/* net_crypto.c * * Functions for the core crypto. * * NOTE: This code has to be perfect. We don't mess around with encryption. * * Copyright (C) 2013 Tox project All Rights Reserved. * * This file is part of Tox. * * Tox is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Tox is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Tox. If not, see . * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "crypto_core.h" #include "network.h" #include #ifndef VANILLA_NACL /* We use libsodium by default. */ #include #else #include #include #include #include #include #include #include #define crypto_box_MACBYTES (crypto_box_ZEROBYTES - crypto_box_BOXZEROBYTES) #endif #if CRYPTO_PUBLIC_KEY_SIZE != crypto_box_PUBLICKEYBYTES #error CRYPTO_PUBLIC_KEY_SIZE should be equal to crypto_box_PUBLICKEYBYTES #endif #if CRYPTO_SECRET_KEY_SIZE != crypto_box_SECRETKEYBYTES #error CRYPTO_SECRET_KEY_SIZE should be equal to crypto_box_SECRETKEYBYTES #endif #if CRYPTO_SHARED_KEY_SIZE != crypto_box_BEFORENMBYTES #error CRYPTO_SHARED_KEY_SIZE should be equal to crypto_box_BEFORENMBYTES #endif #if CRYPTO_SYMMETRIC_KEY_SIZE != crypto_box_BEFORENMBYTES #error CRYPTO_SYMMETRIC_KEY_SIZE should be equal to crypto_box_BEFORENMBYTES #endif #if CRYPTO_MAC_SIZE != crypto_box_MACBYTES #error CRYPTO_MAC_SIZE should be equal to crypto_box_MACBYTES #endif #if CRYPTO_NONCE_SIZE != crypto_box_NONCEBYTES #error CRYPTO_NONCE_SIZE should be equal to crypto_box_NONCEBYTES #endif #if CRYPTO_SHA256_SIZE != crypto_hash_sha256_BYTES #error CRYPTO_SHA256_SIZE should be equal to crypto_hash_sha256_BYTES #endif #if CRYPTO_SHA512_SIZE != crypto_hash_sha512_BYTES #error CRYPTO_SHA512_SIZE should be equal to crypto_hash_sha512_BYTES #endif int32_t public_key_cmp(const uint8_t *pk1, const uint8_t *pk2) { #if CRYPTO_PUBLIC_KEY_SIZE != 32 #error CRYPTO_PUBLIC_KEY_SIZE is required to be 32 bytes for public_key_cmp to work, #endif return crypto_verify_32(pk1, pk2); } uint32_t random_int(void) { uint32_t randnum; randombytes((uint8_t *)&randnum , sizeof(randnum)); return randnum; } uint64_t random_64b(void) { uint64_t randnum; randombytes((uint8_t *)&randnum, sizeof(randnum)); return randnum; } bool public_key_valid(const uint8_t *public_key) { if (public_key[31] >= 128) { /* Last bit of key is always zero. */ return 0; } return 1; } /* Precomputes the shared key from their public_key and our secret_key. * This way we can avoid an expensive elliptic curve scalar multiply for each * encrypt/decrypt operation. * shared_key has to be crypto_box_BEFORENMBYTES bytes long. */ int32_t encrypt_precompute(const uint8_t *public_key, const uint8_t *secret_key, uint8_t *shared_key) { return crypto_box_beforenm(shared_key, public_key, secret_key); } int32_t encrypt_data_symmetric(const uint8_t *secret_key, const uint8_t *nonce, const uint8_t *plain, size_t length, uint8_t *encrypted) { if (length == 0 || !secret_key || !nonce || !plain || !encrypted) { return -1; } uint8_t temp_plain[length + crypto_box_ZEROBYTES]; uint8_t temp_encrypted[length + crypto_box_MACBYTES + crypto_box_BOXZEROBYTES]; memset(temp_plain, 0, crypto_box_ZEROBYTES); memcpy(temp_plain + crypto_box_ZEROBYTES, plain, length); // Pad the message with 32 0 bytes. if (crypto_box_afternm(temp_encrypted, temp_plain, length + crypto_box_ZEROBYTES, nonce, secret_key) != 0) { return -1; } /* Unpad the encrypted message. */ memcpy(encrypted, temp_encrypted + crypto_box_BOXZEROBYTES, length + crypto_box_MACBYTES); return length + crypto_box_MACBYTES; } int32_t decrypt_data_symmetric(const uint8_t *secret_key, const uint8_t *nonce, const uint8_t *encrypted, size_t length, uint8_t *plain) { if (length <= crypto_box_BOXZEROBYTES || !secret_key || !nonce || !encrypted || !plain) { return -1; } uint8_t temp_plain[length + crypto_box_ZEROBYTES]; uint8_t temp_encrypted[length + crypto_box_BOXZEROBYTES]; memset(temp_encrypted, 0, crypto_box_BOXZEROBYTES); memcpy(temp_encrypted + crypto_box_BOXZEROBYTES, encrypted, length); // Pad the message with 16 0 bytes. if (crypto_box_open_afternm(temp_plain, temp_encrypted, length + crypto_box_BOXZEROBYTES, nonce, secret_key) != 0) { return -1; } memcpy(plain, temp_plain + crypto_box_ZEROBYTES, length - crypto_box_MACBYTES); return length - crypto_box_MACBYTES; } int32_t encrypt_data(const uint8_t *public_key, const uint8_t *secret_key, const uint8_t *nonce, const uint8_t *plain, size_t length, uint8_t *encrypted) { if (!public_key || !secret_key) { return -1; } uint8_t k[crypto_box_BEFORENMBYTES]; encrypt_precompute(public_key, secret_key, k); int ret = encrypt_data_symmetric(k, nonce, plain, length, encrypted); crypto_memzero(k, sizeof k); return ret; } int32_t decrypt_data(const uint8_t *public_key, const uint8_t *secret_key, const uint8_t *nonce, const uint8_t *encrypted, size_t length, uint8_t *plain) { if (!public_key || !secret_key) { return -1; } uint8_t k[crypto_box_BEFORENMBYTES]; encrypt_precompute(public_key, secret_key, k); int ret = decrypt_data_symmetric(k, nonce, encrypted, length, plain); crypto_memzero(k, sizeof k); return ret; } /* Increment the given nonce by 1. */ void increment_nonce(uint8_t *nonce) { /* TODO(irungentoo): use increment_nonce_number(nonce, 1) or sodium_increment (change to little endian) * NOTE don't use breaks inside this loop * In particular, make sure, as far as possible, * that loop bounds and their potential underflow or overflow * are independent of user-controlled input (you may have heard of the Heartbleed bug). */ uint32_t i = crypto_box_NONCEBYTES; uint_fast16_t carry = 1U; for (; i != 0; --i) { carry += (uint_fast16_t) nonce[i - 1]; nonce[i - 1] = (uint8_t) carry; carry >>= 8; } } /* increment the given nonce by num */ void increment_nonce_number(uint8_t *nonce, uint32_t host_order_num) { /* NOTE don't use breaks inside this loop * In particular, make sure, as far as possible, * that loop bounds and their potential underflow or overflow * are independent of user-controlled input (you may have heard of the Heartbleed bug). */ const uint32_t big_endian_num = htonl(host_order_num); const uint8_t *const num_vec = (const uint8_t *) &big_endian_num; uint8_t num_as_nonce[crypto_box_NONCEBYTES] = {0}; num_as_nonce[crypto_box_NONCEBYTES - 4] = num_vec[0]; num_as_nonce[crypto_box_NONCEBYTES - 3] = num_vec[1]; num_as_nonce[crypto_box_NONCEBYTES - 2] = num_vec[2]; num_as_nonce[crypto_box_NONCEBYTES - 1] = num_vec[3]; uint32_t i = crypto_box_NONCEBYTES; uint_fast16_t carry = 0U; for (; i != 0; --i) { carry += (uint_fast16_t) nonce[i - 1] + (uint_fast16_t) num_as_nonce[i - 1]; nonce[i - 1] = (unsigned char) carry; carry >>= 8; } } /* Fill the given nonce with random bytes. */ void random_nonce(uint8_t *nonce) { randombytes(nonce, crypto_box_NONCEBYTES); } /* Fill a key CRYPTO_SYMMETRIC_KEY_SIZE big with random bytes */ void new_symmetric_key(uint8_t *key) { randombytes(key, CRYPTO_SYMMETRIC_KEY_SIZE); } int32_t crypto_new_keypair(uint8_t *public_key, uint8_t *secret_key) { return crypto_box_keypair(public_key, secret_key); } void crypto_derive_public_key(uint8_t *public_key, const uint8_t *secret_key) { crypto_scalarmult_curve25519_base(public_key, secret_key); } void crypto_sha256(uint8_t *hash, const uint8_t *data, size_t length) { crypto_hash_sha256(hash, data, length); } void crypto_sha512(uint8_t *hash, const uint8_t *data, size_t length) { crypto_hash_sha512(hash, data, length); } void crypto_memzero(void *data, size_t length) { #ifdef VANILLA_NACL /* TODO(c-toxcore#347): this is insecure. We need to provide our own * secure memzero/memcmp for NaCL. */ memset(data, 0, length); #else sodium_memzero(data, length); #endif } int32_t crypto_memcmp(const void *p1, const void *p2, size_t length) { #ifdef VANILLA_NACL /* TODO(c-toxcore#347): Implement secure memcmp. */ return memcmp(p1, p2, length); #else return sodium_memcmp(p1, p2, length); #endif } void random_bytes(uint8_t *data, size_t length) { randombytes(data, length); }