toxcore/core/Lossless_UDP.c

726 lines
21 KiB
C

/* Lossless_UDP.c
*
* An implementation of the Lossless_UDP protocol as seen in docs/Lossless_UDP.txt
*
Copyright (C) 2013 Tox project All Rights Reserved.
This file is part of Tox.
Tox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Tox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Tox. If not, see <http://www.gnu.org/licenses/>.
*/
//TODO: clean this file a bit.
//There are a couple of useless variables to get rid of.
#include "Lossless_UDP.h"
//maximum data packets in sent and recieve queues.
#define MAX_QUEUE_NUM 16
//maximum length of the data in the data packets
#define MAX_DATA_SIZE 1024
//maximum number of data packets in the buffer
#define BUFFER_PACKET_NUM (16-1)
//Lossless UDP connection timeout.
#define CONNEXION_TIMEOUT 10
//initial amount of sync/hanshake packets to send per second.
#define SYNC_RATE 50
//initial send rate of sync packets when data is being sent/recieved.
#define DATA_SYNC_RATE 200
typedef struct
{
char data[MAX_DATA_SIZE];
uint16_t size;
}Data;
typedef struct
{
IP_Port ip_port;
char status;//0 if connection is dead, 1 if attempting handshake,
//2 if handshake is done (we start sending SYNC packets)
//3 if we are sending SYNC packets and can send data
char inbound; //1 or 2 if connection was initiated by someone else, 0 if not.
//2 if incoming_connection() has not returned it yet, 1 if it has.
uint16_t SYNC_rate;//current SYNC packet send rate packets per second.
uint16_t data_rate;//current data packet send rate packets per second.
uint64_t last_SYNC; //time at which our last SYNC packet was sent.
uint64_t last_sent; //time at which our last data or handshake packet was sent.
uint64_t last_recv; //time at which we last recieved something from the other
Data sendbuffer[MAX_QUEUE_NUM];//packet send buffer.
Data recvbuffer[MAX_QUEUE_NUM];//packet recieve buffer.
uint32_t handshake_id1;
uint32_t handshake_id2;
uint32_t recv_packetnum; //number of data packets recieved (also used as handshake_id1)
uint32_t orecv_packetnum; //number of packets recieved by the other peer
uint32_t sent_packetnum; //number of data packets sent
uint32_t osent_packetnum; //number of packets sent by the other peer.
uint32_t sendbuff_packetnum; //number of latest packet written onto the sendbuffer
uint32_t successful_sent;//we know all packets before that number were successfully sent
uint32_t successful_read;//packet number of last packet read with the read_packet function
uint32_t req_packets[BUFFER_PACKET_NUM]; //list of currently requested packet numbers(by the other person)
uint16_t num_req_paquets; //total number of currently requested packets(by the other person)
uint8_t recv_counter;
uint8_t send_counter;
}Connection;
#define MAX_CONNECTIONS 256
Connection connections[MAX_CONNECTIONS];
//Functions
//get connection id from IP_Port
//return -1 if there are no connections like we are looking for
//return id if it found it
int getconnection_id(IP_Port ip_port)
{
uint32_t i;
for(i = 0; i < MAX_CONNECTIONS; i++ )
{
if(connections[i].ip_port.ip.i == ip_port.ip.i &&
connections[i].ip_port.port == ip_port.port && connections[i].status > 0)
{
return i;
}
}
return -1;
}
//table of random numbers used below.
static uint32_t randtable[6][256];
//generate a handshake_id which depends on the ip_port.
//this function will always give one unique handshake_id per ip_port.
//TODO: make this better
uint32_t handshake_id(IP_Port source)
{
uint32_t id = 0, i;
for(i = 0; i < 6; i++)
{
if(randtable[i][((uint8_t *)&source)[i]] == 0)
{
randtable[i][((uint8_t *)&source)[i]] = random_int();
}
id ^= randtable[i][((uint8_t *)&source)[i]];
}
if(id == 0)//id can't be zero
{
id = 1;
}
return id;
}
//initialize a new connection to ip_port
//returns an integer corresponding to the connection id.
//return -1 if it could not initialize the connection.
//if there already was an existing connection to that ip_port return its number.
int new_connection(IP_Port ip_port)
{
int connect = getconnection_id(ip_port);
if(connect != -1)
{
return connect;
}
uint32_t i;
for(i = 0; i < MAX_CONNECTIONS; i++)
{
if(connections[i].status == 0)
{
connections[i].ip_port = ip_port;
connections[i].status = 1;
connections[i].inbound = 0;
connections[i].handshake_id1 = handshake_id(ip_port);
connections[i].sent_packetnum = connections[i].handshake_id1;
connections[i].sendbuff_packetnum = connections[i].handshake_id1;
connections[i].successful_sent = connections[i].handshake_id1;
connections[i].SYNC_rate = SYNC_RATE;
connections[i].data_rate = DATA_SYNC_RATE;
connections[i].last_recv = current_time();
connections[i].send_counter = 0;
return i;
}
}
return -1;
}
//initialize a new inbound connection from ip_port
//returns an integer corresponding to the connection id.
//return -1 if it could not initialize the connection.
int new_inconnection(IP_Port ip_port)
{
if(getconnection_id(ip_port) != -1)
{
return -1;
}
uint32_t i;
for(i = 0; i < MAX_CONNECTIONS; i++)
{
if(connections[i].status == 0)
{
connections[i].ip_port = ip_port;
connections[i].status = 2;
connections[i].inbound = 2;
connections[i].SYNC_rate = SYNC_RATE;
connections[i].data_rate = DATA_SYNC_RATE;
connections[i].last_recv = current_time();
connections[i].send_counter = 127;
return i;
}
}
return -1;
}
//returns an integer corresponding to the next connection in our incoming connection list
//return -1 if there are no new incoming connections in the list.
int incoming_connection()
{
uint32_t i;
for(i = 0; i < MAX_CONNECTIONS; i++)
{
if(connections[i].inbound == 2)
{
connections[i].inbound = 1;
return i;
}
}
return -1;
}
//return -1 if it could not kill the connection.
//return 0 if killed successfully
int kill_connection(int connection_id)
{
if(connection_id >= 0 && connection_id < MAX_CONNECTIONS)
{
if(connections[connection_id].status > 0)
{
connections[connection_id].status = 0;
return 0;
}
}
return -1;
}
//check if connection is connected
//return 0 no.
//return 1 if attempting handshake
//return 2 if handshake is done
//return 3 if fully connected
int is_connected(int connection_id)
{
if(connection_id >= 0 && connection_id < MAX_CONNECTIONS)
{
return connections[connection_id].status;
}
return 0;
}
//returns the ip_port of the corresponding connection.
IP_Port connection_ip(int connection_id)
{
if(connection_id >= 0 && connection_id < MAX_CONNECTIONS)
{
return connections[connection_id].ip_port;
}
IP_Port zero = {{{0}}, 0};
return zero;
}
//returns the number of packets in the queue waiting to be successfully sent.
uint32_t sendqueue(int connection_id)
{
return connections[connection_id].sendbuff_packetnum - connections[connection_id].successful_sent;
}
//returns the number of packets in the queue waiting to be successfully read with read_packet(...)
uint32_t recvqueue(int connection_id)
{
return connections[connection_id].recv_packetnum - connections[connection_id].successful_read;
}
//return 0 if there is no received data in the buffer.
//return length of received packet if successful
int read_packet(int connection_id, char * data)
{
if(recvqueue(connection_id) != 0)
{
uint16_t index = connections[connection_id].successful_read % MAX_QUEUE_NUM;
uint16_t size = connections[connection_id].recvbuffer[index].size;
memcpy(data, connections[connection_id].recvbuffer[index].data, size);
connections[connection_id].successful_read++;
connections[connection_id].recvbuffer[index].size = 0;
return size;
}
return 0;
}
//return 0 if data could not be put in packet queue
//return 1 if data was put into the queue
int write_packet(int connection_id, char * data, uint32_t length)
{
if(length > MAX_DATA_SIZE)
{
return 0;
}
if(length == 0)
{
return 0;
}
if(sendqueue(connection_id) < BUFFER_PACKET_NUM)
{
uint32_t index = connections[connection_id].sendbuff_packetnum % MAX_QUEUE_NUM;
memcpy(connections[connection_id].sendbuffer[index].data, data, length);
connections[connection_id].sendbuffer[index].size = length;
connections[connection_id].sendbuff_packetnum++;
return 1;
}
return 0;
}
//put the packet numbers the we are missing in requested and return the number
uint32_t missing_packets(int connection_id, uint32_t * requested)
{
uint32_t number = 0;
uint32_t i;
if(recvqueue(connection_id) >= BUFFER_PACKET_NUM)//don't request packets if the buffer is full.
{
return 0;
}
for(i = connections[connection_id].recv_packetnum; i != connections[connection_id].osent_packetnum; i++ )
{
if(connections[connection_id].recvbuffer[i % MAX_QUEUE_NUM].size == 0)
{
memcpy(requested + number, &i, 4);
number++;
}
}
if(number == 0)
{
connections[connection_id].recv_packetnum = connections[connection_id].osent_packetnum;
}
return number;
}
//Packet sending functions
//One per packet type.
//see docs/Lossless_UDP.txt for more information.
int send_handshake(IP_Port ip_port, uint32_t handshake_id1, uint32_t handshake_id2)
{
char packet[1 + 4 + 4];
packet[0] = 16;
memcpy(packet + 1, &handshake_id1, 4);
memcpy(packet + 5, &handshake_id2, 4);
return sendpacket(ip_port, packet, sizeof(packet));
}
int send_SYNC(uint32_t connection_id)
{
char packet[(BUFFER_PACKET_NUM*4 + 4 + 4 + 2)];
uint16_t index = 0;
IP_Port ip_port = connections[connection_id].ip_port;
uint8_t counter = connections[connection_id].send_counter;
uint32_t recv_packetnum = connections[connection_id].recv_packetnum;
uint32_t sent_packetnum = connections[connection_id].sent_packetnum;
uint32_t requested[BUFFER_PACKET_NUM];
uint32_t number = missing_packets(connection_id, requested);
packet[0] = 17;
index += 1;
memcpy(packet + index, &counter, 1);
index += 1;
memcpy(packet + index, &recv_packetnum, 4);
index += 4;
memcpy(packet + index, &sent_packetnum, 4);
index += 4;
memcpy(packet + index, requested, 4 * number);
return sendpacket(ip_port, packet, (number*4 + 4 + 4 + 2));
}
int send_data_packet(uint32_t connection_id, uint32_t packet_num)
{
uint32_t index = packet_num % MAX_QUEUE_NUM;
char packet[1 + 4 + MAX_DATA_SIZE];
packet[0] = 18;
memcpy(packet + 1, &packet_num, 4);
memcpy(packet + 5, connections[connection_id].sendbuffer[index].data,
connections[connection_id].sendbuffer[index].size);
return sendpacket(connections[connection_id].ip_port, packet,
1 + 4 + connections[connection_id].sendbuffer[index].size);
}
//sends 1 data packet
int send_DATA(uint32_t connection_id)
{
int ret;
uint32_t buffer[BUFFER_PACKET_NUM];
if(connections[connection_id].num_req_paquets > 0)
{
ret = send_data_packet(connection_id, connections[connection_id].req_packets[0]);
connections[connection_id].num_req_paquets--;
memcpy(buffer, connections[connection_id].req_packets + 1, connections[connection_id].num_req_paquets * 4);
memcpy(connections[connection_id].req_packets, buffer, connections[connection_id].num_req_paquets * 4);
return ret;
}
if(connections[connection_id].sendbuff_packetnum != connections[connection_id].sent_packetnum)
{
ret = send_data_packet(connection_id, connections[connection_id].sent_packetnum);
connections[connection_id].sent_packetnum++;
return ret;
}
return 0;
}
//END of packet sending functions
//Packet handling functions
//One to handle each type of packets we recieve
//return 0 if handled correctly, 1 if packet is bad.
int handle_handshake(char * packet, uint32_t length, IP_Port source)
{
if(length != (1 + 4 + 4))
{
return 1;
}
uint32_t handshake_id1, handshake_id2;
int connection = getconnection_id(source);
memcpy(&handshake_id1, packet + 1, 4);
memcpy(&handshake_id2, packet + 5, 4);
if(handshake_id2 == 0)
{
send_handshake(source, handshake_id(source), handshake_id1);
return 0;
}
if(is_connected(connection) != 1)
{
return 1;
}
if(handshake_id2 == connections[connection].handshake_id1)//if handshake_id2 is what we sent previously as handshake_id1
{
connections[connection].status = 2;
//NOTE:is this necessary?
//connections[connection].handshake_id2 = handshake_id1;
connections[connection].orecv_packetnum = handshake_id2;
connections[connection].osent_packetnum = handshake_id1;
connections[connection].recv_packetnum = handshake_id1;
connections[connection].successful_read = handshake_id1;
}
return 0;
}
//returns 1 if sync packet is valid
//0 if not.
int SYNC_valid(uint32_t length)
{
if(length < 4 + 4 + 2)
{
return 0;
}
if(length > (BUFFER_PACKET_NUM*4 + 4 + 4 + 2) ||
((length - 4 - 4 - 2) % 4) != 0)
{
return 0;
}
return 1;
}
//case 1:
int handle_SYNC1(IP_Port source, uint32_t recv_packetnum, uint32_t sent_packetnum)
{
if(handshake_id(source) == recv_packetnum)
{
int x = new_inconnection(source);
if(x != -1)
{
connections[x].orecv_packetnum = recv_packetnum;
connections[x].sent_packetnum = recv_packetnum;
connections[x].sendbuff_packetnum = recv_packetnum;
connections[x].successful_sent = recv_packetnum;
connections[x].osent_packetnum = sent_packetnum;
connections[x].recv_packetnum = sent_packetnum;
connections[x].successful_read = sent_packetnum;
return x;
}
}
return -1;
}
//case 2:
int handle_SYNC2(int connection_id, uint8_t counter, uint32_t recv_packetnum, uint32_t sent_packetnum)
{
if(recv_packetnum == connections[connection_id].orecv_packetnum)
//&& sent_packetnum == connections[connection_id].osent_packetnum)
{
connections[connection_id].status = 3;
connections[connection_id].recv_counter = counter;
connections[connection_id].send_counter++;
return 0;
}
return 1;
}
//case 3:
int handle_SYNC3(int connection_id, uint8_t counter, uint32_t recv_packetnum, uint32_t sent_packetnum, uint32_t * req_packets,
uint16_t number)
{
uint8_t comp_counter = (counter - connections[connection_id].recv_counter );
//uint32_t comp_1 = (recv_packetnum - connections[connection_id].successful_sent);
//uint32_t comp_2 = (sent_packetnum - connections[connection_id].successful_read);
uint32_t comp_1 = (recv_packetnum - connections[connection_id].orecv_packetnum);
uint32_t comp_2 = (sent_packetnum - connections[connection_id].osent_packetnum);
if(comp_1 <= BUFFER_PACKET_NUM && comp_2 <= BUFFER_PACKET_NUM && comp_counter < 10 && comp_counter != 0) //packet valid
{
connections[connection_id].orecv_packetnum = recv_packetnum;
connections[connection_id].osent_packetnum = sent_packetnum;
connections[connection_id].successful_sent = recv_packetnum;
connections[connection_id].last_recv = current_time();
connections[connection_id].recv_counter = counter;
connections[connection_id].send_counter++;
memcpy(connections[connection_id].req_packets, req_packets, 4 * number);
connections[connection_id].num_req_paquets = number;
return 0;
}
return 1;
}
int handle_SYNC(char * packet, uint32_t length, IP_Port source)
{
if(!SYNC_valid(length))
{
return 1;
}
int connection = getconnection_id(source);
uint8_t counter;
uint32_t recv_packetnum, sent_packetnum;
uint32_t req_packets[BUFFER_PACKET_NUM];
uint16_t number = (length - 4 - 4 - 2)/ 4;
memcpy(&counter, packet + 1, 1);
memcpy(&recv_packetnum, packet + 2, 4);
memcpy(&sent_packetnum,packet + 6, 4);
if(number != 0)
{
memcpy(req_packets, packet + 10, 4 * number);
}
if(connection == -1)
{
handle_SYNC1(source, recv_packetnum, sent_packetnum);
return 0;
}
if(connections[connection].status == 2)
{
handle_SYNC2(connection, counter, recv_packetnum, sent_packetnum);
return 0;
}
if(connections[connection].status == 3)
{
handle_SYNC3(connection, counter, recv_packetnum, sent_packetnum, req_packets, number);
}
return 0;
}
//add a packet to the recieved buffer and set the recv_packetnum of the connection to its proper value.
//return 1 if data was too big, 0 if not.
int add_recv(int connection_id, uint32_t data_num, char * data, uint16_t size)
{
if(size > MAX_DATA_SIZE)
{
return 1;
}
uint32_t i;
uint32_t maxnum = connections[connection_id].successful_read + BUFFER_PACKET_NUM;
uint32_t sent_packet = data_num - connections[connection_id].osent_packetnum;
for(i = connections[connection_id].recv_packetnum; i != maxnum; i++)
{
if(i == data_num)
{
memcpy(connections[connection_id].recvbuffer[i % MAX_QUEUE_NUM].data, data, size);
connections[connection_id].recvbuffer[i % MAX_QUEUE_NUM].size = size;
if(sent_packet < BUFFER_PACKET_NUM)
{
connections[connection_id].osent_packetnum = data_num;
}
break;
}
}
for(i = connections[connection_id].recv_packetnum; i != maxnum; i++)
{
if(connections[connection_id].recvbuffer[i % MAX_QUEUE_NUM].size != 0)
{
connections[connection_id].recv_packetnum = i;
}
else
{
break;
}
}
return 0;
}
int handle_data(char * packet, uint32_t length, IP_Port source)
{
int connection = getconnection_id(source);
if(connection == -1)
{
return 1;
}
if(length > 1 + 4 + MAX_DATA_SIZE || length < 1 + 4 + 1)
{
return 1;
}
uint32_t number;
uint16_t size = length - 1 - 4;
memcpy(&number, packet + 1, 4);
return add_recv(connection, number, packet + 5, size);
}
//END of packet handling functions
int LosslessUDP_handlepacket(char * packet, uint32_t length, IP_Port source)
{
switch (packet[0]) {
case 16:
return handle_handshake(packet, length, source);
case 17:
return handle_SYNC(packet, length, source);
case 18:
return handle_data(packet, length, source);
default:
return 1;
}
return 0;
}
//Send handshake requests
//handshake packets are sent at the same rate as SYNC packets
void doNew()
{
uint32_t i;
uint64_t temp_time = current_time();
for(i = 0; i < MAX_CONNECTIONS; i++)
{
if(connections[i].status == 1)
{
if((connections[i].last_sent + (1000000UL/connections[i].SYNC_rate)) <= temp_time)
{
send_handshake(connections[i].ip_port, connections[i].handshake_id1, 0);
connections[i].last_sent = temp_time;
}
}
//kill all timed out connections
if( connections[i].status > 0 && (connections[i].last_recv + CONNEXION_TIMEOUT * 1000000UL) < temp_time)
{
kill_connection(i);
}
}
}
void doSYNC()
{
uint32_t i;
uint64_t temp_time = current_time();
for(i = 0; i < MAX_CONNECTIONS; i++)
{
if(connections[i].status == 2 || connections[i].status == 3)
{
if((connections[i].last_SYNC + (1000000UL/connections[i].SYNC_rate)) <= temp_time)
{
send_SYNC(i);
connections[i].last_SYNC = temp_time;
}
}
}
}
void doData()
{
uint32_t i;
uint64_t temp_time = current_time();
for(i = 0; i < MAX_CONNECTIONS; i++)
{
if(connections[i].status == 3)
{
if((connections[i].last_sent + (1000000UL/connections[i].data_rate)) <= temp_time)
{
send_DATA(i);
connections[i].last_sent = temp_time;
}
}
}
}
//TODO: flow control.
//automatically adjusts send rates of packets for optimal transmission.
void adjustRates()
{
//if()
}
//Call this function a couple times per second
//It's the main loop.
void doLossless_UDP()
{
doNew();
doSYNC();
doData();
adjustRates();
}