOGGER_TRACE(log, "[%2u] %s %3u%c %s:%u (%u: %s) | %04x%04x",
buffer[0], message, (buflen < 999 ? buflen : 999), 'E',
ip_ntoa(&ip_port.ip, ip_str, sizeof(ip_str)), net_ntohs(ip_port.port), errno,
strerror(errno), data_0(buflen, buffer), data_1(buflen, buffer));
} else if ((res > 0) && ((size_t)res <= buflen)) {
LOGGER_TRACE(log, "[%2u] %s %3u%c %s:%u (%u: %s) | %04x%04x",
buffer[0], message, (res < 999 ? res : 999), ((size_t)res < buflen ? '<' : '='),
ip_ntoa(&ip_port.ip, ip_str, sizeof(ip_str)), net_ntohs(ip_port.port), 0, "OK",
data_0(buflen, buffer), data_1(buflen, buffer));
} else { /* empty or overwrite */
LOGGER_TRACE(log, "[%2u] %s %u%c%u %s:%u (%u: %s) | %04x%04x",
buffer[0], message, res, (!res ? '!' : '>'), buflen,
ip_ntoa(&ip_port.ip, ip_str, sizeof(ip_str)), net_ntohs(ip_port.port), 0, "OK",
data_0(buflen, buffer), data_1(buflen, buffer));
}
}
typedef struct {
packet_handler_callback function;
void *object;
} Packet_Handler;
struct Networking_Core {
Logger *log;
Packet_Handler packethandlers[256];
Family family;
uint16_t port;
/* Our UDP socket. */
Socket sock;
};
Family net_family(const Networking_Core *net)
{
return net->family;
}
uint16_t net_port(const Networking_Core *net)
{
return net->port;
}
/* Basic network functions:
* Function to send packet(data) of length length to ip_port.
*/
int sendpacket(Networking_Core *net, IP_Port ip_port, const uint8_t *data, uint16_t length)
{
if (net->family == 0) { /* Socket not initialized */
return -1;
}
/* socket TOX_AF_INET, but target IP NOT: can't send */
if ((net->family == TOX_AF_INET) && (ip_port.ip.family != TOX_AF_INET)) {
return -1;
}
struct sockaddr_storage addr;
size_t addrsize = 0;
if (ip_port.ip.family == TOX_AF_INET) {
if (net->family == TOX_AF_INET6) {
/* must convert to IPV4-in-IPV6 address */
struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr;
addrsize = sizeof(struct sockaddr_in6);
addr6->sin6_family = AF_INET6;
addr6->sin6_port = ip_port.port;
/* there should be a macro for this in a standards compliant
* environment, not found */
IP6 ip6;
ip6.uint32[0] = 0;
ip6.uint32[1] = 0;
ip6.uint32[2] = net_htonl(0xFFFF);
ip6.uint32[3] = ip_port.ip.ip.v4.uint32;
fill_addr6(ip6, &addr6->sin6_addr);
addr6->sin6_flowinfo = 0;
addr6->sin6_scope_id = 0;
} else {
struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr;
addrsize = sizeof(struct sockaddr_in);
addr4->sin_family = AF_INET;
fill_addr4(ip_port.ip.ip.v4, &addr4->sin_addr);
addr4->sin_port = ip_port.port;
}
} else if (ip_port.ip.family == TOX_AF_INET6) {
struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr;
addrsize = sizeof(struct sockaddr_in6);
addr6->sin6_family = AF_INET6;
addr6->sin6_port = ip_port.port;
fill_addr6(ip_port.ip.ip.v6, &addr6->sin6_addr);
addr6->sin6_flowinfo = 0;
addr6->sin6_scope_id = 0;
} else {
/* unknown address type*/
return -1;
}
int res = sendto(net->sock, (const char *) data, length, 0, (struct sockaddr *)&addr, addrsize);
loglogdata(net->log, "O=>", data, length, ip_port, res);
return res;
}
/* Function to receive data
* ip and port of sender is put into ip_port.
* Packet data is put into data.
* Packet length is put into length.
*/
static int receivepacket(Logger *log, Socket sock, IP_Port *ip_port, uint8_t *data, uint32_t *length)
{
memset(ip_port, 0, sizeof(IP_Port));
struct sockaddr_storage addr;
#if defined(_WIN32) || defined(__WIN32__) || defined (WIN32)
int addrlen = sizeof(addr);
#else
socklen_t addrlen = sizeof(addr);
#endif
*length = 0;
int fail_or_len = recvfrom(sock, (char *) data, MAX_UDP_PACKET_SIZE, 0, (struct sockaddr *)&addr, &addrlen);
if (fail_or_len < 0) {
if (fail_or_len < 0 && errno != EWOULDBLOCK) {
LOGGER_ERROR(log, "Unexpected error reading from socket: %u, %s\n", errno, strerror(errno));
}
return -1; /* Nothing received. */
}
*length = (uint32_t)fail_or_len;
if (addr.ss_family == AF_INET) {
struct sockaddr_in *addr_in = (struct sockaddr_in *)&addr;
ip_port->ip.family = make_tox_family(addr_in->sin_family);
get_ip4(&ip_port->ip.ip.v4, &addr_in->sin_addr);
ip_port->port = addr_in->sin_port;
} else if (addr.ss_family == AF_INET6) {
struct sockaddr_in6 *addr_in6 = (struct sockaddr_in6 *)&addr;
ip_port->ip.family = make_tox_family(addr_in6->sin6_family);
get_ip6(&ip_port->ip.ip.v6, &addr_in6->sin6_addr);
ip_port->port = addr_in6->sin6_port;
if (IPV6_IPV4_IN_V6(ip_port->ip.ip.v6)) {
ip_port->ip.family = TOX_AF_INET;
ip_port->ip.ip.v4.uint32 = ip_port->ip.ip.v6.uint32[3];
}
} else {
return -1;
}
loglogdata(log, "=>O", data, MAX_UDP_PACKET_SIZE, *ip_port, *length);
return 0;
}
void networking_registerhandler(Networking_Core *net, uint8_t byte, packet_handler_callback cb, void *object)
{
net->packethandlers[byte].function = cb;
net->packethandlers[byte].object = object;
}
void networking_poll(Networking_Core *net, void *userdata)
{
if (net->family == 0) { /* Socket not initialized */
return;
}
unix_time_update();
IP_Port ip_port;
uint8_t data[MAX_UDP_PACKET_SIZE];
uint32_t length;
while (receivepacket(net->log, net->sock, &ip_port, data, &length) != -1) {
if (length < 1) {
continue;
}
if (!(net->packethandlers[data[0]].function)) {
LOGGER_WARNING(net->log, "[%02u] -- Packet has no handler", data[0]);
continue;
}
net->packethandlers[data[0]].function(net->packethandlers[data[0]].object, ip_port, data, length, userdata);
}
}
#ifndef VANILLA_NACL
/* Used for sodium_init() */
#include <sodium.h>
#endif
static uint8_t at_startup_ran = 0;
int networking_at_startup(void)
{
if (at_startup_ran != 0) {
return 0;
}
#ifndef VANILLA_NACL
#ifdef USE_RANDOMBYTES_STIR
randombytes_stir();
#else
if (sodium_init() == -1) {
return -1;
}
#endif /*USE_RANDOMBYTES_STIR*/
#endif/*VANILLA_NACL*/
#if defined(_WIN32) || defined(__WIN32__) || defined (WIN32)
WSADATA wsaData;
if (WSAStartup(MAKEWORD(2, 2), &wsaData) != NO_ERROR) {
return -1;
}
#endif
srand((uint32_t)current_time_actual());
at_startup_ran = 1;
return 0;
}
/* TODO(irungentoo): Put this somewhere */
#if 0
static void at_shutdown(void)
{
#if defined(_WIN32) || defined(__WIN32__) || defined (WIN32)
WSACleanup();
#endif
}
#endif
/* Initialize networking.
* Added for reverse compatibility with old new_networking calls.
*/
Networking_Core *new_networking(Logger *log, IP ip, uint16_t port)
{
return new_networking_ex(log, ip, port, port + (TOX_PORTRANGE_TO - TOX_PORTRANGE_FROM), nullptr);
}
/* Initialize networking.
* Bind to ip and port.
* ip must be in network order EX: 127.0.0.1 = (7F000001).
* port is in host byte order (this means don't worry about it).
*
* return Networking_Core object if no problems
* return NULL if there are problems.
*
* If error is non NULL it is set to 0 if no issues, 1 if socket related error, 2 if other.
*/
Networking_Core *new_networking_ex(Logger *log, IP ip, uint16_t port_from, uint16_t port_to, unsigned int *error)
{
/* If both from and to are 0, use default port range
* If one is 0 and the other is non-0, use the non-0 value as only port
* If from > to, swap
*/
if (port_from == 0 && port_to == 0) {
port_from = TOX_PORTRANGE_FROM;
port_to = TOX_PORTRANGE_TO;
} else if (port_from == 0 && port_to != 0) {
port_from = port_to;
} else if (port_from != 0 && port_to == 0) {
port_to = port_from;
} else if (port_from > port_to) {
uint16_t temp = port_from;
port_from = port_to;
port_to = temp;
}
if (error) {
*error = 2;
}
/* maybe check for invalid IPs like 224+.x.y.z? if there is any IP set ever */
if (ip.family != TOX_AF_INET && ip.family != TOX_AF_INET6) {
LOGGER_ERROR(log, "Invalid address family: %u\n", ip.family);
return nullptr;
}
if (networking_at_startup() != 0) {
return nullptr;
}
Networking_Core *temp = (Networking_Core *)calloc(1, sizeof(Networking_Core));
if (temp == nullptr) {
return nullptr;
}
temp->log = log;
temp->family = ip.family;
temp->port = 0;
/* Initialize our socket. */
/* add log message what we're creating */
temp->sock = net_socket(temp->family, TOX_SOCK_DGRAM, TOX_PROTO_UDP);
/* Check for socket error. */
if (!sock_valid(temp->sock)) {
LOGGER_ERROR(log, "Failed to get a socket?! %u, %s\n", errno, strerror(errno));
free(temp);
if (error) {
*error = 1;
}
return nullptr;
}
/* Functions to increase the size of the send and receive UDP buffers.
*/
int n = 1024 * 1024 * 2;
setsockopt(temp->sock, SOL_SOCKET, SO_RCVBUF, (const char *)&n, sizeof(n));
setsockopt(temp->sock, SOL_SOCKET, SO_SNDBUF, (const char *)&n, sizeof(n));
/* Enable broadcast on socket */
int broadcast = 1;
setsockopt(temp->sock, SOL_SOCKET, SO_BROADCAST, (const char *)&broadcast, sizeof(broadcast));
/* iOS UDP sockets are weird and apparently can SIGPIPE */
if (!set_socket_nosigpipe(temp->sock)) {
kill_networking(temp);
if (error) {
*error = 1;
}
return nullptr;
}
/* Set socket nonblocking. */
if (!set_socket_nonblock(temp->sock)) {
kill_networking(temp);
if (error) {
*error = 1;
}
return nullptr;
}
/* Bind our socket to port PORT and the given IP address (usually 0.0.0.0 or ::) */
uint16_t *portptr = nullptr;
struct sockaddr_storage addr;
size_t addrsize;
memset(&addr, 0, sizeof(struct sockaddr_storage));
if (temp->family == TOX_AF_INET) {
struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr;
addrsize = sizeof(struct sockaddr_in);
addr4->sin_family = AF_INET;
addr4->sin_port = 0;
fill_addr4(ip.ip.v4, &addr4->sin_addr);
portptr = &addr4->sin_port;
} else if (temp->family == TOX_AF_INET6) {
struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr;
addrsize = sizeof(struct sockaddr_in6);
addr6->sin6_family = AF_INET6;
addr6->sin6_port = 0;
fill_addr6(ip.ip.v6, &addr6->sin6_addr);
addr6->sin6_flowinfo = 0;
addr6->sin6_scope_id = 0;
portptr = &addr6->sin6_port;
} else {
free(temp);
return nullptr;
}
if (ip.family == TOX_AF_INET6) {
int is_dualstack = set_socket_dualstack(temp->sock);
LOGGER_DEBUG(log, "Dual-stack socket: %s",
is_dualstack ? "enabled" : "Failed to enable, won't be able to receive from/send to IPv4 addresses");
/* multicast local nodes */
struct ipv6_mreq mreq;
memset(&mreq, 0, sizeof(mreq));
mreq.ipv6mr_multiaddr.s6_addr[ 0] = 0xFF;
mreq.ipv6mr_multiaddr.s6_addr[ 1] = 0x02;
mreq.ipv6mr_multiaddr.s6_addr[15] = 0x01;
mreq.ipv6mr_interface = 0;
int res = setsockopt(temp->sock, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP, (const char *)&mreq, sizeof(mreq));
LOGGER_DEBUG(log, res < 0 ? "Failed to activate local multicast membership. (%u, %s)" :
"Local multicast group FF02::1 joined successfully", errno, strerror(errno));
}
/* a hanging program or a different user might block the standard port;
* as long as it isn't a parameter coming from the commandline,
* try a few ports after it, to see if we can find a "free" one
*
* if we go on without binding, the first sendto() automatically binds to
* a free port chosen by the system (i.e. anything from 1024 to 65535)
*
* returning NULL after bind fails has both advantages and disadvantages:
* advantage:
* we can rely on getting the port in the range 33445..33450, which
* enables us to tell joe user to open their firewall to a small range
*
* disadvantage:
* some clients might not test return of tox_new(), blindly assuming that
* it worked ok (which it did previously without a successful bind)
*/
uint16_t port_to_try = port_from;
*portptr = net_htons(port_to_try);
int tries;
for (tries = port_from; tries <= port_to; tries++) {
int res = bind(temp->sock, (struct sockaddr *)&addr, addrsize);
if (!res) {
temp->port = *portptr;
char ip_str[IP_NTOA_LEN];
LOGGER_DEBUG(log, "Bound successfully to %s:%u", ip_ntoa(&ip, ip_str, sizeof(ip_str)),
net_ntohs(temp->port));
/* errno isn't reset on success, only set on failure, the failed
* binds with parallel clients yield a -EPERM to the outside if
* errno isn't cleared here */
if (tries > 0) {
errno = 0;
}
if (error) {
*error = 0;
}
return temp;
}
port_to_try++;
if (port_to_try > port_to) {
port_to_try = port_from;
}
*portptr = net_htons(port_to_try);
}
char ip_str[IP_NTOA_LEN];
LOGGER_ERROR(log, "Failed to bind socket: %u, %s IP: %s port_from: %u port_to: %u", errno, strerror(errno),
ip_ntoa(&ip, ip_str, sizeof(ip_str)), port_from, port_to);
kill_networking(temp);
if (error) {
*error = 1;
}
return nullptr;
}
Networking_Core *new_networking_no_udp(Logger *log)
{
/* this is the easiest way to completely disable UDP without changing too much code. */
Networking_Core *net = (Networking_Core *)calloc(1, sizeof(Networking_Core));
if (net == nullptr) {
return nullptr;
}
net->log = log;
return net;
}
/* Function to cleanup networking stuff. */
void kill_networking(Networking_Core *net)
{
if (!net) {
return;
}
if (net->family != 0) { /* Socket not initialized */
kill_sock(net->sock);
}
free(net);
}
/* ip_equal
* compares two IPAny structures
* unset means unequal
*
* returns 0 when not equal or when uninitialized
*/
int ip_equal(const IP *a, const IP *b)
{
if (!a || !b) {
return 0;
}
/* same family */
if (a->family == b->family) {
if (a->family == TOX_AF_INET || a->family == TCP_INET) {
struct in_addr addr_a;
struct in_addr addr_b;
fill_addr4(a->ip.v4, &addr_a);
fill_addr4(b->ip.v4, &addr_b);
return addr_a.s_addr == addr_b.s_addr;
}
if (a->family == TOX_AF_INET6 || a->family == TCP_INET6) {
return a->ip.v6.uint64[0] == b->ip.v6.uint64[0] &&
a->ip.v6.uint64[1] == b->ip.v6.uint64[1];
}
return 0;
}
/* different family: check on the IPv6 one if it is the IPv4 one embedded */
if ((a->family == TOX_AF_INET) && (b->family == TOX_AF_INET6)) {
if (IPV6_IPV4_IN_V6(b->ip.v6)) {
struct in_addr addr_a;
fill_addr4(a->ip.v4, &addr_a);
return addr_a.s_addr == b->ip.v6.uint32[3];
}
} else if ((a->family == TOX_AF_INET6) && (b->family == TOX_AF_INET)) {
if (IPV6_IPV4_IN_V6(a->ip.v6)) {
struct in_addr addr_b;
fill_addr4(b->ip.v4, &addr_b);
return a->ip.v6.uint32[3] == addr_b.s_addr;
}
}
return 0;
}
/* ipport_equal
* compares two IPAny_Port structures
* unset means unequal
*
* returns 0 when not equal or when uninitialized
*/
int ipport_equal(const IP_Port *a, const IP_Port *b)
{
if (!a || !b) {
return 0;
}
if (!a->port || (a->port != b->port)) {
return 0;
}
return ip_equal(&a->ip, &b->ip);
}
/* nulls out ip */
void ip_reset(IP *ip)
{
if (!ip) {
return;
}
memset(ip, 0, sizeof(IP));
}
/* nulls out ip, sets family according to flag */
void ip_init(IP *ip, bool ipv6enabled)
{
if (!ip) {
return;
}
memset(ip, 0, sizeof(IP));
ip->family = ipv6enabled ? TOX_AF_INET6 : TOX_AF_INET;
}
/* checks if ip is valid */
int ip_isset(const IP *ip)
{
if (!ip) {
return 0;
}
return (ip->family != 0);
}
/* checks if ip is valid */
int ipport_isset(const IP_Port *ipport)
{
if (!ipport) {
return 0;
}
if (!ipport->port) {
return 0;
}
return ip_isset(&ipport->ip);
}
/* copies an ip structure (careful about direction!) */
void ip_copy(IP *target, const IP *source)
{
if (!source || !target) {
return;
}
memcpy(target, source, sizeof(IP));
}
/* copies an ip_port structure (careful about direction!) */
void ipport_copy(IP_Port *target, const IP_Port *source)
{
if (!source || !target) {
return;
}
memcpy(target, source, sizeof(IP_Port));
}
/* ip_ntoa
* converts ip into a string
* ip_str must be of length at least IP_NTOA_LEN
*
* IPv6 addresses are enclosed into square brackets, i.e. "[IPv6]"
* writes error message into the buffer on error
*
* returns ip_str
*/
const char *ip_ntoa(const IP *ip, char *ip_str, size_t length)
{
if (length < IP_NTOA_LEN) {
snprintf(ip_str, length, "Bad buf length");
return ip_str;
}
if (ip) {
const int family = make_family(ip->family);
if (ip->family == TOX_AF_INET) {
/* returns standard quad-dotted notation */
struct in_addr addr;
fill_addr4(ip->ip.v4, &addr);
ip_str[0] = 0;
inet_ntop(family, &addr, ip_str, length);
} else if (ip->family == TOX_AF_INET6) {
/* returns hex-groups enclosed into square brackets */
struct in6_addr addr;
fill_addr6(ip->ip.v6, &addr);
ip_str[0] = '[';
inet_ntop(family, &addr, &ip_str[1], length - 3);
size_t len = strlen(ip_str);
ip_str[len] = ']';
ip_str[len + 1] = 0;
} else {
snprintf(ip_str, length, "(IP invalid, family %u)", ip->family);
}
} else {
snprintf(ip_str, length, "(IP invalid: NULL)");
}
/* brute force protection against lacking termination */
ip_str[length - 1] = 0;
return ip_str;
}
/*
* ip_parse_addr
* parses IP structure into an address string
*
* input
* ip: ip of TOX_AF_INET or TOX_AF_INET6 families
* length: length of the address buffer
* Must be at least INET_ADDRSTRLEN for TOX_AF_INET
* and INET6_ADDRSTRLEN for TOX_AF_INET6
*
* output
* address: dotted notation (IPv4: quad, IPv6: 16) or colon notation (IPv6)
*
* returns 1 on success, 0 on failure
*/
int ip_parse_addr(const IP *ip, char *address, size_t length)
{
if (!address || !ip) {
return 0;
}
if (ip->family == TOX_AF_INET) {
const struct in_addr *addr = (const struct in_addr *)&ip->ip.v4;
return inet_ntop(ip->family, addr, address, length) != nullptr;
}
if (ip->family == TOX_AF_INET6) {
const struct in6_addr *addr = (const struct in6_addr *)&ip->ip.v6;
return inet_ntop(ip->family, addr, address, length) != nullptr;
}
return 0;
}
/*
* addr_parse_ip
* directly parses the input into an IP structure
* tries IPv4 first, then IPv6
*
* input
* address: dotted notation (IPv4: quad, IPv6: 16) or colon notation (IPv6)
*
* output
* IP: family and the value is set on success
*
* returns 1 on success, 0 on failure
*/
int addr_parse_ip(const char *address, IP *to)
{
if (!address || !to) {
return 0;
}
struct in_addr addr4;
if (inet_pton(AF_INET, address, &addr4) == 1) {
to->family = TOX_AF_INET;
get_ip4(&to->ip.v4, &addr4);
return 1;
}
struct in6_addr addr6;
if (inet_pton(AF_INET6, address, &addr6) == 1) {
to->family = TOX_AF_INET6;
get_ip6(&to->ip.v6, &addr6);
return 1;
}
return 0;
}
/*
* addr_resolve():
* uses getaddrinfo to resolve an address into an IP address
* uses the first IPv4/IPv6 addresses returned by getaddrinfo
*
* input
* address: a hostname (or something parseable to an IP address)
* to: to.family MUST be initialized, either set to a specific IP version
* (TOX_AF_INET/TOX_AF_INET6) or to the unspecified AF_UNSPEC (= 0), if both
* IP versions are acceptable
* extra can be NULL and is only set in special circumstances, see returns
*
* returns in *to a valid IPAny (v4/v6),
* prefers v6 if ip.family was AF_UNSPEC and both available
* returns in *extra an IPv4 address, if family was AF_UNSPEC and *to is TOX_AF_INET6
* returns 0 on failure, TOX_ADDR_RESOLVE_* on success.
*/
int addr_resolve(const char *address, IP *to, IP *extra)
{
if (!address || !to) {
return 0;
}
Family tox_family = to->family;
Family family = make_family(tox_family);
struct addrinfo *server = nullptr;
struct addrinfo *walker = nullptr;
struct addrinfo hints;
int rc;
int result = 0;
int done = 0;
memset(&hints, 0, sizeof(hints));
hints.ai_family = family;
hints.ai_socktype = SOCK_DGRAM; // type of socket Tox uses.
if (networking_at_startup() != 0) {
return 0;
}
rc = getaddrinfo(address, nullptr, &hints, &server);
// Lookup failed.
if (rc != 0) {
return 0;
}
IP ip4;
ip_init(&ip4, 0); // ipv6enabled = 0
IP ip6;
ip_init(&ip6, 1); // ipv6enabled = 1
for (walker = server; (walker != nullptr) && !done; walker = walker->ai_next) {
switch (walker->ai_family) {
case AF_INET:
if (walker->ai_family == family) { /* AF_INET requested, done */
struct sockaddr_in *addr = (struct sockaddr_in *)walker->ai_addr;
get_ip4(&to->ip.v4, &addr->sin_addr);
result = TOX_ADDR_RESOLVE_INET;
done = 1;
} else if (!(result & TOX_ADDR_RESOLVE_INET)) { /* AF_UNSPEC requested, store away */
struct sockaddr_in *addr = (struct sockaddr_in *)walker->ai_addr;
get_ip4(&ip4.ip.v4, &addr->sin_addr);
result |= TOX_ADDR_RESOLVE_INET;
}
break; /* switch */
case AF_INET6:
if (walker->ai_family == family) { /* AF_INET6 requested, done */
if (walker->ai_addrlen == sizeof(struct sockaddr_in6)) {
struct sockaddr_in6 *addr = (struct sockaddr_in6 *)walker->ai_addr;
get_ip6(&to->ip.v6, &addr->sin6_addr);
result = TOX_ADDR_RESOLVE_INET6;
done = 1;
}
} else if (!(result & TOX_ADDR_RESOLVE_INET6)) { /* AF_UNSPEC requested, store away */
if (walker->ai_addrlen == sizeof(struct sockaddr_in6)) {
struct sockaddr_in6 *addr = (struct sockaddr_in6 *)walker->ai_addr;
get_ip6(&ip6.ip.v6, &addr->sin6_addr);
result |= TOX_ADDR_RESOLVE_INET6;
}
}
break; /* switch */
}
}
if (family == AF_UNSPEC) {
if (result & TOX_ADDR_RESOLVE_INET6) {
ip_copy(to, &ip6);
if ((result & TOX_ADDR_RESOLVE_INET) && (extra != nullptr)) {
ip_copy(extra, &ip4);
}
} else if (result & TOX_ADDR_RESOLVE_INET) {
ip_copy(to, &ip4);
} else {
result = 0;
}
}
freeaddrinfo(server);
return result;
}
/*
* addr_resolve_or_parse_ip
* resolves string into an IP address
*
* address: a hostname (or something parseable to an IP address)
* to: to.family MUST be initialized, either set to a specific IP version
* (TOX_AF_INET/TOX_AF_INET6) or to the unspecified AF_UNSPEC (= 0), if both
* IP versions are acceptable
* extra can be NULL and is only set in special circumstances, see returns
*
* returns in *tro a matching address (IPv6 or IPv4)
* returns in *extra, if not NULL, an IPv4 address, if to->family was AF_UNSPEC
* returns 1 on success
* returns 0 on failure
*/
int addr_resolve_or_parse_ip(const char *address, IP *to, IP *extra)
{
if (!addr_resolve(address, to, extra)) {
if (!addr_parse_ip(address, to)) {
return 0;
}
}
return 1;
}
int net_connect(Socket sock, IP_Port ip_port)
{
struct sockaddr_storage addr = {0};
size_t addrsize;
if (ip_port.ip.family == TOX_AF_INET) {
struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr;
addrsize = sizeof(struct sockaddr_in);
addr4->sin_family = AF_INET;
fill_addr4(ip_port.ip.ip.v4, &addr4->sin_addr);
addr4->sin_port = ip_port.port;
} else if (ip_port.ip.family == TOX_AF_INET6) {
struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr;
addrsize = sizeof(struct sockaddr_in6);
addr6->sin6_family = AF_INET6;
fill_addr6(ip_port.ip.ip.v6, &addr6->sin6_addr);
addr6->sin6_port = ip_port.port;
} else {
return 0;
}
return connect(sock, (struct sockaddr *)&addr, addrsize);
}
int32_t net_getipport(const char *node, IP_Port **res, int tox_type)
{
struct addrinfo *infos;
int ret = getaddrinfo(node, nullptr, nullptr, &infos);
*res = nullptr;
if (ret != 0) {
return -1;
}
// Used to avoid malloc parameter overflow
const size_t MAX_COUNT = MIN(SIZE_MAX, INT32_MAX) / sizeof(IP_Port);
int type = make_socktype(tox_type);
struct addrinfo *cur;
size_t count = 0;
for (cur = infos; count < MAX_COUNT && cur != nullptr; cur = cur->ai_next) {
if (cur->ai_socktype && type > 0 && cur->ai_socktype != type) {
continue;
}
if (cur->ai_family != AF_INET && cur->ai_family != AF_INET6) {
continue;
}
count++;
}
assert(count <= MAX_COUNT);
if (count == 0) {
freeaddrinfo(infos);
return 0;
}
*res = (IP_Port *)malloc(sizeof(IP_Port) * count);
if (*res == nullptr) {
freeaddrinfo(infos);
return -1;
}
IP_Port *ip_port = *res;
for (cur = infos; cur != nullptr; cur = cur->ai_next) {
if (cur->ai_socktype && type > 0 && cur->ai_socktype != type) {
continue;
}
if (cur->ai_family == AF_INET) {
struct sockaddr_in *addr = (struct sockaddr_in *)cur->ai_addr;
memcpy(&ip_port->ip.ip.v4, &addr->sin_addr, sizeof(IP4));
} else if (cur->ai_family == AF_INET6) {
struct sockaddr_in6 *addr = (struct sockaddr_in6 *)cur->ai_addr;
memcpy(&ip_port->ip.ip.v6, &addr->sin6_addr, sizeof(IP6));
} else {
continue;
}
ip_port->ip.family = make_tox_family(cur->ai_family);
ip_port++;
}
freeaddrinfo(infos);
return count;
}
void net_freeipport(IP_Port *ip_ports)
{
free(ip_ports);
}
/* return 1 on success
* return 0 on failure
*/
int bind_to_port(Socket sock, int family, uint16_t port)
{
struct sockaddr_storage addr = {0};
size_t addrsize;
if (family == TOX_AF_INET) {
struct sockaddr_in *addr4 = (struct sockaddr_in *)&addr;
addrsize = sizeof(struct sockaddr_in);
addr4->sin_family = AF_INET;
addr4->sin_port = net_htons(port);
} else if (family == TOX_AF_INET6) {
struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)&addr;
addrsize = sizeof(struct sockaddr_in6);
addr6->sin6_family = AF_INET6;
addr6->sin6_port = net_htons(port);
} else {
return 0;
}
return (bind(sock, (struct sockaddr *)&addr, addrsize) == 0);
}
static int make_tox_family(int family)
{
switch (family) {
case AF_INET:
return TOX_AF_INET;
case AF_INET6:
return TOX_AF_INET6;
case AF_UNSPEC:
return TOX_AF_UNSPEC;
default:
return family;
}
}
static int make_family(int tox_family)
{
switch (tox_family) {
case TOX_AF_INET:
return AF_INET;
case TOX_AF_INET6:
return AF_INET6;
case TOX_AF_UNSPEC:
return AF_UNSPEC;
default:
return tox_family;
}
}
static int make_socktype(int type)
{
switch (type) {
case TOX_SOCK_STREAM:
return SOCK_STREAM;
case TOX_SOCK_DGRAM:
return SOCK_DGRAM;
default:
return type;
}
}
static int make_proto(int proto)
{
switch (proto) {
case TOX_PROTO_TCP:
return IPPROTO_TCP;
case TOX_PROTO_UDP:
return IPPROTO_UDP;
default:
return proto;
}
}
Socket net_socket(int domain, int type, int protocol)
{
int platform_domain = make_family(domain);
int platform_type = make_socktype(type);
int platform_prot = make_proto(protocol);
return socket(platform_domain, platform_type, platform_prot);
}
uint32_t net_htonl(uint32_t hostlong)
{
return htonl(hostlong);
}
uint16_t net_htons(uint16_t hostshort)
{
return htons(hostshort);
}
uint32_t net_ntohl(uint32_t hostlong)
{
return ntohl(hostlong);
}
uint16_t net_ntohs(uint16_t hostshort)
{
return ntohs(hostshort);
}
size_t net_pack_u16(uint8_t *bytes, uint16_t v)
{
bytes[0] = (v >> 8) & 0xff;
bytes[1] = v & 0xff;
return sizeof(v);
}
size_t net_pack_u32(uint8_t *bytes, uint32_t v)
{
uint8_t *p = bytes;
p += net_pack_u16(p, (v >> 16) & 0xffff);
p += net_pack_u16(p, v & 0xffff);
return p - bytes;
}
size_t net_pack_u64(uint8_t *bytes, uint64_t v)
{
uint8_t *p = bytes;
p += net_pack_u32(p, (v >> 32) & 0xffffffff);
p += net_pack_u32(p, v & 0xffffffff);
return p - bytes;
}
size_t net_unpack_u16(const uint8_t *bytes, uint16_t *v)
{
uint8_t hi = bytes[0];
uint8_t lo = bytes[1];
*v = ((uint16_t)hi << 8) | lo;
return sizeof(*v);
}
size_t net_unpack_u32(const uint8_t *bytes, uint32_t *v)
{
const uint8_t *p = bytes;
uint16_t lo, hi;
p += net_unpack_u16(p, &hi);
p += net_unpack_u16(p, &lo);
*v = ((uint32_t)hi << 16) | lo;
return p - bytes;
}
size_t net_unpack_u64(const uint8_t *bytes, uint64_t *v)
{
const uint8_t *p = bytes;
uint32_t lo, hi;
p += net_unpack_u32(p, &hi);
p += net_unpack_u32(p, &lo);
*v = ((uint64_t)hi << 32) | lo;
return p - bytes;
}